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Abstract

The human innate immune protein calprotectin (CP, S100A8/S100A9 oligomer, calgranulin A/

calgranulin B oligomer, MRP-8/MRP-14 oligomer) chelates a number of first-row transition 

metals, including Mn(II), Fe(II), and Zn(II), and can withhold these essential nutrients from 

microbes. Here we elucidate the Ni(II) coordination chemistry of human CP. We present a 2.6-Å 

crystal structure of Ni(II)- and Ca(II)-bound CP, which reveals that CP binds Ni(II) ions at both its 

transition-metal-binding sites: the His3Asp motif (site 1) and the His6 motif (site 2). Further 

biochemical studies establish that coordination of Ni(II) at the hexahistidine site is 

thermodynamically preferred over Zn(II). We also demonstrate that CP can sequester Ni(II) from 

two human pathogens, Staphylococcus aureus and Klebsiella pneumoniae, that utilize this metal 

nutrient during infection, and inhibits the activity of the Ni(II)-dependent enzyme urease in 

bacterial cultures. In total, our findings expand the biological coordination chemistry of Ni(II)-

chelating proteins in nature and provide a foundation for evaluating putative roles of CP in Ni(II) 

homeostasis at the host-microbe interface and beyond.
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Introduction

Nickel is an important trace nutrient for many organisms.1-4 Several decades of 

investigations have illuminated the regulation and utilization of this metal in bacteria.1,2 A 

number of microbial enzymes employ nickel as a cofactor for catalytic activity,3 including 

superoxide dismutase,5 urease,6 [NiFe]-hydrogenase,7 and carbon monoxide 

dehydrogenase.8 In the context of infectious disease, recent reports have highlighted the 

importance of Ni(II) import systems for the growth and virulence of the pathogenic 

bacterium Staphylococcus aureus under metal-depleted conditions in vitro and in animal 

models of infection.9-11 Furthermore, urease is an enzyme that contributes to the virulence 

of human pathogens,12,13 including Helicobacter pylori,14 Staphylococcus spp.,15,16 and 

Klebsiella pneumoniae.17 In contrast, less is known about nickel homeostasis in mammals 

and other higher organisms, and no mammalian nickel-dependent enzyme has been 

identified.1

Several mechanisms to withhold nutrient transition metals from microbial invaders are 

employed by the mammalian host during the early stages of infection in a process termed 

“nutritional immunity.”18-22 Antimicrobial proteins such as lactoferrin and siderocalin 

prevent microbial Fe(III) uptake,23,24 and the S100 family proteins S100A7 (psoriasin) and 

S100A12 (calgranulin C) scavenge Zn(II).25-29 The S100 protein calprotectin (CP, S100A8/

S100A9 oligomer) is a versatile metal-sequestering protein that coordinates Mn(II), Fe(II), 

and Zn(II) with high affinity and is able to withhold these metals from microbial 

pathogens.28,30-32 Despite the importance of nickel in microbial pathogenesis,12-15,17 to the 

best of our knowledge, a host- defense strategy that limits the microbial acquisition of this 

metal is unknown.33

CP is released from neutrophils and epithelial cells during the innate immune 

response.19-21,28,30 At sites of infection, human CP has been reported to be present at levels 

up to ≈1 mg/mL (≈40 μM heterodimer).34 As a member of the Ca(II)-binding S100 protein 

family, human CP is the heterooligomer of S100A8 (α) and S100A9 (β) and exists as an αβ 
heterodimer or α2β2 heterotetramer.35,36 CP has four EF-hand domains that coordinate 

Ca(II) ions, including a C-terminal canonical (“calmodulin-like”) site and a N-terminal non-

canonical site in each subunit.36-38 Ca(II) chelation causes two αβ heterodimers to self-

associate to form an α2β2 heterotetramer.35,36 In addition, Ca(II) binding enhances the 

transition-metal affinities, antimicrobial activity, and protease stability of CP.39,40 Distinct 

from the Ca(II)-binding EF-hands, two transition-metal-binding sites form at the S100A8/

S100A9 dimer interface.38,41,42 These sites are a His3Asp motif (site 1) and a His6 motif 

(site 2). Site 1 has high affinity for Zn(II)39 and has been observed to chelate Mn(II)42,43 and 

Fe(II),44 albeit with relatively low affinity. Site 2 comprises a unique hexahistidine metal-

binding motif that coordinates Mn(II)32,41-43, 45 Fe(II),31,44 and Zn(II)39,46 with high 

affinity. Our metal-substitution studies demonstrated that site 2 exhibits thermodynamic 

preference for these divalent cations (i.e., Kd,Zn < Kd,Fe < Kd,Mn)31,43 consistent with the 

