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Abstract

Gene expression profiling of in vitro drug perturbations is useful for many biomedical discovery 

applications including drug repurposing and elucidation of drug mechanisms. However, limited 

data availability across cell types has hindered our capacity to leverage or explore the cell-

specificity of these perturbations. While recent efforts have generated a large number of drug 

perturbation profiles across a variety of human cell types, many gaps remain in this combinatorial 

drug-cell space. Hence, we asked whether it is possible to fill these gaps by predicting cell-specific 

drug perturbation profiles using available expression data from related conditions--i.e. from other 

drugs and cell types. We developed a computational framework that first arranges existing profiles 

into a three-dimensional array (or tensor) indexed by drugs, genes, and cell types, and then uses 

either local (nearest-neighbors) or global (tensor completion) information to predict unmeasured 

profiles. We evaluate prediction accuracy using a variety of metrics, and find that the two methods 
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have complementary performance, each superior in different regions in the drug-cell space. 

Predictions achieve correlations of 0.68 with true values, and maintain accurate differentially 

expressed genes (AUC 0.81). Finally, we demonstrate that the predicted profiles add value for 

making downstream associations with drug targets and therapeutic classes.
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1. Introduction

Genome-wide expression profiling of in vitro drug perturbations has proven to be useful for 

many aspects of drug discovery and development1. Applications include elucidation of drug 

mechanisms2, lead identification3, and drug repurposing4, 5. Despite this success, the 

capacity to leverage cell-specific responses has been hindered by limited data availability 

across cell types6, 7. To address this limitation, the Library of Integrated Cellular Signatures 

(LINCS) program8, 9 has greatly expanded the publicly available data to nearly one million 

profiles characterizing thousands of drugs exposed to dozens of cell types. However, this 

combinatorial space of drugs and cell types is vast, and many gaps remain in this space (see 

white space in Figure 3B). These gaps present difficulties both for large-scale analysis as 

well as for making cell-matched comparisons, e.g. between two drugs or between drug and 

disease. Therefore, we asked whether it is possible to leverage existing expression profiles to 

predict the remaining unmeasured profiles.

Expression responses to drug exposure are often highly cell-specific, e.g. due to differences 

in expression of drug targets. Indeed, we observe a high degree of cell-specificity for many 

drugs in the LINCS data (see Figure 1). The utility of such cell-specific gene expression has 

previously been demonstrated for a variety of applications. For example, a recent analysis10 

found that LINCS expression profiles were more predictive of anti-cancer drug efficacy 

when using cell lines sharing a common lineage with the queried cancer type. Similarly, 

another study11 showed that using transcriptional similarity to predict drug-target 

interactions is more accurate when comparing drug profiles in the same cell line.

Prior studies have described methods to predict expression profiles using outside 

information. For example, Gamazon, et al. (12) predict tissue-specific expression profiles 

from genetic variants, but are limited to heritable variation in expression. Conversely, 

Lagunin, et al. (13) predict drug-induced expression responses from a drug's chemical 

structure, but are agnostic to cell type. There are also many techniques to impute missing 

entries of a gene expression matrix, generally using either local (e.g. nearest neighbors) or 

global (e.g. low-rank matrix approximation) information14, 15. However, most of these 

methods are not directly applicable to our setting, as they rely on having at least some 

measurements available in the target experimental setting.

Here, we draw inspiration from this prior work to solve a new problem: predicting entire 
expression profiles for cell-specific drug perturbations that have not yet been measured. Our 

two approaches are complementary in their use of local vs. global information. The local 
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algorithm, Drug Neighbor Profile Prediction (DNPP) is inspired by K-nearest neighbors but 

adapted to this de novo prediction setting. The global algorithm, Fast Low-Rank Tensor 
Completion (FaLRTC)16 fills in the missing entries of a tensor using the observed entries. 

The underlying assumption here is that the data are low-rank, i.e. some small set of 

underlying factors (e.g. drug targets) explain most of the variation in the data.

We evaluate our methods along with two baselines using several approaches. We use cross-

validation (CV) to measure correlation of true and predicted expression, as well as accuracy 

of differentially expressed genes (DEGs). We also study the dependence of accuracy on the 

amount of input data and explore the cell-specificity of our predictions. Finally, we 

demonstrate that the completed dataset adds value for downstream prediction of therapeutic 

classes and drug targets.

