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Abstract

Purpose of the Review—A wide array of sleep and circadian deficits have been observed in 

patients with Alzheimer’s Disease (AD). However, the vast majority of these studies have focused 

on later-stage AD, and do not shed light on the possibility that circadian dysfunction contributes to 

AD pathogenesis. The goal of this review it to examine the evidence supporting or refuting the 

hypothesis that circadian dysfunction plays an important role in early AD pathogenesis or AD risk 

in humans.

Recent Findings—Few studies have addressed the role of the circadian system in very early 

AD, or prior to AD diagnosis. AD appears to have a long presymtomatic phase during which 

pathology is present but cognition remains normal. Studies evaluating circadian function in 

cognitively-normal elderly or early-stage AD have thus far not incorporated AD biomarkers. Thus, 

the cause-and-effect relationship between circadian dysfunction and early-stage AD remains 

unclear.

Summary—Circadian dysfunction becomes apparent in AD as dementia progresses, but it is 

unknown at which point in the pathogenic process rhythms begin to deteriorate. Further, it is 

unknown if exposure to circadian disruption in middle age increases AD risk later in life. This 

review address gaps in current knowledge on this topic, and proposes several critical directions for 

future research which might help to clarify the potential pathogenic role of circadian clock 

dysfunction in AD.
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Introduction

Alzheimer’s Disease (AD) is the most common cause of dementia in the United States, 

currently affecting more than 5 million people and costing over $200 billion annually [1]. 

Clinically, AD is classically characterized by a gradual, insidious onset of memory loss 
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which expands to multi-domain cognitive impairment. Pathologically, the hallmarks of the 

disease are amyloid plaques, extracellular accumulations composed primarily of aggregated 

amyloid-beta (Aβ) peptides, and neurofibrillary tangles, formed from the aggregation of 

misfolded, hyperphsophorylated tau protein. AD generally occurs after the age of 65, and 

becomes highly prevalent among people older than 80. While many studies examine 

dementia rather than AD specifically, it is worth noting that not all dementia is caused by 

AD, though AD is by far the most common cause of dementia in the elderly [1]. Among the 

many terrible symptoms of AD, disturbances of sleep and day-night rhythms are common 

and can be a major cause of morbidity. Any clinician who cares for AD patients is all too 

familiar with accounts of patients becoming confused or agitated in the evening (a 

phenomenon termed “sundowning”), mistaking night for day, getting dressed for work in the 

wee hours of the morning, or napping throughout the day [2]. AD patients frequently exhibit 

problems with sleep, but also with circadian rhythms, the 24-hour cycles of the body. While 

sleep and circadian rhythms are closely interrelated, they are distinct entities with separate 

neuroanatomical and molecular substrates. As sleep disturbances in AD are reviewed 

extensively elsewhere [3–6], I will focus here on circadian rhythms and their disruption in 

AD. I will examine the evidence supporting the notion that circadian dysfunction may 

contribute to AD pathogenesis, drawing primarily from the human literature, and discuss 

areas of critical need for further investigation to address this issue.

The Mammalian Circadian Clock

Circadian rhythms in behavior and physiologic functions are observed in most organisms on 

earth, ranging from plants to bacteria to humans [7, 8]. The circadian system in mammals 

serves to synchronize internal function with the external environment, particularly the light-

dark cycle, though other external circadian cues exist. The mammalian circadian system is 

hierarchical, consisting of a central clock in the suprachiasmatic nucleus (SCN) of the 

hypothalamus, and peripheral clocks in most cells throughout the body [9]. The SCN is the 

“master clock” of the body and serves to synchronize peripheral clocks to the light:dark 

cycle, creating coherent organismal circadian rhythms in behavior, physiology, and cellular 

function. The SCN receives direct neuronal input from the retina, and exposure to light 

causes induction of clock gene expression and synchronizes the core circadian machinery in 

pacemaker neurons in the SCN [10, 11]. Circuitry within the SCN integrates this signal, 

resulting in robust circadian oscillations in neuronal firing. The SCN contains primarily 

GABAergic neurons, though the neuropeptides arginine vasopressin (AVP) and vasoactive 

intestinal peptide (VIP) are co-expressed in subsets of SCN neurons and are critical to SCN 

function [12–16]. The SCN projects to other brain nuclei, including the pineal gland to 

regulate melatonin, sleep-wake centers, and to regions regulating hormone secretion and 

autonomic function[11]. Through these connection, the SCN can signal to the entire body, 

synchronizing peripheral clocks and diverse behavioral, endocrine, physiologic, and 

transcriptional functions to the light:dark cycle.

