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ABSTRACT Narrow sense heritability ðh2Þ is a key concept in quantitative genetics, as it expresses the proportion of the observed
phenotypic variation that is transmissible from parents to offspring. h2 determines the resemblance among relatives, and the rate of
response to artificial and natural selection. Classical methods for estimating h2 use random samples of individuals with known
relatedness, as well as response to artificial selection, when it is called realized heritability. Here, we present a method for estimating
realized h2 based on a simple assessment of a random-mating population with no artificial manipulation of the population structure,
and derive SE of the estimates. This method can be applied to arbitrary phenotypic segments of the population (for example, the top-
ranking p parents and offspring), rather than random samples. It can thus be applied to nonpedigreed random mating populations,
where relatedness is determined from molecular markers in the p selected parents and offspring, thus substantially saving on
genotyping costs. Further, we assessed the method by stochastic simulations, and, as expected from the mathematical derivation,
it provides unbiased estimates of h2: We compared our approach to the regression and maximum-likelihood approaches utilizing
Galton’s dataset on human heights, and all three methods provided identical results.

KEYWORDS quantitative genetics; Hardy-Weinberg equilibrium; panmictic population

NARROW sense heritability ðh2Þ is a key concept in quan-
titative genetics. h2 is technically defined as the ratio of

additive genetic variance (the variance of breeding values)
to the total phenotypic variance ðh2 ¼ s2

a=s
2
pÞ; and repre-

sents the fraction of the phenotypic variation of a quantita-
tive trait that is transmissible from one generation to the
next. h2 determines the degree of resemblance between
relatives, and the rate of response to artificial and natural
selection; therefore, estimating h2 is often the first step in
applied plant and animal breeding programs as well as evo-
lutionary genetics studies. h2 is also the upper limit for the
accuracy of predicting phenotypes from molecular marker
data (genomic prediction), and, hence, is required knowledge

for common diseases in humans in the context of precision
medicine (Yang et al. 2010).

Because h2 determines the degree of resemblance among
relatives, classical methods for estimating h2 use the observed
phenotypic correlation among closely related individuals, and
their average coefficient of relationship, to estimate h2: One
such classical method is regression of offspring phenotypic
values on midparent phenotypic values (offspring-parent
regression), for which the regression coefficient, b, provides
an unbiased estimate of h2: Other classical methods involve
ANOVA of full and half-sibling families, and analysis of rel-
atives with different degrees of relatedness using maxi-
mum-likelihood-based approaches. These methods require
designed experiments in which pedigrees are constructed by
mating specific males and females, or natural matings for
which at least one parent is known are utilized. These de-
signs can maximize the precision of the h2 estimates given
sample size constraints by manipulating both the numbers
of families and family sizes.

However, these designs are not always applicable. For exam-
ple, pedigrees are not usually known in natural populations. In
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this case, h2 can be estimated using molecular markers to
reconstruct pedigrees (Lynch and Walsh 1998; Aykanat
et al. 2014). However, this is followed by variance compo-
nent analysis based on the reconstructed pedigree, as is
done for designed experiments, and, hence, also requires
genotyping a large random sample of the population. More
recently, “genomic heritability” has been estimated in pop-
ulations of individuals that have been genotyped for large
numbers of molecular markers using whole genome marker
regressions (Yang et al. 2010). Genomic heritability is the
fraction of the genetic variance that can be explained by
regression on the markers, and will only be equivalent to
the true h2 when all causal variants are genotyped, such as
with sequence data; or when the true causal variants are in
perfect linkage disequilibrium with the markers (de los
Campos et al. 2015). A major disadvantage of all marker-
based methods for estimating h2 is the expense of genotyp-
ing, so methods that can reduce this cost are desirable.