2. Methods

2.1. Notation and terminology

T refers to a tensor, with Td,g,c for drug d, gene g, and cell c. A colon subscript refers to all 

elements of that index. Cd and Dc respectively refer to the cell lines measured for drug d, 

and the drugs measured in cell c. Error bars in figures and text refer to ± one standard 

deviation. All correlations are Pearson's correlations, denoted by r or cor(·,·). ‘Drug’ refers to 

compounds represented in the data, including approved drugs, drug-like compounds, and 

tool compounds.

2.2. Data processing

The LINCS drug expression data (herein, the “L1000 data”) is measured on a targeted 

expression profilling platorm called L100017. he platorm measures the expression of 978 

“landmark” genes (roughly 1000, hence the name), selected to be maximally predictive of 

the other genes while being widely expressed across many cell and tissue types.

Differential expression computed from the level 3 L1000 data were downloaded from 

amp.pharm.mssm.edu/public/L1000CDS_download. The dataset was generated using the 

Characteristic Direction (CD) method18 and is validated and described more fully in19. 

Briefly, a CD was calculated for each replicate using linear discriminate analysis, to find the 

direction in gene space that best separates cases and controls. Replicates were averaged and 

normalized to unit length. Average cosine distance (ACD), i.e. the mean pairwise cosine 

distances between an experiment's CD replicates, was used to estimate significance. The null 

distribution of the ACDs was calculated per batch using random sampling (n = 10,000) of 

replicates in the same batch. A p-value for each profile (ACD p-value) was computed by 

comparing its ACD to the null.

Tensor construction—The 201,484 CD profiles (20,413 drugs, 72 cell types) were 

filtered to 34,716 profiles (6,928 drugs, 72 cell types) with ACD p ≤ 0.1 in order to remove 

the most unreliable data. Drugs and cell types with < 3 remaining experiments were 

removed, as well as duplicate drug id's corresponding to the same drug, for a final count of 

25,672 profiles (2,130 drugs, 71 cells, 12.7% of all CDs). Profiles were averaged across all 

available concentration and time points, renormalized to have unit norm, and then arranged 
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into a tensor (see Figure 2A). Of the 151,230 possible drug-cell pairs, the tensor contains 

15,855, corresponding to 10.5% observation density. A smaller, more dense subset of this 

tensor was also used for some of the experiments, using the top 300 drugs and 15 cell lines, 

reaching an observation density of 71.4%. The tensor element Td,g,c is the gth coordinate of 

the CD vector or drug d in cell c. All values lie in the range [-1,1] after normalization, where 

a positive [negative] value corresponds to up- [down-] regulation. The 10 cell lines with the 

most data are listed in Table 1, along with the corresponding tissue of origin and number of 

profiles (i.e. drugs) present. Most of the 71 cell lines are cancer cell lines, and represent a 

range of human tissues including skin, lung, brain, kidney, and prostate.

2.3. The Drug Neighbor Profile Prediction algorithm

The DNPP algorithm (Figure 2E) is an adaptation of K-nearest neighbors (KNN) to the de 
novo prediction setting. In other words, KNN normally requires at least some data present in 

the target condition in order to identify neighbors. To overcome this limitation, DNPP 

defines similarity between drugsa instead of profiles. The similarity (S) between two drugs d 
and d′ is defined based on average correlation between the two drugs' profiles as measured 

in other cell types:

(1)

DNPP then estimates the profile for drug d and cell c as a weighted average of (up to) K 
profiles from cell type c corresponding to neighboring drugs. To generate a prediction for (d, 

c), drug neighbors of d are chosen only amongst drugs that have data in cell c, and hence 

neighbors can differ per cell type. Finally, the weights on the K profiles are chosen 

proportional to S(d, d′), normalized to sum to 1. We use K = 10 (CV results not shown).

