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Abstract

Faces are one of the most important means of communication in humans. For example, a short 

glance at a person’s face provides information on identity and emotional state. What are the 

computations the brain uses to solve these problems so accurately and seemingly effortlessly? This 

article summarizes current research on computational modeling, a technique used to answer this 

question. Specifically, my research studies the hypothesis that this algorithm is tasked to solve the 

inverse problem of production. For example, to recognize identity, our brain needs to identify 

shape and shading image features that are invariant to facial expression, pose and illumination. 

Similarly, to recognize emotion, the brain needs to identify shape and shading features that are 

invariant to identity, pose and illumination. If one defines the physics equations that render an 

image under different identities, expressions, poses and illuminations, then gaining invariance to 

these factors is readily resolved by computing the inverse of this rendering function. I describe our 

current understanding of the algorithms used by our brains to resolve this inverse problem. I also 

discuss how these results are driving research in computer vision to design computer systems that 

are as accurate, robust and efficient as humans.
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Computational Models of Face Perception

After finishing this sentence, look around, find a person you know, and then look briefly at 

his or her face. What can you tell about this person? Likely the person’s name (identity) and 

emotional state come to mind. Most of us effortlessly extract this information from the 

smallest of glimpses.

This article reviews our current understanding of the computations that are performed by the 

brain to achieve these seemingly effortless tasks—visual recognition of identity and 

emotion. This means that we assume the brain is a type of computer running algorithms 

specifically dedicated to the interpretation of other people’s faces. The goal is to decode and 

understand these algorithms. This is called computational modeling.

Specifically, this paper details how current progress in computational modeling is helping us 

understand how the brain recognizes faces.

My use of computational models is based on the hypothesis that the brain is tasked to solve 

the “inverse problem of image production.” That is, if f(.) defines how a facial attribute maps 
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onto an image in the retina, then the brain’s goal is to solve the inverse problem, f−1(.)—how 

the image on one’s retina translates into understanding a facial attribute.

For example, imagine you are looking at Sally’s face. Here, the brain’s goal is to recover the 

name “Sally.” More formally, the retinal image I=f(Sally’s face). And the goal is to compute 

the inverse function, Sally = f−1(I).

The identity of someone’s face is engraved in the person’s three-dimensional face structure 

and the reflectance properties of the person’s skin. These are examples of some of its 

diagnostic features. But this is not what we see. Rather, the two-dimensional shape of the 

face on your retinal image depends on the viewing angle and the person’s facial expression. 

The brain’s goal is to uncover the diagnostic features and filter out variations due to 

expression, viewing angle and illumination.

It is imperative to note that computational modeling is only useful if it identifies these 

diagnostic features, algorithms and mechanisms involved in the recognition of faces. I show 

that some machine learning approaches, such as deep learning, are not generally helpful to 

answer these questions.

Recognition of Identity

Look at the left image in Figure 1. This is a two-dimensional image, I. Now, look at the 

image to its right. This image defines the shape s of the main facial components of that face.

Given many face images and their shapes ({Ii, si}, i = 1, …, n), one can compute the mean 

shape as well as the major differences (i.e., largest standard deviations) between shapes. 

These variances are given by Principal Component Analysis (PCA), a statistical technique 

that allows us to find the shape features that produce maximum variability (Martinez & Kak, 

2001). The resulting representation is called a norm-based face space because all faces are 

described based on their deviation from the mean (norm) sample shape (Leopold et al., 

2006), Figure 2.

Recall, however, that our retinal image Ii is two-dimensional but that diagnostic features 

exist in three-dimensional space. Can we design an algorithm that estimates the three-

dimensional shape of a face from a single image? Yes. In fact, everyday experience proves 

this. When you looked at a face at the beginning of this article, you probably just saw it from 

a single viewing angle. Yet, you were able to mentally imagine other views of that face as 

well.