The molecular machinery responsible for cell-autonomous rhythmicity is present in nearly 

every cell in the body and orchestrates oscillations in cellular transcription [9]. Thus, cells 

exhibit circadian rhythms in transcription and function even in the absence of input from the 

SCN, and even when grown in culture outside the body [9, 17]. The core circadian clock 
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machinery is present and rhythmic in neurons, astrocytes, and microglia in the brain [17–

22], though it roles in brain health and disease are unclear. In its simplest form, the core 

circadian clock consists of a primary transcriptional-translational feedback loop which relies 

on the bHLH/PAS transcription factors BMAL1 (also known as ARNTL) and CLOCK, 

which heterodimerize and bind to E-Box motifs to drive transcription of many genes [9]. 

BMAL1/CLOCK heterodimers drive transcription of negative feedback repressors 

(including Period (Per1,2,3), Cryptochrome (Cry1,2), and REV-ERB (Nr1d1, Nr1d2) genes, 

which directly or indirectly repress BMAL1/CLOCK-mediated transcription. BMAL1 levels 

are also positively regulated by retinoic acid receptor (ROR) transcription factors binding to 

ROR response elements (RREs) [23]. Transcriptomic studies suggest that in peripheral 

tissues, 10–20% of all mRNA transcripts show circadian oscillation [24], while up to half of 

all transcripts show oscillation in at least one tissue [25]. In humans, 15% of all blood or 

saliva metabolites are rhythmic [26]. Thus, the circadian clock is a critical integrator of 

cellular metabolism and transcription in peripheral tissue.

Considering the broad influence that the circadian system has multiple aspects normal 

physiology, it is perhaps not surprising that disrupted circadian clock function is associated 

with pathology. In mice, disrupted rhythms or clock gene deletion are associated with 

exacerbation of many disease states, including diabetes [27], cardiovascular disease[28, 29], 

inflammation [30, 31], and neurodegeneration [32]. In humans, circadian rhythm 

disturbances, often caused by employment and lifestyle issues such as night shift work, are 

associated with increased risk of diseases such as diabetes, breast cancer, and coronary 

artery disease [33–36]. It is therefore reasonable to hypothesize that chronically disrupted 

circadian rhythms might play a role in age-related neurodegenerative diseases, the most 

common of which is AD.

Alterations in Behavioral Circadian Rhythms in AD

Alterations in the day-night activity pattern of dementia patients has been described for 

decades [37, 38], though these reports were primarily focused on sleep disturbances. In the 

late 1980s, studies of circadian function began to appear in the literature, demonstrating 

disrupted circadian rhythms in rest-activity behavior [39] or temperature [40]. Activity 

rhythms in humans are often monitored using actigraphy, a method of recording the amount 

of movement each minute of the day using wristwatch-like devices[41]. In the past 25 years, 

dozens of subsequent studies, most using actigraphy, have described abnormalities in 

circadian function in AD patients. Initial studies demonstrated fragmentation of activity 

rhythms, with increased activity at night, decreased activity during the day, decreased 

rhythm amplitude, and phase delay[42–44]. This phase delay means that the peak of activity 

is ~4 hours later in AD patients than controls, and has been used as an explanation for 

“sundowning”, a phenomenon of increased confusion and agitation in dementia patients in 

early evening[2]. Disrupted circadian rhythms in melatonin secretion [45] and temperature 

[40] have also been described in AD. Body temperature also exhibits circadian variation, 

though interestingly this rhythm does not appear to be consistently disrupted in AD[42, 46]. 

Some multimodal studies have compared actigraphy with other circadian markers in the 

same patients. A recent study examined actigraphy, melatonin levels, and clock gene mRNA 

levels in buccal mucosa in home-dwelling AD patients with moderate AD dementia. Daily 

Musiek Page 3

Curr Sleep Med Rep. Author manuscript; available in PMC 2018 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



rhythms in melatonin secretion were blunted in AD patients, and Bmal1 mRNA rhythms 

was slightly phase-delayed[47]. Hatfield et al examined both actigraphy and salivary cortisol 

oscillations in home-dwelling AD patients with either mild or moderate dementia[48]. They 

observed progressive behavioral circadian rhythm fragmentation and loss of amplitude as 

dementia worsened, though cortisol rhythms were less affected. Gehrman et al. found a 

complex relationship between dementia severity and circadian function, though poor activity 

rhythms and poor cognition were correlated, and only patients with MMSE<24 were 

included in the study (suggesting that even the mildest participants had dementia) [49]. 