2.4. The Fast, Low-Rank Tensor Completion algorithm

Since there are many tensor completion algorithms available, we benchmarked a variety of 

algorithms for speed and accuracy (see supplementary for details) and subsequently selected 

the FaLRTC algorithm. The FaLRTC algorithm16 is sometimes referred to herein as simply 

Tensor or ‘the tensor approach.’ We briefly describe the algorithm here, in a simplified form 

(see Figure 2F). Like most tensor completion algorithms, FaLRTC assumes that the data has 

some low-rank structure. While there is a notion of rank for a tensor20, this is in general hard 

to compute. Hence, FaLRTC resorts to low-rank matrix approximations instead. A three-

dimensional tensor can be reshaped or ‘unfolded’ into matrices in three mathematically 

distinct ways20, i.e. a D×C×G tensor can be unfolded into a D×(CG), a C×(DG), and a G×

(DC) matrix. The algorithm forms all three such matrices, and then performs low-rank 

matrix approximation via a spectral method. The prediction of missing values is based on a 

weighted combination of the three matrix-derived estimates, where these weights (αi, i = 

1,2,3) are user-defined parameters, constrained to be positive and sum to one. Observed 

aWe also tested a similar approach defining neighbors between cell lines, but the performance was not as strong.
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elements are reset to their true values, and then this process is iterated using gradient descent 

to minimize (an upper bound on) the matrix ranks. Due to the column-structured pattern of 

missing entries in our tensors, gene correlation structure is less useful for predictions than 

correlations in the other two dimensions, and hence estimates from the matrix (G×(DC)) that 

most strongly leverage gene correlations, were down-weighted by a factor of 100 relative to 

the other two (i.e. α7 ≡ α1/100 ≡ α1/100). This can be seen as an adaptation of the 

algorithm to the present setting defined by the column-structured pattern of missing entries.

2.5. Baseline averaging schemes

While many methods exist to impute randomly missing entries in a gene expression matrix, 

we are not aware of prior work predicting entire expression profiles without additional data 

inputs. Thus we use two simple baselines that make predictions by averaging relevant 

subsets of data. 1D-Mean (Figure 2C) predicts missing expression profiles for each drug by 

averaging all profiles available for that drug in the tensor (i.e. across cell lines). 2D-Mean 
(Figure 2D), combines the 1D-Mean average across cell lines with a similar average in the 

other dimension across drugs, i.e.

(2)

We use λ = ½ based on CV experiments (results not shown).

2.6. Cross-validation for predicting gene expression profiles

10-fold CV experiments were performed, where entire expression profiles were held out and 

then predicted (see Figure 2B), randomly selecting 10% of the profiles per fold. All of these 

predictions were compiled into a tensor, T̂, with the same dimensions and pattern of missing 

entries as the original tensor. Accuracy was measured as the Pearson correlation with truth 

(PCT). This is defined simply as PCTΩ = cor(TΩ, T̂Ω), where Ω corresponds to some subset 

of the tensor, the correlation is taken element-wise, and missing entries are ignored. For 

example, Ω might correspond to an individual drug-cell profile, a CV fold, or the entire 

tensor.

2.7. Predicting drug targets and ATC codes

In order to build binary classifiers of drug-target interactions and Anatomic Therapeutic 

Chemical (ATC) classifications, drug profiles were compiled for all drugs represented in the 

data tensor, restricting to the top ten most-sampled cell lines (see Table 1). Measured profiles 

were used as is, and predicted profiles were generated using the DNPP method. The drug 

profiles and corresponding binary labels were used to train KNN, Random Forests (RF), and 

Regularized Logistic Regression (LR) models via the caret package21. For each experiment 

(i.e. one profile type, prediction task, model, and choice of either measured or completed 

dataset; see Figure 5A) a grid search was performed using 10-fold CV to select model 

hyperparameters (see supplementary). The cross-validated predicted probabilities from the 

selected set of parameters were recorded and then used to compute several versions of AUC 
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scores. In the first set of experiments, AUCs are compared between (a) classifiers trained on 

the completed data, versus (b) the same classifiers trained on only the measured subset of 

profiles. Here, AUCs are calculated on the common set of labels corresponding to the 

measured drug profiles only, and results were excluded from the analysis when both AUCs 

were < 0.5. In the second set of experiments, AUCs were computed on two complementary 

sets of predictions from the same model trained on the completed data, where the 

complementary sets are the drugs with measured profiles, vs. the set of drugs for which only 

predicted profiles are available. Here, experiments were again excluded if both AUCs were < 

0.5, or if either drug set (for the measured or predicted profile sets) had < 3 positive 

examples.