Here, we propose a method to estimate h2 from natural
populations that is related to the concept of realized h2: Tra-
ditionally, realized h2 is estimated by comparing the response
to selection ðRÞ to the selection differential ðSÞ: The estimate
of h2; R=S; requires specific matings. We show here that the
realized h2 concept can be generalized to a randomly mating
natural population in which phenotypic values of a quantita-
tive trait have been scored for the parental and offspring
generations. The h2 is estimated from the proportion of off-
spring from a defined range of phenotypes (for example, the
top p offspring) that were produced by the p parents from the
same defined phenotypic range. Thus, one only needs to de-
termine relatedness of the selected subset of p parents and p
offspring from the same truncated fraction of the phenotypic
distribution, saving substantially on genotyping costs. Of
course, one needs to assume neutrality of the DNA markers
(such as highly polymorphic SSRs) to estimate pedigree
within the truncated subsets. Assuming this approach, we
derive the h2 estimate and its associated SE.

Methods

We assume a population in Hardy-Weinberg equilibrium,
where the offspring (F1) are derived from the parental pop-
ulation (P) by random union of gametes, and there is no
selection. We assume the phenotype of an individual for a
quantitative trait (X) is the sum of an independent additive
genetic value (a) and environmental deviation (e), and
that a and e are normally distributed in the population. It
follows that the phenotypic variance of X corresponds to
s2
p ¼ s2

a þ s2
e ; and thus X � Nðm;s2

pÞ: We now rank the in-
dividuals in the P and F1 populations by their respective
phenotypic values. From this ranking, we can determine
the top-ranking proportion p of the F1 population, as well as r,
the percentage of cases when one or both parents of the top-
ranking offspring individuals belong to the corresponding
truncated p fraction of the P population (Figure 1a). It
should be emphasized that the parents in P mate randomly,

producing the F1 offspring, and, therefore, this scenario dif-
fers from conventional truncation selection as the top p pro-
portion of the parental population were not “selected” and
constrained to mate among themselves. Rather, both top-
ranking parents and offspring are only “inspected” to calcu-
late r. We postulate that h2 may be calculated based on the
three parameters: p, r, and s2

p:

It follows that the case for truncation selection (Figure 1a)
can be generalized to the case of a two-sided truncation with
X 2 ðxa; xbÞ (Figure 1b).

This approach differs from classicalmethods to estimate h2

in that it does not rely on the degree of resemblance among
relatives or variance component decomposition. This method
resembles a realized h2 estimate, but it differs from classical
realized h2 because it is applicable to panmictic populations,
and does not require experimentally controlled crosses among
selected parents. This strategy was motivated by a mathemat-
ical analysis of the effect of phenotypic preselection on reducing
contamination rate in seed orchards of forest trees (Lstibůrek
et al. 2012). This approach is similar tomethodology developed
to estimate h2 for binomial (threshold) traits (Crittenden 1961;
Falconer 1965), but here we are concerned with normally dis-
tributed quantitative traits.

Mathematical derivation

We begin with the derivation of the more general two-sided
truncation scenario. Let X � Nðm;s2

pÞ and X 2 ðxa; xbÞ; then
we follow the transformation properties of the normal distri-
bution X � Nð0;1Þ and X 2 ða;bÞ; where

a ¼ xa 2m

sp
;

b ¼ xb2m

sp
:

(1)

Figure 1 Normal distribution of a quantitative trait (identical in the P and
F1 populations). The truncation proportion p (gray area) is delimited by
the left (xa) and right (xb) truncation points, respectively. Two scenarios
are depicted: (A) one-sided truncation, and (B) two-sided truncation.
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For given xa and xb; one may calculate the area p of the
truncated distribution (Figure 1) as

p ¼ FðbÞ2FðaÞ; (2)

where FðaÞ and FðbÞ are the cumulative distribution func-
tions (cdf) of the normal distribution Nð0; 1Þ: The corre-
sponding truncated distribution is then (Johnson et al. 1994)

E½XP� ¼ mþ isp;
Var½XP� ¼ ð12 kÞs2

p :
(3)