Irving-Williams series.47 Moreover, our prior work revealed that CP treatment of bacterial 

growth medium also reduces the concentrations of nickel.31 In these experiments, the metal-

binding-site variants of CP (e.g. ΔHis3Asp, ΔHis4; Table S1, Supporting Information) 

afforded metal-depletion profiles indicating that site 2 is a high-affinity site for nickel.31 
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Based on these observations, we reasoned that CP may also contribute to the sequestration of 

Ni(II) ions from microbial pathogens and thereby play an as-yet unidentified role in 

mammalian Ni homeostasis and host defense. To evaluate this notion, we sought to explore 

the Ni(II) coordination chemistry of CP and to understand the role of Ni within the broader 

context of its metal-withholding function.

In this work, we report structural, biochemical, and functional evaluation of Ni(II) 

coordination by CP. We present a crystal structure of Ni(II)- and Ca(II)-bound CP that 

reveals Ni(II) chelation at both sites 1 and 2. We demonstrate that CP coordinates two 

equivalents of Ni(II) in solution, and that the His6 site coordinates Ni(II) with greater affinity 

than Zn(II). In addition, we show that CP can limit Ni uptake into bacterial pathogens, and 

inhibit bacterial urease activity. These discoveries underscore the functional versatility of CP 

in sequestering essential metal nutrients. Moreover, this work on Ni(II) coordination 

provides the foundation for examining CP in a broad context of Ni homeostasis.

Results

Crystal Structure of Ni(II)- and Ca(II)-bound CP-Ser

CP-Ser is the heterooligomer of S100A8(C42S) and S100A9(C3S) (Table S1). We routinely 

use this variant in biochemical, biophysical, and functional studies of CP, and under all 

conditions evaluated to date, it displays comparable metal-binding properties and 

antimicrobial activity to native CP.31,39,43 To build upon our preliminary observations from 

metal-depletion studies (vide supra) indicating that the His6 site of CP-Ser binds Ni(II),31 we 

sought to obtain a crystal structure of Ni(II)- and Ca(II)-bound CP-Ser. Guided by our prior 

crystallographic study of Mn(II)- and Ca(II)-bound CP-Ser in which we obtained crystals 

following incubation of the protein with 1 equiv Mn(II) and observed Mn(II) bound only at 

the His6 site,42 we screened crystallization conditions where CP-Ser (αβ) was incubated 

with ≈1 equiv Ni(II). We anticipated that we would obtain Ni(II)-bound CP-Ser where the 

Ni(II) ion populates the His6 site. We solved the structure of Ni(II)- and Ca(II)-bound CP-

Ser to 2.6-Å resolution by molecular replacement with two α2β2 heterotetramers in the 

asymmetric unit (Figure 1, Table S2). Formation of α2β2 heterotetramers under these 

conditions is consistent with prior work establishing that Ca(II) binding to the EF-hand 

domains and transition-metal binding at the His6 site promote formation of CP 

heterotetramers.35,36,40

For each heterotetramer, all eight EF-hand domains exhibited electron density consistent 

with the presence of metals, and we were able to assign Ca(II) ions refined at 100% 

occupancy to five of the EF-hands (Table 1, Figure S1). The four canonical sites contained 

Ca(II) ions, similar to the three published crystal structures where CP-Ser has bound Ca(II) 

ions.38,41,42 In addition, we modeled a Ca(II) ion at 100% occupancy at the non-canonical 

EF-hand of S100A9 of dimer 2 and Na(I) ions at 100% occupancy for the other three non-

canonical EF-hand domains in the tetramer. These results differ from the tetramers of the 

two reported Mn(II)- and Ca(II)-bound CP-Ser structures that exhibit (i) Ca(II) ions or no 

metal at the non-canonical domains,41 or (ii) Na(I) ions at all four non-canonical EF-hands 

instead of only three of these sites (see Supporting Discussion).42
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To interrogate the relative affinities of site 1 and 2 for Ni(II) ions, we added less Ni(II) to our 

crystals than would be necessary to completely fill both sites on each heterodimer (≈1.0 

equiv Ni(II) relative to the CP-Ser heterodimer instead of 2.0 equiv), and then used X-ray 

data at λ = 1.4831 Å to generate a Ni anomalous difference map at 3.6-Å resolution and to 

identify where the Ni(II) ions were bound (Table S2). This map reveals that Ni(II) ions are 

coordinated at both His6 sites and at one of the two His3Asp sites of the tetramer (Figure 

1B–E, Table 1). Our refinement indicates that the Ni(II) ion at the one occupied His3Asp site 

is not at full occupancy (approximately 75%), compared to the two His6 sites of the 

heterotetramer, which do appear to bind Ni(II) at full occupancy. This differential binding of 

Ni(II) at the two sites suggests that CP has higher affinity for Ni(II) at site 2 over site 1. 