Thus, circadian rhythm abnormalities, in particular fragmentation, phase delay, and loss of 

nocturnal melatonin surge, have been extensively described in patients with symptomatic 

AD dementia, though there some discrepancies regarding rhythms in temperature and 

cortisol secretion.

The Neuropathology of Circadian Dysfunction in AD

Normal circadian function relies on an intact SCN, and several studies have demonstrated 

degeneration of SCN neurons in aging and AD. Neuron expressing arginine vasopressin 

(AVP) and vasoactive intestinal peptide (VIP) play key roles in SCN synchronization and 

circadian rhythm output[13, 14, 50]. Loss of VIPergic neurons in aging and AD is correlated 

with decline in the amplitude of behavioral circadian rhythms in humans[51]. Decreased 

numbers of both AVP- and VIP-expressing neurons have been described in the postmortem 

SCN of patients with AD, as compared to aged matched controls[52–55]. The pineal gland 

receives direct output from the SCN in order to generate circadian oscillations in melatonin 

secretion, and postmortem studies have demonstrated altered clock gene oscillation in the 

pineal of AD patients [56]. This is in keeping with numerous studies showing blunted 

circadian oscillations in melatonin secretion in AD patients [45, 57–59]. Loss of melatonin 

MT1 receptors on SCN neurons in AD was also reported, suggesting that melatonin may no 

longer influence rhythmic SCN output [54]. Thus, there is degeneration of both the central 

clock (the SCN) and dysregulation of pineal melatonin secretion, suggesting that clock gene 

rhythms should be altered throughout the brain.

Circadian oscillations in clock gene mRNA can be quantified from human post-mortem 

brain tissue, based on the time of day of death of each individual [60, 61]. While this has not 

been analyzed extensively in AD, one study demonstrated altered synchronization in 

rhythms of clock gene expression (including PER1, PER2, and BMAL1) in different brain 

regions in AD patients as compared to controls [62]. Circadian oscillations in methylation, 

an epigenetic means of regulating transcription, have been observed in mice [63], and are 

also present in human cerebral cortex and are dysregulated in AD [64]. Accordingly, altered 

circadian transcription of Bmal1 in the cortex is associated with abnormal Bmal1 promoter 

methylation in AD post-mortem tissue [65]. While informative, these post-mortem gene 

expression studies are somewhat limited in the detail and accuracy with which clock gene 

expression can be observed, as they rely on the assumption that clock oscillation stops 

immediately at death, and that clock gene mRNA levels are not substantially altered by the 

circumstances of death or the postmortem interval before autopsy and tissue extraction. 

While some alterations in clock gene expression appear to occur in AD brain, our 

understanding of this phenomenon is still incomplete.
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What do we know about circadian dysfunction in early or presymptomatic 

AD?

While the body of evidence linking AD and circadian rhythms appears substantial, it 

becomes clear that the story is far from complete when we consider current concepts of AD 

pathogenesis and diagnosis.

Nearly every study of circadian rhythms in living AD patients has relied upon a clinical 

diagnosis of AD, or in some cases simply “dementia”. We know that mixed 

neurodegenerative pathology is present in many if not most dementia patients, as evidence of 

α-synuclein, TDP-43, and vascular disesae are often observed alongside the typical Aβ 
plaques and tau neurofibrillary tangles[66–68]. The potential contributions of these other 

pathologies to circadian dysfunction are unknown. More concerning, we don’t know at what 

point in the pathogenic process of AD circadian dysfunction begins. The advent of amyloid 

PET imaging and cerebrospinal fluid biomarkers for AD pathology (including Aβ42, tau, 

and phospho-tau) has facilitated the detection and longitudinal monitoring of Aβ and tau 

pathology in living people, revolutionizing our understanding of AD pathogenesis[69–71]. A 

wealth of human data from numerous longitudinal studies which combine these biomarkers 

with detailed cognitive phenotyping has revealed that amyloid plaque pathology appears 10–

20 years prior to the onset of cognitive symptoms in AD, and that increases in CSF tau levels 

often precede the onset of symptomatic cognitive decline by a few years[72–76]. This same 

timeframe is present in patients with rare autosomal dominant forms of AD caused by 

inherited mutations in genes related to Aβ production[77]. Thus, the pathogenic cascade 

which leads to clinical AD has been active for at least a decade before a clinical diagnosis of 