The selection intensity (i) is then defined as

i ¼2
fðbÞ2fðaÞ
FðbÞ2FðaÞ; (4)

where fðaÞ and fðbÞ are the probability density functions of
the standardized normal distribution, and the coefficient k is

k ¼ bfðbÞ2afðaÞ
FðbÞ2FðaÞ þ

 
fðbÞ2fðaÞ
FðbÞ2FðaÞ

!2

: (5)

We can trace the likelihood that one or both parents of a given
offspring originate from the truncated subset p. The number
of parents satisfying this origin is binomially distributed as
Y1 � Bið1; pÞ when tracking one side of the parentage, and
Y2 � Bið2; pÞwhen tracking both sides of the parentage. In these
cases, the respective likelihoods that one parent or both parents,
respectively, originate from p are enumerated in Table 1.

Then, for one of the two above scenarios, the expected
value and variance of the offspring in F1 are

E½XF1� ¼ mþ Bih2sp;
Var½XF1� ¼

�
12 0:5Bkh4

�
s2
p :

(6)

where the coefficient B is provided in Table 1.
Let p* be the proportion of the above offspring (Equation 6)

belonging to the interval ða;bÞ of F1: In our remaining analyses,
we utilize the central limit theorem, i.e., the normal approx-
imation of the above distribution. Utilizing the same trans-
formation properties of the normal distribution (Equation 1),
the area p* is given by

p* ¼ F

 
b2Bih2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12 0:5Bkh4

p
!
2F

 
a2Bih2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12 0:5Bkh4

p
!
: (7)

LetN be the size of the F1 population. Then,NF1 is the number
of F1 individuals in the interval ðxa; xbÞ: NPðYÞ is the subset of
NF1 where the parent(s) originate from the interval ðxa; xbÞ in
P, according to Y. Next, we introduce a variable r, the relative
frequency of offspring in the truncated proportion in F1 with
parent(s) originating from the truncated proportion of P,
according to Y, where

r ¼ NPðYÞ
NF1

: (8)

Next, we utilize the earlier binomial expansion, and

r ¼ NPðYÞ
NF1

¼ Np*PðYÞ
Np

¼ p*PðYÞ
p

: (9)

With the knowledge of p and r, we can ascertain the unknown
p*; thus

pr
PðYÞ ¼ F

 
b2Bih2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12 0:5Bkh4

p
!
2 F

 
a2Bih2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
120:5Bkh4

p
!
: (10)

Therefore, h2 is the implicit function of r, p, and s2
p : (Additional

variables in the equation are all functions of these three input
parameters.) The above formulation is general, and couldbeused
withmathematical solver software to calculate an estimate of h2:
Computer code to solve for h2 using Equation 10 written in R
language (R Core Team 2013) is provided in a public repository
(Lstibůrek 2017). Next, we derive analytical solutions (i.e., de-
terministic equations) to estimate h2 for two specific cases.

Case 1: centered two-sided truncation: Provided both xa and
xb are symmetrically allocated around themean of P and F1; h2 is
calculated as (see Supplemental Material, File S1 for derivation)

h2 ¼
ffiffiffi
2

p

jQj
�
Q22a2

Bk

�1
2

; (11)

where Q ¼ F21ð0:52 pr=2PðYÞÞ:

Case 2: right-sided truncation: When xb/þN (Figure 1),
one may calculate h2 as (see File S1 for derivation)

h2 ¼ 2aBi6
�
4a2B2i222

�
2B2i2 þ BQ92k

��
a22Q92

��1
2

ð2B2i2 þ BQ92kÞ ;

(12)

whereQ9 ¼ F21ð12 pr=PðYÞÞ: There are two solutions of the
above equation, and verification using Equation S1.7 pro-
vides the unique one.