These results are reminiscent of our prior observation that Ni depletion in bacterial growth 

medium was dependent on the presence of site2.31

Site 2 coordinates Ni(II) using the hexahistidine motif where the metal ion is coordinated by 

the Nε2 atoms of residues His17 and His27 of S100A8 and His91, His95, His103, and 

His105 of S100A9 (Figure 1C,E). The bond distances and angles indicate distorted 

octahedral geometry (Tables S3–S4). These results are consistent with previous studies of 

Mn(II),41-43, 45 Fe(II),31, 44 and Zn(II)39, 46 bound at this site. The two Mn(II)- and Ca(II)-

bound CP structures comprise the Mn(II)-His6 site,41, 42 and structural alignments of the 

metal-bound His6 motifs indicate little difference between Mn(II) and Ni(II) coordination at 

this site (Figure S2).

Site 1 coordinates Ni(II) in a tetrahedral fashion by residues His83 (Nε2) and His87 (Nε2) 

of S100A8 and His20 (Nε2) and a monodentate Asp30 (Oδ1) of S100A9 (Figure 1E, Tables 

S5–S6). In contrast, one of the Mn(II)-bound crystal structures was refined with a Mn(II) ion 

at 50% occupancy at site 1 and shows that the His3Asp motif harbors a five-coordinate 

Mn(II) center, where the Asp residue provides bidentate coordination.41

CP Binds Two Equivalents of Ni(II) in Solution

To confirm that CP coordinates two equiv Ni(II) per heterodimer in solution under 

conditions where Ni(II) is in excess, we employed size-exclusion chromatography (SEC) 

(Figures 2, S3). Samples of CP-Ser, ΔHis3Asp, and ΔHis4 (Table S1) prepared in the 

absence and presence 5.0 equiv Ni(II) were incubated and analyzed by SEC, and the metal 

content of the eluent fractions was measured by inductively coupled plasma- mass 

spectrometry (ICP-MS). Following incubation with Ni(II), CP-Ser retains ≈2 equiv Ni(II) 

per heterodimer in the eluent fractions, indicating that both the His3Asp and His6 sites 

coordinate this metal ion with sufficient affinity for the metal to be retained over the course 

of elution from the SEC column (Figure 2A). This experiment also indicates that only ≈1 

equiv Ni(II) is retained during the SEC elution of ΔHis3Asp or ΔHis4, variants that lack 

metal-binding residues of site 1 or site 2 (Table S1), and further confirms that Ni(II) 

coordination to CP is dependent on the presence of the transition-metal sites (Figure 2B,C). 

These results demonstrate that both the His3Asp and His6 sites coordinate Ni(II) in solution, 

and that a 2:1 Ni(II):CP complex forms.
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CP Prefers to Coordinate Ni(II) over Other First-Row Transition Metals at Site 2

To further evaluate the N(II)-binding properties of CP, we investigated the relative affinities 

for Ni(II) and Zn(II) of site 2 by performing metal-substitution assays. We focused on site 2 

because we observed full occupancy of this site in both heterodimers in the current crystal 

structure (Figure 1), and this site was required for CP to deplete Ni from bacterial growth 

medium in our prior work.33 We designed and prepared the biotinylated CP variant B-

ΔHis3Asp (Table S1, S4–S6), established a biotin-streptavidin pull-down assay where B-

ΔHis3Asp is removed from aqueous solution using streptavidin agarose resin (Figure S7), 

and employed this assay to investigate the metal selectivity of the His6 site (Figure 3). In this 

experiment, B-ΔHis3Asp was preincubated with 1.0 equiv of either Ni(II) or Zn(II) in the 

presence of excess Ca(II) to form the Ni(II)- and Zn(II)-bound proteins. Subsequently, 1.0 

equiv of Zn(II) or Ni(II) were added to the solutions of Ni(II)-bound or Zn(II)-bound B-

ΔHis3Asp, respectively. After 72 h of incubation at 37 °C, the samples were treated with 

streptavidin resin, and the unbound metal content in the supernatant was measured by ICP-

MS. A comparison of the unbound metal concentration for the two metals in each sample 

provides an assessment of relative metal affinities because the metal ion that exhibits a 

higher unbound concentration is the one for which CP has a lower affinity. The order of 

metal addition was reversed to ensure that sufficient incubation time was given to reach 

equilibrium. Samples incubated with only one metal were also analyzed as controls (Figure 

3).