3. Results

3.1. Overall accuracy

We start with an evaluation of the overall correlation between true and predicted values. 

Figure 3A shows a smoothed scatterplot of all Tensor (FaLRTC) predictions versus true 

values, where each point corresponds to a single, numeric entry in the tensor. The four 

methods achieved correlations (i.e. PCT, see Methods) of 0.53, 0.54, 0.46, and 0.40b.

3.2. Tradeoffs in accuracy across drug-cell space

While DNPP and Tensor have similar overall performance, we observe a clear tradeoff in 

accuracy between the two methods across different regions of the space. Figure 3B shows 

which method was most accurate (based on PCT) for each profile in the tensor. We see that 

for drugs with profiles in many cell lines (i.e. near the bottom), the tensor approach is 

usually the top performer, while in the region on the left where fewer cell lines but many 

drugs have been profiled, DNPP is generally superior.

3.3. Effects of varying observation density

Next, we studied the dependence of accuracy on the amount of input data by varying the 

percent of observed profiles in the small (and more dense) tensor. Observation density was 

varied by subsampling profiles in the tensor in 10% intervals from 10-60%, evaluating on a 

held-out set covering another 10% of the tensor. This sampling process was repeated 25 

times generating the error bars in Figure 3C. At or above an observation density of 30%, 

Tensor had superior performance, while at lower densities, 2D-Mean was the top performer. 

We also observe that the tensor approach had a more dramatic improvement in performance 

with increasing density, reaching a mean PCT per fold of 0.68.

3.4. Accuracy of differentially expressed genes

We also evaluated the ability to predict DEGs in the unmeasured drug-cell experiments. To 

do this, we first identified DEGs in the measured profiles, and then thresholded expression 

values in the corresponding predicted profiles to generate ROC curves. More specifically, for 

each expression profile, a gene was considered a “true” DEG if its absolute expression value 

was at or above the pth percentile relative to all genes in the profile, where p was set to either 

bAll results are reported in the following order: Tensor; DNPP; 2D-Mean; 1D-Mean.
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1% or 10% (other approaches were also tried with little effect on the outcome; results not 

shown). ROC curves shown in Figure 3D were then generated by varying an analogous 

percentile threshold across the range 0-100% for the predicted profiles in the CV tensors, 

thereby defining a set of predicted DEGs for each profile at each possible threshold value. 

Each ROC curve represents aggregate results across all profiles in the tensor. The methods 

achieved area under the ROC curve (AUC) values of 0.81, 0.80, 0.76, and 0.73 at p = 1%. At 

p = 10%, a similar relationship between methods was observed (0.72, 0.73, 0.68, 0.65). For 

all four methods, AUC's were higher at the 1% threshold relative to the 10% threshold, and 

this pattern was observed more generally (results not shown), where smaller values of p 
correspond with higher accuracy. This is reasonable in that smaller percentile thresholds 

correspond to genes with stronger differential expression signals.

3.5. Analysis of cell-specificity

While some L1000 drugs show very similar responses across cell types, others induce highly 

cell-specific responses. One such example is M-3M3FBS (herein “M3”), a PLC agonist that 

induces a variety of effects ranging from modulation of neutrophil function to apoptosis. The 

tensor contains M3 profiles in 15 different cell lines, shown on the left-most panel of Figure 

4A. Responses cluster into two primary groups, with one group (on the left) enriched for 

down-regulation of both spindle pole genes as well as valine, leucine, and isoleucine 

degradation, perhaps indicating a pre-apoptotic response. The mean profile of the second 

group (A549, AGS, RKO, and MCF7 cells) is enriched for very different types of processes 

including up-regulation of Akt signaling, insulin signaling, and salivary secretion, all of 

which have established connections to PLC22, 23. Figure 4A shows that the tensor approach 

was able to accurately recapitulate these two classes of responses. DNPP, on the other hand, 

seems to “misclassify” some of the cell types into the wrong group, while 1D-Mean and 2D-

Mean predictions are nearly identical across cell types.