Variance of the h2 estimate: TheSEassociatedwith thegeneral
h2 estimate (Equation 10) is (see File S1 for derivation)

SE
	
h2

 ¼

�
120:5h4kB

�3
2

jfðbÞð2iBþ 0:5h2bkBÞ2fðaÞð2iBþ 0:5h2akBÞj
3

p
PðYÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rð12 rÞ

p 1ffiffiffi
n

p ;

(13)

Table 1 Likelihoods and coefficients

PðYÞ B

Y1 ¼ 1 p 0.5
Y2 ¼ 2 p2 1

Y1 and Y2 are the number of parents originating from the truncated subset p when
tracing one or two sites of the parentage, respectively. PðYÞ is the corresponding
likelihood, and B is the coefficient introduced in Equation 6.
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where n is the number of progeny in p, h2 6¼ 0 under sym-
metric two-sided truncation, and a and b are

a ¼ a2Bih2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12 0:5Bkh4

p ;

b ¼ b2Bih2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12 0:5Bkh4

p :

(14)

The SE of the h2 estimate for the scenario of right-sided trun-
cation (Equation 12) is

SE
	
h2

 ¼

�
120:5h4kB

�3
2

j2fðaÞð2iBþ 0:5h2akBÞj
p

PðYÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rð12 rÞ

p 1ffiffiffi
n

p :

(15)

Equations 13 and 15 are both products of two components,
where the first (leftmost) is associated with the type and in-
tensity of truncation, and the second (rightmost) depicts the
variance of r, including the sample size n.

Utilizing the mathematical derivation outlined above, we
claim that estimates of h2 and the corresponding SE are as-
ymptotically unbiased.

The SE are provided for the two likelihoods (Y1 ¼ 1 and
Y2 ¼ 2) and one- or two-sided truncations in Figure 2 and
Figure 3. The SE is comparable to existing methods, i.e.,
regression analysis; thus, the number of samples providing
reliable estimate of h2 is in the magnitude of “hundreds.”

Data availability

The authors state that all data necessary for confirming the
conclusions presented in the article are represented fully
within the article.

Computer simulation

As noted above, our formal theoretical derivations using
normal distributions are not strictly true with truncation.
Therefore, we verified our analytical approach by stochastic
simulation, where h2 was estimated for a hypothetical pan-
mictic population as follows. Additive polygenetic effects of
10,000 unrelated and noninbred parental individuals were
sampled from the normal distribution Nð0;s2

aÞ; assuming the
infinitesimal genetic model. The environmental deviation
was drawn from Nð0;s2

e Þ: Subsequently, 10,000 individual
offspring were generated. Parents were randomly mated and
polygenic additive genetic values in offspringwere drawn from
Nð�a;0:5s2

aÞ; where �a is the respective midparental additive
genetic value. The environmental deviation was assigned as
for the parental population.

Next, 1000 offspring with trait’ values X 2 ðxa; xbÞ were
inspected, and r was calculated for each of the likelihood
scenarios ðY1 ¼ 1; Y2 ¼ 2Þ by evaluating the trait value of
parents. h2 was then estimated by solving Equation 10. Sim-
ulations were repeated for 100 independent stochastic itera-
tions, and means and variances were calculated across all
runs, and compared to the true parameter s2

a=s
2
p: Computer

code to perform the simulation written in R language is
provided in a public repository (Lstibůrek 2017).

The simulations showed that the normal approximation
of the assumed F1 distribution (Equation 6) is justified,
since the expected value of h2 estimates were nearly iden-
tical to the true parameters across 100 independent sto-
chastic simulations for all assumed scenarios (h2 from 0 to
1), a ¼ 0, 0.5, and 1, and b ¼ þN across the two likeli-
hoods (Table 2).