The results from this metal substitution experiment using Ca(II)-bound B-ΔHis3Asp 

demonstrate that, regardless of the order of metal addition, the quantity of unbound Zn(II) is 

greater than that of unbound Ni(II) (Figure 3). Thus, the hexahistidine site of CP has a 

thermodynamic preference for Ni(II) over Zn(II). Taken together with our prior metal 

substitution studies,31,43 we conclude that the thermodynamic preference of site 2 for 

divalent first-row metals is Kd,Ni < Kd,Zn < Kd,Fe < Kd,Mn. This trend is consistent with the 

Irving-Williams series.47

Ni(II) Preincubation Blocks Metal Sequestration Associated with Site 2

We performed antibacterial activity assays employing CP-Ser, ΔHis3Asp, and ΔHis4 

preincubated with 0, 1 and/or 2 equiv Ni(II) or Zn(II) against Escherichia coli (Ni and Zn) 

and S. aureus (Ni) to evaluate the effect of preloading Ni(II) and Zn(II) on the site-dependent 

metal-sequestering antibacterial action of CP (Figure S8). We observed that the antibacterial 

activity of CP-Ser is partially attenuated in the presence of 1 equiv Ni(II) (Figure S8A,B). 

Following a 20-h incubation, E. coli cultures treated with CP-Ser (1.0 mg/mL) preincubated 

with 1 equiv Ni(II) exhibited OD600 ≈0.1, whereas treatment with apo CP-Ser (1.0 mg/mL) 

afforded negligible E. coli growth (OD600 < 0.02; Figure S8A). Moreover, CP-Ser 

preincubated with 2 equiv Ni(II) provided growth inhibition comparable to that of CP-Ser 

preincubated with only 1 equiv Ni(II), suggesting that Ni(II) prevents only one site of CP 

from sequestering nutrient metals in the growth medium. Preincubation of ΔHis3Asp with 1 

equiv Ni(II) resulted in full E. coli growth, whereas Ni(II) preloading did not affect the 

antibacterial activity of ΔHis4 variant. We observed similar trends after preincubating CP-

Ser with Ni(II) when the assay was conducted with S. aureus (Figure S8B). These bacterial 
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growth studies indicate that Ni(II) only blocks site 2. In contrast, Zn(II) effectively blocks 

the antibacterial activity associated with both sites 1 and 2 (Figure S8C).

Our crystallographic and biochemical analyses of CP demonstrate that both sites 1 and 2 

chelate Ni(II). However, the antibacterial activity assays suggest that only site 2 has the 

capacity to sequester Ni(II) because preincubation with Ni(II) only blocks the growth 

inhibitory activity attributed to this site. We reason that metal exchange occurs at site 1 

under our assay conditions. Preincubation of CP with 2 equiv Ni(II) affords a Ni(II)-bound 

His3Asp motif, but because Ni(II) binding at this site is relatively labile, site 1 still 

contributes to the antibacterial activity of CP by binding and sequestering Zn(II) after the 

Ni(II) ion dissociates. In contrast, our data indicate that metal exchange occurs less readily at 

site 2. As a result, Ni(II) remains coordinated at site 2 following pre-incubation, which 

prevents this site from capturing and withholding other nutrient metals.

CP Sequesters Ni(II) from Bacterial Pathogens

To probe the functional relevance of Ni(II) coordination by CP, we evaluated whether CP has 

the capacity to withhold Ni(II) from microbes. First, we measured the intracellular Ni(II) 

content of S. aureus suspensions (OD600 = 6, ≈109 CFU/mL) that were obtained from 

cultures treated with CP or the ΔΔ variant (a variant that lacks both transition-metal-binding 

sites; Table S1) by acid digestion and ICP-MS (Figures 4, S9A,B). Because CP coordinates 

other nutrient transition metals at the Ni(II)-binding sites, we selected a metal-depleted 

chemically-defined staphylococcal growth medium (dCDM) to which no transition metals 

were added (Table S7), modified from an earlier protocol.48 This medium contained less 

than 200 nM Mn, Fe, or Zn (Table S8). Bacteria were grown overnight in dCDM with 1 μM 