Another example (Figure 4B) with highly cell-specific expression patterns is Carbetocin, an 

oxytocin analog. In contrast to the previous example, here DNPP outperforms the tensor 

approach. One explanation for DNPP's success with Carbetocin is that all three measured 

cell lines (MCF7, A549 and VCAP) are among the top five most-sampled cell lines in the 

tensor, and therefore have many drug neighbors from which to choose. On the other hand, 

M3 has data in many cell types, which is associated with better Tensor predictions. In 

addition to M3 and Carbetocin, two more examples are presented in the supplementary 

information, one (ABT-751) in which both methods do similarly well, and a second 

(GNF-2), where both have similarly poor performance.

3.6. Utility of completed data for downstream prediction of drug properties

In this final section, we aim to show that the completed data provides added value for 

downstream prediction of drug targets and therapeutic classes. To do this, we trained binary 

classifiers using the drug profiles as inputs, and designed experiments to address two 

questions (see Figure 5A). First, we asked whether classifiers trained on the completed data 

are of higher quality than those trained on only the measured subset of profiles. Second, we 

asked whether ATC and target predictions have comparable accuracy on measured vs. 

predicted profiles. Toward both of these aims, we identified the top 7 drug targets and 3 ATC 
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classes (see Figure 5C) represented in the tensor, and trained classifiers for each of these 

tasks using 12 different versions of input drug profiles (cell-specific profiles from the top 10 

most-represented cell lines in the tensor, as well as the mean and maximum value of each 

gene across these 10 cell lines). Finally, since our questions are focused on the value of the 

drug profiles and not about a specific algorithm, we included three different algorithms in 

our experiments (LR, KNN, and RF).

The results addressing the first question were generally positive. More specifically, of the 

360 experiments (12 profile types × 3 models × 10 prediction tasks), after removing 21 

experiments where no signal could be found, 223 (65.6%) showed an increase in AUC when 

training on the completed data compared with only the measured subset, with a mean 

improvement of 0.03 (p < 1e-8, paired t-test). Differences were also significant (p ≤ 0.01) for 

each of the models individually, with mean AUC improvements of 0.05 for LR and 0.02 for 

RF and KNN. The improvements also varied by profile type, as shown in Figure 5B. More 

specifically, we observed that cell types such as NPC (neural progenitor cells) that had fewer 

measured profiles available saw the most gains when including the additional profiles. 

Overall, four profile types (NPC, HEPG2, HCC515, and HA1E cell-specific profiles) 

showed significant AUC improvements across models and prediction tasks (adjusted p < 

0.05, paired t-test), with two additional profile types (HT29 and max) reaching marginal 

significance, and none showing significant decreases. Figure 5C shows a similar analysis per 

prediction task. The median AUC difference was positive for all prediction tasks, reaching 

statistical significance for 4 out of 10: ATC D code (dermatological indications), and RORC, 

STK33, and ATAD5 targets, with MLL reaching marginal significance.

Figures 5D and E summarize the second set of experiments addressing the question of 

whether accuracy is comparable on predicted vs. measured profiles. While one might expect 

that accuracy would always be worse on the predicted profiles, this is not the case. We find 

instead that the results are mixed, and vary per feature and outcome. For example, predicting 

the ATC L code (antineoplastic and immunomodulating agents), had similarly high accuracy 

using either measured or predicted profiles, likely due to strong expression signals for this 

class of drugs, as well as high relevance of the cancer cell lines for observing antineoplastic 

effects. However, across experiments for the ATC codes, there was a mean loss of 0.08 AUC 

using the predicted profiles. On the other hand, in the case of target prediction, there was no 

significant loss of AUC across experiments. Interestingly, the predicted HT29 profiles had 

better accuracy than measured profiles for 19 of the 21 target prediction experiments (mean 

AUC improvement 0.12), perhaps indicating de-noising in the predicted profiles. 

Additionally, we found that for all 10 tasks, there were multiple profile types for which the 

AUC was higher on the predicted profiles.

4. Discussion

Expression profiles characterizing in vitro drug perturbations are useful for a variety of 

applications in drug discovery. While many thousands of such expression profiles have been 

measured, large gaps remain in the combinatorial space across drugs and cell types. Hence, 

we asked whether it is possible to leverage existing data from other drug-cell combinations 

to predict unmeasured profiles. We tested both local and global approaches, finding that 
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predictions are not only accurate in an overall sense but preserve signal that is biologically 

and therapeutically relevant, e.g. maintaining accurate DEGs and signal to predict targets 

and therapeutic classes.