Demonstration using human height

Weused Galton’s well-known dataset of human heights (Galton
1886). The dataset includes 205 families with adult heights of
934 children, in family sizes range from 1 to 15 children. The

Figure 2 SE of the h2 estimate (SEfh2g) for ðY1 ¼ 1Þ (tracking one side of
the parentage): (A) centered two-sided truncation, (B) right-sided trunca-
tion. To calculate actual SEfh2g; values on the y-axis should be multiplied
by factor 1=

ffiffiffi
n

p
; i.e., scaled by the experimental sample size.
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dataset is publicly available as R package (Friendly et al.
2017), and we used it for our demonstration. Hanley
(2004) analyzed this original dataset, and he was partic-
ularly addressing the issue of Galton’s original adjustment
for the gender, i.e., all heights of women were multiplied
by 1.08. First, we reproduced Hanley’s calculations, and
received identical estimates of the regression coefficient b
(Table 1 in Hanley 2004). Then, we considered Galton’s
original adjustment, where b̂ = 0.71 (regression of the
heights of children on midparent values), which provides
the direct estimate of h2: We used restricted maximum-
likelihood approach to verify these findings using the an-
imal genetic model in ASReml (Gilmour et al. 2009),
where the random pedigree effect was the single factor
in the model.

As expected, we received identical estimate of h2 ¼ 0:71
and SE of 0.04 (identical to the SE of b in our regression
analysis). Then, we followed our approach and analyzed
offspring in the right site of the distribution (truncation.0.5
of the standardized normal distribution), i.e., approximately
one-third of Galton’s dataset. We assumed tracking one side of
the parentage, as it leads to the lower SE (compare Figure 2b
and Figure 3b). All children values (adjusted dataset by
Galton) were sorted. Then we started assessing the tallest
child and compared, whether themother’s height was above
the same truncation. We recorded all positive values (as 1s);
the sum for one parentage across all truncated children
(278) was 122 and for the second parentage 137. We aver-
aged these values and divided the result by 278 and
obtained the value of r̂ ¼ 0:47: Then, assuming Equa-
tion 10, we estimated h2 to be 0.73 with SE 0.07 (the error
is actually ,0.07 since we averaged two r̂ values).

Discussion

The main methodological message of this study is that it is
possible to estimate h2 within a panmictic populationwithout
a planned experiment, and without performing a complete
pedigree reconstruction across the entire phenotypic distri-
bution of parental and offspring populations in order to im-
plement traditional variance component estimation. Our
approach provides a way to estimate h2 by genotyping only
a small proportion of the parental and offspring populations
(e.g., the right-hand tail of the distributions), and estimating
the proportion of that subset of offspring that arose from that
subset of parents. It is thus an estimate of realized h2; derived
from quantifying the relatedness among exact phenotypic
subsets of parental and offspring populations.

Much formal quantitative genetics theory follows a simple
biological principle: the additive genetic value of an offspring
is the midparent additive genetic value plus the Mendelian
sampling term. The phenotype is further determined by add-
ing an error term, where each offspring is allocated a random
environmental variate from the corresponding normal dis-
tribution. This reasoning is the key to understanding the
approach presented here: parents are sampled from the
population P independently and randomly (with replace-
ment) and they form the corresponding normal distribu-
tion F1: Thus, all parental combinations occur with the
same probability, i.e., random mating. Variation in family
sizes is therefore an integral part of the model and the
model is thus experimentally tailored to truly panmictic
populations.

The classical methods for estimating h2 using offspring–
parent or offspring–midparent regression, and ANOVA-based
approaches promote experimental efficiency by artificially
manipulating the family structure with respect to the actual
family numbers and sizes, so that the SE are minimized. Sim-
ilarly, we can assess the experimental parameters a, b, and
progeny sample size n that minimize SEfh2g determined by
our method. An extension of the classical methods is to use

Figure 3 SE of the h2 estimate (SEfh2g) for ðY2 ¼ 2Þ (tracking both sides
of the parentage): (A) centered two-sided truncation, (B) right-sided trun-
cation. To calculate actual SEfh2g; values on the y-axis should be multi-
plied by factor 1=

ffiffiffi
n

p
; i.e., scaled by the experimental sample size.
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restricted maximum likelihood approach (Patterson and
Thompson 1971) for variance decomposition, both in syn-
thetic and wild populations, provided variance-covariance
of phenotypic records is specified by use of a relationship
matrix (i.e., complete pedigree linking respective records to
the base population), and assumptions of the infinitesimal
model hold (Sorensen and Kennedy 1984).

