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Abstract

Consider samples from two different data sources  and . We only 

observe their transformed versions  and , for some known function class h(·) and g(·). 

Our goal is to perform a statistical test checking if Psource = Ptarget while removing the distortions 

induced by the transformations. This problem is closely related to domain adaptation, and in our 

case, is motivated by the need to combine clinical and imaging based biomarkers from multiple 

sites and/or batches – a fairly common impediment in conducting analyses with much larger 

sample sizes. We address this problem using ideas from hypothesis testing on the transformed 

measurements, wherein the distortions need to be estimated in tandem with the testing. We derive 

a simple algorithm and study its convergence and consistency properties in detail, and provide 

lower-bound strategies based on recent work in continuous optimization. On a dataset of 

individuals at risk for Alzheimer’s disease, our framework is competitive with alternative 

procedures that are twice as expensive and in some cases operationally infeasible to implement.

1 Introduction

A first order requirement in many estimation tasks is that the training and testing samples 

are from the same underlying distribution and the associated features are directly 

comparable. But in many real world datasets, training/testing (or source/target) samples may 

come from different “domains”: they may be variously represented and involve different 

marginal distributions [8, 32]. “Domain adaptation” (DA) algorithms [24, 27] are often used 

to address such problems. For example, in vision, not accounting for systematic source/

target variations in images due to commodity versus professional camera equipment yields 

poor accuracy for visual recognition; here, these schemes can be used to match the source/

target distributions or identify intermediate latent representations [12, 1, 9], often yielding 

superior performance [29, 12, 1, 9]. Such success has lead to specialized formulations, for 

instance, when target annotations are absent (unsupervised) [11, 13] or minimally available 

(semi-supervised) [7, 22]. With a mapping to compensate for this domain shift, we know 
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that the normalized (or transformed) features are sufficiently invariant and reliable in 

practice.

In numerous DA applications, the interest is in seamlessly translating a classifier across 

domains — consequently, the model’s test/target predictive performance serves the intended 

goals. However, in many areas of science, issues concerning the statistical power of the 

experiment, the sample sizes needed to achieve this power and whether we can derive p-

values for the estimated domain adaptation model are equally, if not, more important. For 

instance, the differences in instrument calibration and reagents in wet lab experiments are 

potential DA applications except that the downstream analysis may involve little to no 

discrimination performance measures per se. Separately, in multi-site population studies [17, 

18, 21], where due to operational reasons, recruitment and data acquisition is distributed 

over multiple sites (even countries) — site-specific shifts in measurements and missing 

covariates are common [17, 18, 21]. The need to harmonize such data requires some form of 

DA. While good predictive performance is useful, the ability to perform hypothesis tests and 

obtain interpretable statistical quantities remain central to the conduct of experiments or 

analyses across a majority of scientific disciplines. We remark that constructs such as 

 distance have been widely used to analyze non-conservative DA and obtain 

probabilistic bounds on the performance of a classifier from certain hypotheses classes, but 

the statistical considerations identified above are not well studied and do not follow 

straightforwardly from the learning theoretic results derived in [2, 5].

A Motivating Example from Neuroscience

The social and financial burden (of health-care) is projected to grow considerably since 

elderly are the fastest growing populace [28, 6], and age is the strongest risk factor for 

neurological disorders such as Alzheimer’s disease (AD). Although numerous large scale 

projects study the aging brain to identify early biomarkers for various types of dementia, 

when younger cohorts are analyzed (farther away from disease onset), the effect sizes 

become worse. This has led to multi-center research collaborations and clinical trials in an 

effort to increase sample sizes. Despite the promise, combining data across sites pose 

significant statistical challenges – for AD in particular, the need for harmonization or 

standardization (i.e., domain adaptation) was found to be essential [20, 34] in the analysis of 

multi-site Cerebrospinal fluid (CSF) assays and brain volumetric measurements. These 

analyses refer to the use of AD related pathological biomarkers (β-amyloid peptide in CSF), 

but there is variability in absolute concentrations due to CSF collection and storage 

procedures [34]. Similar variability issues exist for amyloid and structural brain imaging 

studies, and are impediments before multi-site data can be pooled and analyzed in totality. 

The temporary solution emerging from [20] is to use an “normalization/anchor” cohort of 

individuals which will then be validated using test/retest variation. The goal of this paper is 

to provide a rigorous statistical framework for addressing these challenges that will make 

domain adaptation an analysis tool in neuroimaging as well as other experimental areas.

This paper makes the following key contributions. a) On the formulation side, we 

generalize existing models which assume an identical transformation applied to both the 

source/target domains to compensate for the domain shift. Our proposal permits domain-
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specific transformations to align both the marginal (and the conditional) data distributions; 

b) On the statistical side, we derive a provably consistent hypothesis test to check whether 

the transformation model can indeed correct the ‘shift’, directly yielding p-values. We also 

show consistency of the model in that we can provably estimate the actual transformation 

parameters in an asymptotic sense; c) We identify some interesting links of our estimation 

with recent developments in continuous optimization and show how our model permits an 

analysis based on obtaining successively tighter lower bounds; d) Finally, we present 

experiments on an AD study showing how CSF data from different batches (source/target) 

can be harmonized enabling the application of standard statistical analysis schemes.

2 Background

Consider the unsupervised domain adaptation setting where the inputs/features/covariates in 

the source and target domains are denoted by xs and xt respectively. The source and target 

feature spaces are related via some unknown mapping, which is recovered by applying some 

appropriate transformations on the inputs. We denote these transformed inputs as  and . 

Within this setting, our goal is two-fold: first, to estimate the source-to-target mapping, 

followed by performing some statistical test about the ‘goodness’ of the estimate. 