Both Tensor and DNPP almost uniformly outperformed the averaging baselines, with highly 

complementary performance between the two methods (Figure 3B). This complementarity is 

concordant with intuition in that, the global approach can leverage all information available 

and hence outperforms when a large amount of information is available per drug; whereas 

the local approach has better performance when many drugs neighbors are available. In 

addition to this complementarity, there are other tradeoffs. On the one hand, Tensor was able 

to “learn more” than DNPP with increasing observation density (Figure 3D). On the other 

hand, DNPP is conceptually simpler, uses only a single parameter, and requires less 

computation time.

In our experiments with ATC and target prediction, we note that the purpose is not to 

demonstrate state-of-the-art accuracy, but to show that the completed data adds predictive 

value to the LINCS L1000 drug profiles. Indeed, we observed many cases showing 

significantly improved accuracy, with no cases of significant decreases in accuracy. These 

results are likely explained by several factors. For cell-specific profiles, the completed data 

contains more profiles, and hence models can be trained with more labels. For the max and 

mean profiles, the incomplete data has heterogeneous cell-type availability per drug whereas 

the completed data is summarized across a uniform set of cell lines. Additionally, it is 

possible that the predicted profiles may, in some cases, have a stronger signal-to-noise ratio 

than their measured counterparts, which could explain, e.g. the high performance of the 

predicted HT29 profiles (Figure 5E) in multiple prediction tasks.

Our framework produces testable and usable predictions at the L1000 profile level. More 

specifically, each value corresponds to the differential expression (CD) value of one gene in 

one cell line perturbed by one drug. However, the CD values do not map directly to 

measurable gene-level quantities such as fold change. Therefore, we advise that, unless one 

compares predictions to the result of a CD analysis, predictions should either be treated at 

the level of a ranked list of genes, or thresholded to define DEGs.

We noticed while processing the L1000 data that roughly 2/3 of the > 20K drugs did not 

have any experiments with reliable (i.e. nominal ACD p < 0.1) measurements between 

replicates. While replicate consistency may improve with advances in data processing, it is 

likely that many of the drugs simply do not induce a strong enough expression response to 

overcome biological and technical sources of noise. We believe that this should be taken into 

consideration for any project working with L1000 drug profiles.

One limitation of this study is the lack of established baselines. The baselines used in this 

study were relatively basic, but help to demonstrate that our predictions outperform 

alternatives that might be considered safe and intuitive. While few methods currently exist 

for systematic prediction of cell-type specific drug expression profiles, we expect that the 

methods and results presented in this study would serve as useful baselines for future work 

on improved methods.
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Several factors may have introduced bias into the results. First, almost all of the cell lines are 

cancer lineages, which may result in more similarity between cell lines than otherwise 

expected. Second, the selection of landmark genes may have biased the results. One line of 

thinking is that, due to the way these genes were selected, one would expect them to be 

relatively independent and therefore more difficult to predict than a random set of genes. If 

true, this would bias the results in a more conservative direction. Third, the presence of 

chemically similar drugs in the tensor could potentially make the prediction problem easier 

than otherwise. However, our analysis indicates that this bias is quite small (< 0.02 PCT 

difference), and we also verified that none of the drugs highlighted in Section 3.5 have 

structural cognates in the tensor (i.e. all Tanimoto coefficients are less than 0.5). Fourth, our 

CV experiments reduced observation density by 10%, and hence results would likely be 

further improved by using all available data. Finally, the L1000 data has highly imbalanced 

sampling across the drug-cell space (see Figure 3B), and this is likely a source of positive 

bias. Predictions made in the less-dense regions of the drug-cell space should therefore be 

used with caution and would likely benefit the most from methodological improvements.

There are many directions to explore in future work, grouped into a few categories. First, the 

data inputs could be expanded in a variety of ways. E.g., one could use the full, imputed 

transcriptome as opposed to only landmark genes. Also, more inclusive data filtering could 

be evaluated. The Broad Institute is also continuing to generate more data across this space; 

however, this will likely never be comprehensive, and hence we expect that this work will 

continue to be relevant. The second category of extensions are methodological, including: 1) 

nonlinear modeling; 2) use of auxiliary similarity information24; 3) addition of a time 

dimension to the tensor; 4) modeling measurement reliability; and 5) adopting a 

probabilistic framework. The final category of future work relates to applications. First, our 

approach could readily be applied and evaluated on many other biological datasets where 

data span at least three categorical axes. Such datasets include CMap25, with dimensions of 

drugs, genes, and cell types, and the Genotype-Tissue Expression (GTEx)26 and Braineac 

datasets27, each spanning individuals, genes, and tissues. Second, one could extend this 

framework to be able to prioritize the remaining experiments, e.g. using active learning, in 

order to optimally map out this transcriptional landscape across drugs and cellular contexts. 