Ni(II) in the absence and presence of 1 μM CP or the ΔΔ variant. In this assay, we employed 

the methicillin-resistant S. aureus (MRSA) strains USA300 JE2 and M2, and the methicillin-

sensitive strain S. aureus ATCC 29213 (Table S9). In addition, we evaluated the ΔcntA 
mutant strain of S. aureus USA300 JE2.49 The cntA gene encodes the extracellular solute- 

binding protein of the broad-spectrum metallophore staphylopine.11 Bacterial strains lacking 

genes of the cnt system are deficient in Ni uptake and exhibit reduced urease activity under 

metal-limiting conditions.10

We observed intracellular Ni levels in the 1.0–2.0 μM range when S. aureus was grown in 

the presence of Ni(II) or with the ΔΔ variant (Figures 4, S9A,B). In contrast, cultures grown 

in the presence of CP-Ser exhibited markedly lower intracellular Ni content (Figures 4, 

S9A,B). These data indicate that CP-Ser coordinated Ni(II) present in the growth medium 

and thereby prevented microbial Ni(II) uptake under these growth conditions. In addition, S. 
aureus USA300 JE2 ΔcntA exhibited decreased levels of Ni compared to the parent strain 

(Figure 4), supporting that the Cnt system is an active Ni(II) acquisition system under the 

metal-depleted conditions used in this work, as previously observed in metal-deplete 

media.9-11

CP Attenuates the Activity of a Bacterial Ni(II) Enzyme

Next, we examined the impact of reduced intracellular Ni(II) uptake on the activity of a 

staphylococcal Ni(II) enzyme. Ni(II) is a cofactor for urease, a bacterial enzyme that 
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catalyzes the hydrolysis of urea to ammonium and carbon dioxide.13 Bacterial pathogens are 

thought to utilize ammonium as a local pH buffer in acidic host environments, such as in the 

gastrointestinal and urinary tracts.12 CP is capable of inhibiting the growth of S. aureus 
(Figure S10A), and this organism utilizes urease during infection.14,15 On the basis of the 

Ni(II)-uptake study (Figure 4), we hypothesized that Ni(II) sequestration by CP in the 

extracellular space would perturb intracellular Ni(II) homeostasis and diminish the urease 

activity of S. aureus.

To test this notion, we first designed and validated a whole cell urease activity assay 

employing the metal-depleted chemically defined medium dCDM (Figures 5, S11). This 

assay is based on a standard urease test, employed in medical microbiology for strain 

identification, where microbes are cultured in a urea broth containing phenol red. Similar to 

the Ni(II)-uptake study, bacteria were grown overnight in dCDM with 1 μM Ni(II) in the 

absence and presence of 1 μM CP-Ser or the ΔΔ variant. The bacteria were then incubated in 

chemically defined urea broth (dCDMU) that contained the colorimetric pH indicator phenol 

red, which exhibits a color change between pH 6.8 and 8.2 in aqueous solutions (pKa = 7.5, 

25 °C).50 The color and pH of the supernatant of the bacterial suspension were monitored 

over time to determine relative levels of urease activity between growth conditions. Bacteria 

cultured in dCDM without the 1 μM Ni(II) supplement were tested as negative controls. In 

this assay, we employed S. aureus strains USA300 JE2 and the ΔcntA mutant, M2, and 

ATCC 29213. We also utilized the ΔureC mutant strain of S. aureus USA300 JE249 as a 

negative control. The ureC gene encodes the Ni(II)-binding α subunit of urease; thus, the 

ΔureC strain lacks a functional urease.

For S. aureus USA300 JE2 incubated with Ni(II), we observed that the pH values of 

dCDMU increased indicative of urease activity (Figure 5A,B). In contrast, negligible change 

in pH was observed for ΔureC, which indicates the observed increase in pH results from 

urease activity (Figure 5A,B). As expected, ΔcntA exhibited reduced urease activity 

compared to the parent strain under +Ni(II) growth conditions (Figure 5B). S. aureus 
USA300 JE2 grown in the presence of CP-Ser and Ni(II) showed lower pH levels over the 

time course compared to bacteria cultured in the presence of Ni(II) only (Figure 5B). 

Moreover, cultures of S. aureus USA300 JE2 grown in the presence of 1 μM Ni(II) and the 

ΔΔ variant exhibited comparable pH levels to those grown under +Ni(II) only conditions 

(Figure 5B). Urease assays conducted with the M2 and ATCC 29213 strains afforded similar 

trends (Figure S9C–F). Taken together, these results suggest that attenuated urease activity is 

a consequence of Ni(II) sequestration by CP. To confirm that the variations in urease activity 

were not caused by differences in the number of bacteria, we quantified the bacterial cells in 

select dCDMU samples at the beginning and end of each assay by colony counting, and each 

suspension tested exhibited comparable numbers of bacterial cells (Table S10).