AD is possibly made. What is happening to circadian rhythms during this presymptomatic 

period, or at the very least during the earliest stages of the disease? Surprisingly little 

circadian data exists for patients with very early AD, or those with “mild cognitive 

impairment” (MCI), a diagnosis which is in many cases equivalent to very early AD[78]. A 

single small study demonstrated a mild circadian phase advance in MCI patients in several 

circadian parameters, as well as altered sleep indices including increased wake after sleep 

onset (WASO) [79]. Even less is known about “presymptomatic” or preclinical AD, defined 

as individuals with positive AD biomarkers but no apparent cognitive decline[71]. To our 

knowledge, no studies of circadian function in preclinical AD patients have yet been 

published. Ju et al. examined sleep parameters using actigraphy in a cohort of cognitively-

normal patients, ~30% of whom had preclinical AD (as evidenced by decreased CSF Aβ42 

levels), and found that amyloid pathology was significantly associated with reduced sleep 

efficiency and increased napping, suggesting a possible circadian effect [80]. This 

information begs a major question: Does circadian dysfunction cause, or at least contribute 

to the early pathogenesis of AD? In order to answer this question in humans, a number of 

research questions need to be addressed. These include the following:

Does circadian dysfunction precede cognitive decline in AD?

If we are to implicate circadian dysfunction as an important contributor to disease 

pathogenesis, we need to know if rhythm disturbances or clock gene repression are present 

early in the disease, or are simply a late consequence of neurodegeneration. Nearly all 

Musiek Page 5

Curr Sleep Med Rep. Author manuscript; available in PMC 2018 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



existing data on rhythms in AD is based on symptomatic dementia patients, and some 

studies have failed to find differences even in mild symptomatic dementia [48]. The primary 

evidence supporting the idea that rhythm disturbances precede dementia comes from the 

work of Tranah et al., who examined actigraphy data from 1282 older women (average age 

83), all of whom were cognitively normal at the study start [81]. They quantified several 

circadian endpoints, and determined which participants went on to develop dementia in the 

ensuing 5-year followup. In their analyses, older women with blunted rhythm amplitude, 

decreased robustness, or phase delay were more likely to go on to develop dementia, with 

odds ratios around 1.5. These findings are compelling, but there are some shortcomings. The 

cognitive assessment was quite limited, as validated dementia measures such as the Clinical 

Dementia Rating or ADAS-COG were not available. Also, we do not know if these women 

developed AD, or some other dementia (though AD is by far the most likely statistically). 

Further, we do not know how many women in the study had “preclinical” AD pathology 

(amyloid and/or tau pathology in the brain without obvious cognitive impairment) during the 

study, though considering the average age of the participants, this number is likely to 

approach 40% [82]. Thus, we cannot conclude that circadian dysfunction causes AD, as an 

alternative explanation is that presymptomatic AD pathology was present in many of the 

people, causing circadian dysfunction and also increasing risk of subsequent dementia. 

Several other studies have addressed a similar question, but from the sleep angle. 

Fragmentation of sleep has been identified in cognitively normal elderly and shown to 

increase subsequent risk of AD [83]. While sleep fragmentation may or may not be due to 

circadian rhythm disruption, these studies provide additional evidence that alterations in 

day-night behavioral rhythms are disturbed before the onset of clinical dementia in AD, 

though the relationship of these changes to brain pathology is unknown. The evidence 

linking early sleep problems in cognitively-normal people to future AD risk is stronger [84–

88], though it also remains unclear how much of this sleep phenotype could be caused by 

circadian clock dysfunction.

How do circadian rhythm disturbances correlate with modern biomarkers of AD?

Most studies of sleep and rhythm abnormalities in AD have used patients with moderate 

AD. We need more information about how sleep and circadian function are impacted at 

earlier stages, and particularly in presymptomatic patients with biomarker evidence of AD 

pathology. Clinicopathologic correlations between different AD biomarkers (such as 

amyloid or tau PET imaging or CSF Aβ, tau, and inflammatory markers) are needed to 

understand the potential substrates for sleep and rhythm disruption. Ultimately, we need to 

add circadian rhythm dysfunction to the timecourse of biomarker changes in AD (Figure 1). 

Existing studies examining circadian rhythms and AD risk in cognitively-normal older 

people are limited by the likely high prevalence of presymptomatic amyloid pathology in 

these cohorts, as both circadian disruption and increased risk of AD could simply be related 

to having amyloid plaques[82]. Thus, AD biomarkers are needed in such studies in the 

future.

Does shift work or other circadian disruption increase lifetime risk of AD?

Large-scale epidemiologic studies have shown that certain lifestyle-related exposures to 

circadian disruption (such as working nights or other shiftwork) increases risk of diseases 
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such as diabetes, cancer, and coronary artery disease [33, 35, 36]. Two small studies suggest 

that flight attendants who are subjected to chronic jetlag exhibit temporal lobe atrophy and 

cognitive impairment, suggesting some impact of chronic circadian disruption on brain 

function[89, 90]. To our knowledge, no other such data exists for any neurodegenerative 

disease, including AD. This type of data is needed and may help to solve the chick-or-egg 

problem of circadian rhythm disorders in AD.