My students and I have shown that the computations needed to solve this problem are quite 

simple (Zhao et al., 2016). This algorithm works as follows: Given a set of two-dimensional 

images and their corresponding three-dimensional shapes ({Ii, Si}, i = 1, …, n), we use a 

machine learning technique called regression (You et al., 2014) to learn the (inverse) 

functional mapping from retinal image to three-dimensional shape, Si = f(Ii), Figure 3. Once 

this function has been learned using the available training data, we can use it to estimate the 

three-dimensional shape Ŝ of a previously unseen face image Î, i.e., Ŝ = f(Î).
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The above modeling shows how to map an initial face image to a rotation-invariant 

representation. Physiological studies though, suggest the existence of an intermediate 

representation invariant to mirror images of profile views (Meyers et al., 2016). A simple 

analysis of projective geometry shows that the basis functions (e.g., PCs) obtained with the 

above formulation yields the same response for mirror-symmetric images (Leibo et al., 

2016). As an intuitive proof, note that faces are symmetric about the vertical midline of the 

face. Thus, rotation a face 90° to the left and right yield basically the same image, up to a 

mirror projection.

Deep Learning

If the function f(.) presented above is defined by many parameters, the resulting regression 

approach is called deep learning. In deep learning, one must use a very large number of 

training samples to successfully estimate that same number of parameters, an increasingly 

popular approach called big data.

Deep learning has recently achieved good results in several computer vision problems, 

including face recognition (e.g., Kemelmacher-Shlizerman et al., 2016). Unfortunately, this 

technique does not generally help us uncover the underlying computations of the algorithm 

used by our visual system.

For one, we do not yet know how to apply deep learning to solve many problems in face 

recognition, e.g., recognition under varying illumination or the recognition of emotion.

Also, the reliance on big data makes deep learning an unlikely model of human vision. 

Humans generally learn from a single sample (Martinez, in press, 2002), not thousands as 

required by current deep learning algorithms.

And, crucially, deep learning does not generally provide information on the mechanisms 

used by the brain to decode facial attributes. That is, we might be able to design computer 

algorithms that identify people’s faces very accurately, yet learn nothing about the brain.

To clarify this point, imagine a physicist trying to understand the behavior of a number of 

particles. Given enough observations of the behavior of these particles, deep learning could 

certainty be used to identify a function describing their behavior. This function would allow 

us to predict the state y of the particles x after an event f(.), y=f(x). But, this would not 

provide any insights on the mechanisms involved in that process, i.e., the laws of physics.

The same applies to the study of the visual system. It is not sufficient to demonstrate there 

exists a function that maps an image to a facial attribute. We also wish to uncover the 

specific computations used by the brain to accomplish this. I argue we need to refocused our 

research toward computational models that can solve this problem.

For example, Gilad et al. (2009) suggested that the local contrast polarity between a few 

regions of the face (especially those around the eyes) encode critical information about a 

person’s identity and that the brain uses this information to recognize people’s faces. 

Subsequently, Ohayon et al. (2012) identified cells in the macaque monkey brain that 
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selectively respond to such contrast variations. Computers vision algorithms based on this 

local contrast polarity successfully detect and recognize faces in images (Zhao et al., 2016; 

Turk, 2013). Furthermore, this model explains how one is able to recognized partially 

occluded and expression variant faces (Martinez & Jia, 2009); for example, using graph 

matching (Aflalo et al., 2015; Zhao & Martinez, 2016). These results do point toward an 

understanding of some of the computations of the perception of face images.

Facial Expressions of Emotion

Another aspect of face perception is our remarkable ability to interpret facial expressions. 

Facial expressions convey a lot of information, such as a person’s emotional state.

As with identity, the representation of facial expressions also uses a norm-based model 

(Neth & Martinez, 2009, 2010). However, the dimensions employed in the recognition of 

emotion are, for the most part, different (Sormaz et al., 2016; Richoz et al., 2015; Martinez 

& Du, 2012). We thus say that the form of the face space is the same for expression and 

identity but that the dimensions that define this space differ for the two judgments. What are 

the features that represent these dimensions, then?