The approach outlinedhere is different, as it allowsh2 to be
estimated based on the truncated, rather than a random,
subset, thus pedigree relationship is needed only within the
truncated subsets of the distribution. Regression based on a
truncated subset produces a biased h2 estimate because the
entire population sample (and particularly extreme values)
are needed to estimate the slope of the regression line. It is
possible to modify the regression procedure where most of
the effort is applied to families of parents with phenotypes at
both ends of the distribution, which would yield a precise
estimate (Hill 1990). The increase in efficiency is because
parents with phenotypes near the mean provide little infor-
mation on the slope of the regression. However, we show
here that h2 can be estimated based on either phenotypes
near the mean, or from phenotypic observations in only one
extreme of the distribution. These arbitrary truncations ap-
plied to the normal distribution are different from the tradi-
tional approaches and could offer experimental scenarios
that have not yet been considered in genetic studies. Our
approach is based on determining the means and variances
of P and F1 populations and the relative frequency of offspring
in the truncated proportion in F1 with parent(s) originating
from the truncated proportion of P. Provided the panmictic
assumptions hold, our approach is therefore experimentally
very simple and general.

First, it is clear that the precision of h2 estimate will be
much higher for one-sided truncation than for centered two-
sided truncation. Comparing Figure 2 and Figure 3, we see
that the SEfh2g from centered two-sided truncation are on
the order of 5–103 those from one-sided truncation. In fact,
close inspection of Equations 13 and 15 reveals that the min-
imum SEfh2g is obtained from the one-side truncation sce-
nario. Next, we can assess the optimum a, the standardized
truncation point. For Y1 ¼ 1 (tracking only one side of the
parentage), the optimum a will generally be between 1 and
2 SD (Figure 2b). For Y2 ¼ 2 (tracking both sides of the par-
entage), the optimum a is between 0 and 1 SD across a range
of h2 (Figure 3b).

We now consider how this method could be implemented
in practice. The first step is to calculate phenotypic means
and variances in both the P and F1 populations. The second
step is to genotype a random sample of individuals in the
right-truncated tail of the F1 (say n ¼ 500 in the phenotypic
range from a ¼ 1:5 SD above the mean up to b ¼ þN) as
well as parents belonging to the equivalent phenotypic range in
the P population. The pedigree can then be inferred from these
genotype data. The coefficient r can then be calculated by eval-
uating if Y1 ¼ 1; i.e., tracking one side of the parentage. We can
then use Equation 12 to calculate h2: If the true h2 ¼ 0:6; then
the SEfh2g ¼ 1:6943 1=

ffiffiffiffiffiffiffiffiffi
500

p ¼ 0:076 (Equation 15 and
Figure 2b). If a is 2 SD above the mean, the corresponding
SEfh2g ¼ 1:6913 1=

ffiffiffiffiffiffiffiffiffi
500

p ¼ 0:076; i.e., identical, but the
amount of genotyping effort in the parental population is
greatly reduced. Note that traditional regression on one parent
provides SEfh2g ¼ 2=

ffiffiffiffiffiffiffiffi
500

p ¼ 0:089, and that on midparent
values gives SEfh2g ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið2=500Þp ¼ 0:063 (Falconer and
Mackay 1996).