Can we tap into big data to address these questions?

In the era of wearable devices which track our every step, heartbeat, and tweet, we need to 

harness these new technologies for collecting rich sleep and circadian data across very large 

populations. Sensor-rich wearables, which can collect multiple physiologic parameters and 

upload the data seamlessly via the internet, should be employed across AD observational 

studies, and smartphone-based programs which collect all types of data could be used across 

large populations of older adults to understand the interaction between aging, sleep, 

circadian rhythms and AD risk. Unfortunately, the technology has outpaced our ability to 

ethically employ it to our advantage. Issues of privacy are a major stumbling block, but 

collaboration with large tech firms who already collect massive data from people around the 

world would be a first step.

Is it sleep or the clock?

It can be very difficult at first glance to determine if time of day oscillations in biological 

processes are directly due to sleep, or are regulated by the circadian system. However, the 

implications are very different. Sleep-regulated processes may respond to one set of 

therapeutics, circadian clock-regulated processes to another. The two systems are 

interconnected, but can function independently. As an example, it remains unclear if 

fragmentation of behavioral rhythms and sundowning in AD are due to degeneration of sleep 

nuclei, or due to dysfunction of the circadian system, either at the level of SCN or peripheral 

clocks. Pharmacologically targeting sleep may not necessarily synchronize your circadian 

system. Conversely, if sleep nuclei are damaged, a robust circadian clock may still not 

trigger sleep. Differentiating these processes and their relative roles in AD is an important 

but difficult task.

What are the Mechanisms?

Does the circadian clock influence Aβ clearance, production, or aggregation? What are the 

effects on tau? The circadian clock has been implicated in regulation of inflammation, glial 

activation, oxidative stress, and autophagy, all important processes in AD [22, 31, 32, 91]. 

Starting with animal models, some understanding of the impact of circadian dysfunction on 

these neurodegenerative pathways in AD is needed. Glymphatic flow, a phenomenon of 

astrocyte-mediated fluxes in extracellular fluid in the brain, has been linked to sleep and is 

thought to mediate removal of toxin proteins, such as Aβ [92, 93]. The interplay between 

circadian systems and glymphatic flow is another potential area of investigation. MRI 

methods to quantify glymphatic flow in humans have been developed and are currently 

being employed in the study of AD[94].
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Conclusions

The concept that dysfunction of the circadian clock may set the stage for neurodegeneration 

has gained traction in recent years, buoyed by data implicating sleep disturbances in AD 

pathogenesis. While circadian dysfunction has been extensively studied in symptomatic AD, 

we know very little about how very early or presymptomatic AD pathology impacts the 

circadian system. Furthermore, we do not know if exposure to chronic circadian 

disturbances, such as night shift work, during middle age may increase AD risk. Finally, the 

molecular mechanisms linking the circadian system to AD pathogenesis are poorly 

understood. By addressing some of the research questions posed herein, the role of the 

circadian clock in AD pathogenesis can hopefully be revealed. As our understanding of the 

interplay between the circadian clock and AD pathogenesis evolves, so might our ability to 

specifically target the circadian system therapeutically for the prevention of AD.
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Figure 1. Circadian dysfunction in the timecourse of AD pathogenesis
Theoretical curves showing the timecourse of amyloid plaque deposition (red line), tau 

aggregation (green line), and neuronal loss (black line) in relation to cognitive function in 

AD, modified from previous studies[72, 76, 77]. Blue dotted lines show possible positions 

for circadian dysfunction. Line A suggests a causal role, while B suggests that 

presymptomatic AD pathology leads to circadian disruption (which could then contribute to 

early disease). Line C suggests that circadian dysfunction is a late consequence of dementia.

Musiek Page 14

Curr Sleep Med Rep. Author manuscript; available in PMC 2018 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript


	Abstract
	Introduction
	The Mammalian Circadian Clock
	Alterations in Behavioral Circadian Rhythms in AD
	The Neuropathology of Circadian Dysfunction in AD
	What do we know about circadian dysfunction in early or presymptomatic AD?
	Does circadian dysfunction precede cognitive decline in AD?
	How do circadian rhythm disturbances correlate with modern biomarkers of AD?
	Does shift work or other circadian disruption increase lifetime risk of AD?
	Can we tap into big data to address these questions?
	Is it sleep or the clock?
	What are the Mechanisms?

	Conclusions
	References
	Figure 1