Studying the physical reality of expression shows that they are produced by contracting and 

relaxing different muscles in the face (Duchenne, 2006). Thus, I hypothesize that the brain 

solves the inverse problem by attempting to decode which facial muscle actions h(I) are 

active during a particular expression (Martinez, in press). My research group has recently 

developed a computer vision system based on this model using an algorithm that accounts 

for shape and shading features, and incorporating it into machine learning algorithms that 

identify which of these features best discriminate the muscles involved in each expression 

(Benitez-Quiroz et al., 2016a; Du et al., 2014).

Take the example of a small cheek muscle that is used to pull the lips outwardly to create a 

smile. Unsurprisingly, our machine learning approach identified shape and shading changes 

in the corners of the mouth as the most discriminant feature for smiles. Likewise, contracting 

a set of three facial muscles located at the top of the face results in the lowering of the inner 

corners of the brows. Yet, the most discriminant shape and shading features to detect this 

facial action are associated with more distal parts of the face (i.e., the brow to mouth 

distance and the face’s height/width ratio) because they change when one contracts these 

muscles (Du et al., 2014). Accordingly, the algorithm assumes these muscles are active when 

processing the faces of people who have unusually large distances between their brows and 

mouths plus really thin faces (Martinez, in press).

This effect is clearly visible in Figure 4. In the left image, we see the male character in 

Wood’s painting American Gothic. Note that this person is not expressing any emotion. Yet, 

you are likely to perceive sadness in his expression. Using morphing software, we can 

decrease the intra brow-mouth distance and make the face wider (right image). Notice now 

how the face looks angry because we have incidentally altered it to display the image 

features associated with the facial muscle actions used to express anger.
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If this algorithm is indeed implemented in our brains, then there should be an area of the 

brain dedicated to the detection of these facial muscle actions. In a recent paper, my research 

group has identified one such region just behind the right ear (Srinivasan et al., 2016).

Compound Emotions

An ongoing debate in emotion theory is the number of facial expressions that we can 

visually recognize. Darwin (1965) argued that six facial expressions of emotion can be 

visually recognized across cultures. However, my group’s computational modeling presented 

above suggests that the visual system does not attempt to categorize facial expressions but, 

rather, simply identifies the facial muscle actions involved in the production of expressions. 

Why should that be? It is obviously easier to visually identify six facial expressions than to 

try to decode individual facial muscle actions. My hypothesis is that by identifying facial 

muscle actions, the visual system can categorize many more than six facial expressions. Our 

current model suggests people might be able to recognize over a hundred categories 

(Benitez-Quiroz et al., 2016a). It is certainly easier to identify a few facial muscle actions 

than to derive an algorithm that can discern such a large number of categories.

So far, we have identified twenty-three facial expressions of emotion, including compound 

emotions (e.g., angrily surprised, happily disgusted; Du et al., 2014; Du & Martinez, 2015). 

We are currently studying an even larger number of facial expressions that correspond to 

about 400 affect concepts (e.g., anxiety, embarrassment and fatigue; Benitez-Quiroz et al., 

2016a). And, although we do not yet know which are universally used and recognized, our 

preliminary analysis suggests the number of universally recognized expressions is much 

larger than current models propound.

Everyday experience seems to corroborate our ability to use the face to express many more 

than just a few emotion categories. People seem to use their faces to communicate a large 

number of concepts. But which ones?

Grammatical Markers

Our ability to produce and visually recognize compound facial expressions of emotion 

allows people to communicate complex concepts non-verbally. Of note, I hypothesize that 

compound emotions have evolved into grammatical markers. For example, in a recent paper 

(Benitez-Quiroz et al., 2016b), my research group has shown that compounding the facial 

expressions of anger, disgust and contempt yields an expression that serves as a marker of 

negation. If this is part of human language, we call it a grammatical marker. Specifically, a 

grammatical marker of negation (i.e., negative polarity). This means you can use this 

expression to convert a positive sentence into a negative one.