Next, to directly monitor urease activity in CP-treated cultures and to validate our whole-cell 

urease assay results, we performed a phenol-hypochlorite assay (also termed indophenol 

assay)51 to quantify ammonia production in cell lysates supplemented with urea (Figure 6). 

This assay employs the Berthelot reaction, a reaction of ammonium ions with phenols under 

oxidizing conditions that results in formation of an indophenol dye.51 Thus, the generation 

of indophenol provides a colorimetric and quantitative readout for ammonia levels in cell 
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lysates, and this assay is employed to detect urease activity.17,52 To minimize background 

ammonia production in these assays, dCDM prepared without ammonium sulfate was 

utilized for culture growth. In this medium, S. aureus USA300 JE2 or ΔureC was grown 

with 1 μM Ni(II) in the presence or absence of 1 μM CP-Ser or ΔΔ. Cultures were lysed 

enzymatically and the soluble lysate was incubated in urea-containing HEPES buffer for 20 

min before assaying for ammonia content. As expected, the lysates of the ΔureC strain 

yielded negligible ammonia production. We observed that lysates of cultures treated with 

Ni(II) only catalyzed more ammonia production than a negative control where no Ni(II) was 

added. Moreover, the lysates from cultures treated with CP-Ser and Ni(II) exhibited 

attenuated ammonia production compared to cultures treated with ΔΔ and Ni(II). These data 

agree with our findings from the whole cell urease assays, further supporting the role of CP 

in withholding Ni(II) and inhibiting urease activity in S. aureus.

K. pneumoniae also utilizes urease during infection,17 and CP exhibits growth inhibitory 

activity against this Gram-negative pathogen (Figure S10B). We therefore examined the 

Ni(II) uptake and urease activity of K. pneumoniae ATCC 13883 cultured in dCDM in the 

absence and presence of CP-Ser (Figure S12, Table S10). Analysis of the Ni content in K. 
pneumoniae revealed markedly lower intracellular levels of this metal (≈0.01 μM Ni) under 

+Ni(II) conditions compared to S. aureus USA300 JE2, M2 and ATCC 29213. Despite 

differences in intracellular Ni, the urease activity profiles are similar between these 

organisms over the time course. As observed for S. aureus, the presence of CP-Ser in the 

growth medium resulted in decreased urease activity for K. pneumoniae. Taken together, the 

results from these microbiology studies demonstrate that CP can perturb intracellular Ni(II) 

homeostasis and attenuate urease activity in two different human pathogens under laboratory 

conditions.

Discussion

In this work, we report structural and biochemical studies of Ni(II) complexation by human 

CP and demonstrate that this host-defense protein can sequester this metal from microbes. 

We present a crystal structure of Ni(II)- and Ca(II)-bound CP, which shows that CP chelates 

Ni(II) at both transition-metal-binding sites and expands the biological coordination 

chemistry of Ni(II) centers in proteins. To the best of our knowledge, the Ni(II)-His6 motif 

of CP is unique amongst structurally characterized nickel proteins (Table S11).53 Proteins 

that contain a Ni(II)- His6 site identified in the Protein Data Bank54 include: (i) the 

metallochaperone SlyD from Thermus thermophilus where a conserved His3 motif, two 

residues of a His6-tag incorporated for protein purification, and one residue of a neighboring 

monomer in the crystal complete the coordination sphere (PDB: 3CGM);55 (ii) the 

homotrimeric engineered four-helix bundle protein construct MBPC-1 that undergoes metal-

templated oligomerization where each monomer contributes two His residues around the 

metal center (PDB: 3DE9);56 and (iii) the N-terminal domain of a Na+/K+ ATPase 

crystallized with Ni(II) ions bound to polyhistidine tags that were employed during protein 

purification (PDB: 1Q3I).57 The tetrahedral Ni(II)-His3Asp site is also noteworthy. 

Metalloproteins that contain a native four-coordinate Ni(II) site include NikR of E.coli 
(PDB: 2HZA),58 NikM of Thermoanaerobacter tengcongensis (PDB: 4M58),59 and LarA of 
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Lactobacillus plantarum (PDB: 4YNS).60 In contrast to the Ni(II)-His3Asp site of CP, these 

three metalloproteins exhibit square planar geometries at each Ni(II) center.