Finally, another exciting direction would be to make possible ‘out-of-sample’ predictions28 

which would be particularly useful when measurements are difficult to obtain (e.g. for 

human in vivo brain tissue expression) but where related measurements could be obtained 

from more accessible tissues (e.g., neuronal cell types from induced pluripotent stem cells). 

This would likely require an integrative approach leveraging additional datasets and 

metrics24 (e.g., cell line genetic similarity as auxiliary data for tensor completion).

To the best of our knowledge, this work is the first attempt at prediction of expression 

profiles using only expression from related experimental conditions. Hence, we consider this 

work to be a compelling proof-of-concept demonstrating the feasibility and value of such 

predictions. It is our hope that completing the space across drugs and cell types will enable 

new types of analyses and predictions of cell-specific drug action that could lead to 

translational insights and applications.
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Fig. 1. 
Distribution of cell-specificity of 2,130 drugs in the L1000 dataset. The cell-specificity is 

quantified per drug as the mean pairwise cosine distance between all of its cell-specific 

profiles, with a range of 0 (all cells identical) to 2 (perfect anti-correlation). Four examples 

are shown (L to R: homoharringtonine, terfenadine, dexamethasone, and JNJ-38877605). 

While some drugs induce very similar expression across cell types, the majority have higher 

cell-specificity corresponding to distinctive patterns in different cell types.
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Fig. 2. Schematic overview
A. Expression profiles are compiled into a tensor of 978 genes × 2,130 drugs × 71 cell types. 

Profiles are either completely missing, in grey, or fully observed, denoted by both white and 

multicolor columns. B. CV setup, where entire profiles are held out. C-D Averaging 

baselines; target value is in grey and the averaged entries are colored. E. DNPP algorithm. 

Target value is in grey. Drug neighbors are identified by comparing profiles in other cell 

lines, then neighbor profiles in the target cell line are combined to form the prediction. F. 

FaLRTC algorithm. The data tensor is input on the left, and then unfolded in step 2 to form 

three matrices with dimensions G × CD (top), D × GC (middle), and C × DG (bottom). Each 

matrix is approximated using a spectral method and then reshaped into a tensor. The three 

tensors are then combined into one. Observed entries are reset to their initial values, and the 

process is iterated to minimize the matrix trace norms.
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Fig. 3. Prediction accuracy
A. Scatterplot of Tensor-predicted vs. true values. B. Top-performing method per drug-cell 

profile in the tensor. C. Accuracy vs. observation density, where lower densities correspond 

to entire profiles being held out of the small tensor. D. ROC curves assessing prediction of 

DEGs. See text for details.

Hodos et al. Page 14

Pac Symp Biocomput. Author manuscript; available in PMC 2018 January 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 4. Cell-specificity of predictions
A. True and predicted expression profiles for the compound M-3M3FBS (see text for 

details). Rows correspond to genes, and columns to cells. B. Analogous plots for Carbetocin, 

in the three available cell lines, MCF7, A549, and VCAP. See text for details.
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Fig. 5. Utility of completed data for downstream predictions
A. Illustration of experimental setup. Binary classification models are trained to predict drug 

targets and ATC codes, using either the measured subset of profiles (e.g. for a particular cell 

type) or the completed data, and cross-validated prediction scores are recorded. Then two 

types of ROC curve comparisons are made, as described in the text. B. Improvements in 

AUC per drug profile type, across experiments for different prediction tasks and models. C. 

Improvements in AUC per prediction task, across different profile types and models. D. ATC 

prediction accuracy on measured vs. predicted profiles, for different profile types. E. Target 

prediction accuracy on measured vs. predicted profiles. For both D and E, median values 

across models were computed to simplify the plots, but were kept distinct for all reported 

results.
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