We call it the “not face,” Figure 5. We have shown that this compound facial expression of 

emotion is used in a variety of cultures and languages, including English, Spanish, Mandarin 

Chinese and American sign language (ASL). Crucially, in ASL the “not face” is, sometimes, 

the sole marker of negation. That is, if you do not see the face of the signer, you may not 

know if the signed sentence is positive or negative.
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A fundamental and unanswered question in the cognitive sciences is: where does language 

come from? While most of our human abilities can be traced back to similar or more 

primitive versions of the same ability in our closest living species, language cannot. The idea 

that the “not face” is a compound facial expression of emotion is significant because it 

provides a plausible evolutionary path for the emergence of language through the expression 

of emotion.

As significant as this result might be, more research is needed to test this hypothesis. 

Answering the question of the origins of language is one of the most exiting problems in 

science. But, although the results above show how computational models can aid in this 

search, additional studies will need to be completed to provide a clear picture of the 

emergence of grammatical markers through the expression of emotion.

How many facial expressions?

It is still unclear how many facial expressions are commonly used to communicate affect. 

Although research in my lab provides strong evidence for the existence of many such 

categories, other researchers suggest that emotions are not represented categorically in the 

brain (Skerry & Saxe, 2015) and that this representation is not as localized in a small brain 

area as our results propound (Wager et al., 2015). Others argue for a hierarchical 

organization of emotions (Jack et al., 2014). Since facial expressions are dynamic, the 

hypothesis is that information conveyed earlier is more informative of a few important 

emotion categories, and later components of the expression are more social specific.

Future research will hopefully resolve the details of the computations performed by our 

brains to interpret faces and facial expressions. This is important because these results will 

play a major role in the definition, diagnosis and treatment of psychopathologies. At present, 

heterogeneity and reification of psychopathologies are major challenges of translational 

research. It has been argued that a successful definition of the brains’ functional impairments 

will require a detail understanding of the brain’s computational mechanisms (Insel, 2014; 

Insel et al., 2010). Computational models are ideally suited to address these problems.
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Figure 1. 
An image of a face (left) and its corresponding shape (right).
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Figure 2. 
Norm-based shape space. Shown here are the two dimensions with largest variance in the 

shape space. Also shown are the images corresponding to four of these feature vectors. The 

farther away a face is from the origin of this space, the easier it is to recognize it. In the 

above, the red demarked face (bottom left) is easier to recognize than the one delineated 

with a brown-white pattern (top right).
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Figure 3. 
This plot illustrates the idea of a regressor. Here, two of the axes define the image space. The 

third (vertical) axis defines the 3D-shape. Of course, in reality the image space and the 3D-

shape space are defined by more dimensions. The function f(.) is the regressor. It defines a 

non-linear manifold. This manifold specifies the mapping between an image Ii and its 3D-

shape Si, i.e., Si = f(Ii).
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Figure 4. 
The American Gothic illusion. Left image: The male character in Wood’s famous American 
Gothic painting is typically described as having a sad expression. However, this man is not 

expressing any emotion; look closely, this person’s face is at rest – this is called a neutral 
expression. Research suggests that this is because Wood painted this person with an 

elongated face (i.e., a really thin face) and an exaggerated long distance between brows and 

mouth. Right image: If we morph the original face to be wider and have a significantly 

shorter brow to mouth distance, then we get a perception of anger. These results are 

consistent with the predictions of our computational model.
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Figure 5. 
The “not face.” This expression is used as a marker of negation in at least four different 

languages. That is, in some instances, when we create a negative expression (e.g., no, I 

didn’t go to the party), we also produce this expression. In American Sign Language (ASL) 

this expression may be the sole marker of negation. This is called a grammatical marker. 

Left to right: native speaker of Mandarin Chinese, Spanish, and ASL.
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