Our current findings demonstrate that CP prefers to coordinate Ni(II) over Zn(II) at the His6 

site. This result is in agreement with the Irving-Williams series,47 which shows that Ni(II) is 

thermodynamically favored over Mn(II), Fe(II), and Zn(II) for an octahedral coordination 

site. Moreover, the established stability constants of Ni(II) and Zn(II) centers coordinated by 

small- molecule imidazole-containing ligands (Table S12)61-63 support the relative affinities 

of CP for these two metal ions. We have previously reported lower limits to the Kd values of 

CP for Zn(II) in the presence of Ca(II) (Kd1,Zn ≤ 90 fM and Kd2,Zn ≈ 0.9 pM), and we did 

not assign these values to the His3Asp and His6 sites of CP.46 Based on the relative Ni(II)/

Zn(II) affinities determined in this work from qualitative metal selectivity studies (Figure 3), 

we conclude that CP coordinates Ni(II) at site 2 with Kd,Ni ≤ 0.9 pM in the presence of 

Ca(II).

To the best of our knowledge, a study to examine the metal content and speciation of metal-

bound CP in a biological sample has not been reported. However, based on the fact that the 

His6 site binds Ni(II) with greater affinity than Zn(II), we posit that CP can function as a 

Ni(II)-chelating protein in vivo. Because the His6 site sequesters multiple first-row metals, 

the speciation and relative concentrations of bioavailable metals at a given site will influence 

the speciation of metal-bound CP. Moreover, in prior work on the coordination chemistry of 

the His6 site, we reasoned that the His6 site of CP will likely withhold the transition metal 

ion that it encounters first.31 CP can be released at levels that are expected to be in excess of 

the bioavailable metal concentrations found at sites of infection.21,34 For instance, 

extracellular CP has found in concentrations up to 1 mg/mL (≈40 μM heterodimer).34 The 

concentration of nickel in human blood is ≈0.5 nM, and subnanomolar to low nanomolar 

concentrations have been measured in human serum, plasma, and urine.64,65 Provided that 

CP is adequately abundant in an environment where Ni(II) is available, the current work 

indicates that CP has the ability to function as a nickel-sequestering protein.

In the context of infectious disease, a number of human pathogens such as S. aureus and K. 
pneumoniae that can infect the gastrointestinal and urinary tracts require Ni(II) for 

successful colonization of the host.3,9,12,15,17 To the best of our knowledge, no mammalian 

Ni(II)-sequestering antimicrobial host-defense mechanism has been identified. Our current 

work shows that CP has the remarkable capacity to prevent Ni(II) uptake by these 

organisms. CP is abundant in the gastrointestinal tract and is a biomarker for irritable bowel 

diseases.66 In addition, elevated levels of CP have been associated with urinary tract 

infection67 and other urinary diseases such as bladder cancer and kidney injury.68,69 Given 

that CP is present in these physiological locales where urea is abundant and where microbial 

pathogens are known to colonize, our work affords a new hypothesis that human CP may be 

involved in the homeostasis of Ni(II) at the host- microbe interface. In addition to human 

pathogens such as S. aureus and K. pneumoniae, the role of Ni(II) is established for the 

virulence of H. pylori,14,70 and whether CP influences Ni(II) trafficking and utilization in H. 
pylori and other gastrointestinal pathogens during infection is an avenue for future research.
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Lastly, the ability of CP to bind Ni(II) with high affinity may have other physiological 

implications. A recent report indicates that human Toll-like receptor 4 (TLR4) is involved in 

the proinflammatory response to Ni contact dermatitis, and the S100A9 subunit of CP was 

employed as a marker for leukocyte infiltration at sites of Ni(II) exposure.71 In addition, an 

abstract of an ongoing clinical study noted that elevated levels of fecal CP were found in 

patients with systemic Ni allergy syndrome.72 These studies suggest that CP may be 

involved in the immune response to metal contact allergy. Future work is required to 

understand Ni(II) regulation and utilization in higher organisms, and our discovery of Ni(II) 

coordination by CP provides a foundation and motivation for investigating this protein 

broadly in the context of mammalian nickel homeostasis.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
X-ray crystallographic analysis of Ni(II)- and Ca(II)-bound CP. (A) Dimer (αβ) and tetramer 

(α2β2) models of CP-Ser coordinated to Ni(II) (teal), Ca(II) (yellow), and Na(I) (purple). 

The S100A8 subunit is green, and the S100A9 subunit is blue. The two dimers, denoted 

dimers 1 and 2, are depicted in 90° rotation to the tetramer and exhibit different metal 

binding. Dimer 1 (left) contains a Ni(II) ion at site 2 only with apparent 100% occupancy. 