Table 2 Results of computer simulations

Y1 ¼ 1 Y2 ¼ 2

h2 r̂6 SD ĥ
2
6 SD P value r̂6 SD ĥ

2
6 SD P value

a ¼ 0:0 0.0 0:50160:018 0:00360:113 0.762 0:24960:015 20:00560:095 0.577
0.2 0:53060:017 0:19060:104 0.329 0:28460:016 0:21560:098 0.139
0.4 0:56660:016 0:41360:099 0.185 0:31660:015 0:40960:094 0.323
0.6 0:59660:018 0:59260:105 0.463 0:34960:017 0:60860:102 0.461
0.8 0:63160:020 0:79560:113 0.661 0:38160:020 0:79660:115 0.739
1.0 0:66660:018 0:98560:097 0.117 0:42060:016 1:01760:093 0.067

a ¼ 0:5 0.0 0:30760:019 20:00960:093 0.316 0:09560:012 20:00560:099 0.595
0.2 0:35060:020 0:20360:096 0.775 0:12160:011 0:20360:082 0.753
0.4 0:39360:020 0:40560:092 0.596 0:14960:013 0:39960:091 0.946
0.6 0:43660:020 0:60160:090 0.907 0:17860:016 0:59760:105 0.793
0.8 0:48160:019 0:79760:081 0.741 0:21160:016 0:80560:098 0.631
1.0 0:52960:017 0:99260:066 0.250 0:24460:016 1:00560:098 0.612

a ¼ 1:0 0.0 0:16160:016 0:00960:088 0.317 0:02560:007 20:00660:118 0.624
0.2 0:19760:017 0:19860:082 0.835 0:03960:008 0:20260:111 0.876
0.4 0:23860:018 0:39060:084 0.213 0:05360:009 0:38060:100 0.052
0.6 0:28760:017 0:59960:070 0.894 0:07460:011 0:59760:107 0.792
0.8 0:33960:022 0:80060:083 0.953 0:09660:011 0:80660:094 0.545
1.0 0:39560:021 0:99760:071 0.630 0:11960:014 1:00160:117 0.957

Y1 and Y2 are the number of parents originating from the truncated subset p when tracing one or two sites of the parentage, respectively. a denotes the left truncation, h2

is the input narrow-sense heritability (simulation parameter), r̂ and ĥ
2
are the corresponding estimates of r and h2 in a given scenario, reported with respective SD (calculated

across independent stochastic iterations), and P-value is the respective level of significance in comparing h2 and ĥ
2
:
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We will now explain how (in theory) Galton could have
utilizedourapproachtocollect thedataset.First,hewouldneed
estimates of the mean and variance of the trait in a population
(we assume that records would be available without much
investment). Then, he could choose to measure 278 children
.0.5 SD above the average and check in the same manner
parental values. With unknown parentage, pedigree assem-
bly could be reduced from 934 to 278 children, reducing
significantly the cost of sample collection, DNA extraction,
and genotyping. Reduced sample size could also be possible
with regression analysis, assuming a random sample (of say
278 children) across the entire range of the distribution
with higher SE. However, the main methodological message
of the current study is that we can estimate h2 based on the
tail of the distribution. Regression in such a case would re-
sult in a biased estimate (e.g., the same truncated dataset
would produce b̂ estimate ¼ ĥ2 estimate ¼ 0:31).

We could speculate that our approach is less sensitive to the
presence of outliers as all individuals above the truncation
contribute equally to r. In regression analysis, outliers are most
influential in either extreme of the distribution with respect to
the slope of the regression line. In the ASReml analysis (Gilmour
et al. 2009) that we performed on the same dataset, three pos-
sible outliers were suggested.Whenwe removed these from the
analysis, h2 changed to 0.72 (SE was identical).

In summary, we propose an alternative formulation of h2:
Under the assumptions of Hardy-Weinberg equilibrium, the
h2 of a quantitative trait in a given population is directly
related to the likelihood of a phenotypic subset of parents
passing their respective alleles onto the corresponding phe-
notypic subset of offspring. Future work is needed to com-
pare the efficiency of this method to other existing methods;
to estimate nonadditive genetic effects; to assess robustness
with respect to the genetic architecture of the trait; and to
assess the sensitivity of the approach to assumptions of
Hardy-Weinberg equilibrium.
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