Dimer 2 (right) contains a Ni(II) ion at site 1 refined at 75% occupancy and a Ni(II) ion at 

site 2 refined at 100% occupancy. The N-terminus of each subunit is labeled. (B) Site 1 of 

dimer 1. (C) Site 2 of dimer 1. (D) Site 1 of dimer 2. (E) Site 2 of dimer 2. A 2Fo-Fc 
composite omit electron density map (orange mesh) to 2.6-Å resolution is contoured at 1σ 
around the metal sites. A 3.6-Å resolution nickel anomalous difference map, calculated 

using data collected at a wavelength of 1.4831 Å, is contoured at 3σ and shown in teal. (F) 

Amino acid sequence alignment of human S100A8 and S100A9. The metal-binding residues 

are orange. The residues of the EF-hand domains are underlined. The metal speciation of 

each subunit is described in Table 1
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Figure 2. 
The CP-Ser heterodimer binds two equivalents of Ni(II) in solution whereas the ΔHis3Asp 

and ΔHis4 variants coordinate only one equivalent of Ni(II) under the same conditions. 

Samples of 300 μM (A) CP-Ser, (B) ΔHis3Asp, and (C) ΔHis4 preincubated with 5.0 equiv 

Ni(II) were monitored by analytical SEC in 75 mM HEPES, 100 mM NaCl, pH 7.0. The 

SEC chromatograms are shown as absorbance (right y-axis) as a function of elution volume 

(top x-axis). The protein and Ni concentrations (left y-axis) of the eluent fractions (bottom 

x-axis) were measured by absorbance at 280 nm and by ICP-MS, respectively, and these 

data are shown as bar plots. Protein concentration is shown as dark gray bars, and the Ni 

concentration is shown as light gray bars. Data from one representative experiment for each 

condition is shown.
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Figure 3. 
Metal selectivity of the His6 site ascertained by the B-ΔHis3Asp pull-down assay. The 

concentrations of Ni(II) and Zn(II) in the supernatant of each sample were determined by 

ICP- MS. B-ΔHis3Asp (10 μM) was incubated with 10 μM Ni(II), and/or Zn(II) for 72 h at 

37 °C in 75 mM HEPES, 100 mM NaCl, 2 mM CaCl2, pH 7.0 and the mixture was treated 

with streptavidin agarose resin. (A) Ni(II) was added first and the Ni(II) + B-ΔHis3Asp 

mixture was incubated for 30 min at room temperature prior to addition of Zn(II). (B) Zn(II) 

was added first. The mean and SDM are reported (n = 4 for samples with B-ΔHis3Asp n 

added, n = 2 for samples without B-ΔHis3Asp).
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Figure 4. 
CP treatment results in decreased intracellular Ni in S. aureus USA300 JE2 as measured by 

ICP-MS. The mean Ni content of the bacterial cells (OD600 = 6, ≈109 CFU/mL) and SDM 

are reported (n = 6). The asterisk denotes Ni levels below the detection limit. Data for S. 
aureus M2 and ATCC 29213 are provided in Figures S9.
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Figure 5. 
CP attenuates urease activity of S. aureus USA300 JE2 as indicated by directly measuring 

pH (bar plots) and visual detection using the colorimetric pH indicator phenol red 

(photographs below bar plots, pKa = 7.5 at 25 °C, ref. 50), which turns from yellow to 

purple with increasing pH. (A) The pH profile and a representative image of dCDMU from 

bacterial cultures of S. aureus USA300 JE2 and ΔureC grown in the absence and presence of 

a 1-μM Ni(II) supplement (14-18 h, 37 °C). The mean pH values and SDM are reported (n = 

3). The image was taken at t = 4 h. (B) The pH profile and a representative image of 

dCDMU from bacterial cultures of S. aureus USA300 JE2 and ΔcntA grown in the absence 

and presence of 1 μM Ni(II) and CP variants (14-18 h, 37 °C). The image was taken at t = 2 

h. The mean pH values and SDM are reported (n = 6).
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Figure 6. 
Urease activity of S. aureus USA300 JE2 and ΔureC cell lysates monitored by the direct 

detection of ammonium ions using the phenol-hypochlorite assay. Prior to the assay, bacteria 

were cultured in dCDM without ammonium in the absence or presence of 1 μM Ni(II) and 

CP variants as indicated (8 h, 37 °C). Mean μmol ammonia/mg protein and SDM are 

reported (n = 12).
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