Specifically, the problem is to first estimate suitable transformations , , 

parameterized by some λ and β respectively, such that the transformed data 

and  have similar distributions.  and  restrict the allowable mappings (e.g., 

affine) between source and target. Clearly the goodness of domain adaptation depends on the 

nature and size of , and the similarity measure used to compare the distributions. The 

distance/similarity measure used in our model defines a statistic for comparing distributions. 

Hence, using the estimated transformations, we then provide a hypothesis test for the 

existence of λ and β such that , and finally assign p-values for the 

significance.

To setup this framework, we start with a statistic that measures the distance between two 

distributions. As motivated in Section 1, we do not impose any parametric assumptions. 

Since we are interested in the mismatch of  and , we use maximum mean 

discrepancy (MMD) which measures the mean distance between {xs} and {xt} in a Hilbert 

space induced by a characteristic kernel ,

(1)

where  and  denotes the universal RKHS. The advantage of 

MMD over other nonparametric distance measures is discussed in [30, 15, 16, 31]. 

Specifically, MMD statistic defines a metric, and whenever MMD is large, the samples are 

“likely” from different distributions. The simplicity of MMD and the statistical and 

asymptotic guarantees it provides [15, 16], largely drive our estimation and testing approach. 
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In fact, our framework will operate on ‘transformed’ data  and  while estimating the 

appropriate transformations.

2.1 Related Work

The body of work on domain adaptation is fairly extensive, even when restricted to the 

unsupervised version. Below, we describe algorithms that are more closely related to our 

work and identify the similarities/differences. A common feature of many unsupervised 

methods is to match the feature/covariate distributions between the source and the target 

domains, and broadly, these fall into two different categories. The first set of methods deal 

with feature distributions that may be different but not due to the distortion of the inputs/

features. Denoting the labels/outputs for the source and target domains as ys and yt 

respectively, here we have, Pr(ys|xs) ≈ Pr(yt|xt) but Pr(xs) ≠ Pr(xt)–this is sampling bias. The 

ideas in [19, 25, 2, 5] address this by ‘re-weighting’ the source instances so as to minimize 

feature distribution differences between the source and the target. Such re-weighting 

schemes do not necessarily correspond to transforming the source and target inputs, and may 

simply scale or shift the appropriate loss functions. The central difference among these 

approaches is the distance metric used to measure the discrepancy of the feature 

distributions.

The second set of methods correspond to the case where distributional differences are 

mainly caused by feature distortion such as change in pose, lighting, blur and resolution in 

visual recognition. Under this scenario, Pr(ys|xs) ≠ Pr(yt|xt) but  and the 

transformed conditional distributions are close. [26, 1, 10, 14, 12] address this problem by 

learning the same feature transformation on source and target domains to minimize the 

difference of  and directly. Our proposed model fits better under this umbrella 

— where the distributional differences are mainly caused by feature distortion due to site 

specific acquisition and other experimental issues. While some methods are purely data-

driven such as those using geodesic flow [14, 12], backpropagation [10]) and so on, other 

approaches estimate the transformation that minimizes distance metrics such as the 

Maximum Mean Discrepancy (MMD) [26, 1]. To our knowledge, no statistical consistency 

results are known for any of the methods that fall in the second set.

Overview—The idea in [1] is perhaps the most closely related to our proposal, but with a 

few important differences. First, we relax the condition that the same transformation must be 

applied to each domain; instead, we permit domain-specific transformations. Second, we 

derive a provably consistent hypothesis test to check whether the transformation model can 

indeed correct the shift. We then prove that the model is consistent when it is correct. These 

theoretical results apply directly to [1], which turns out to be a special case of our 

framework. We find that the extension of our results to [26] is problematic since that method 

violates the requirement that the mean differences should be measured in a valid 

Reproducing Kernel Hilbert space (RKHS).
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3 Model

We first present the objective function of our estimation problem and provide a simple 

algorithm to compute the unknown parameters λ and β. Recall the definition of MMD from 

(1). Given the kernel  and the source and target inputs xs and xt, we are interested in the 

MMD between the “transformed” inputs  and . We are only provided the class of the 

transformations; m and n denote the sample sizes of source and target inputs. So our 

objective function is simply

(2)

where λ ∈ Ωλ and β ∈ Ωβ are the constraint sets of the unknowns. Assume that the 

parameters are bounded is reasonable (discussed in Section 4.3), and their approximations 

can be easily computed using certain data statistics. The empirical estimate of the above 

objective would simply be

(3)

Remarks

We note a few important observations about (3) to draw the contrast from (1). The power of 

MMD lies in differentiating feature distributions, and the correction factor is entirely 

dependant on the choice of the kernel class – a richer one does a better job. Instead, our 

objective in (3) is showing that complex distortions can be corrected before applying the 

kernel in an intra-domain manner (as we show in Section 4). From the perspective of the 

complexity of distortions, this strategy may correspond to a larger hypotheses space 

compared to the classical MMD setup. This is clearly beneficial in settings where source and 

target are related by complex feature distortions.

It may be seen from the structure of the objective in (3) that designing an algorithm for any 

given  and  may not be straightforward. We present the estimation procedure for certain 

widely-used classes of  and  in Section 4.3. For the remainder of the section, where we 

present our testing procedure and describe technical results, we will assume that we can 

solve the above objective and the corresponding estimates are denoted by  and .

3.1 Minimal MMD test statistic

Observe that the objective in (3) is based on the assumption that the transformations 

 and  (  and  may be different if desired) are sufficient in some sense 

for ‘correcting’ the discrepancy between the source and target inputs. Hence, we need to 

specify a model checking task on the recoverability of these transforms, while also 

concurrently checking the goodness of the estimates of λ and β. This task will correspond to 

a hypothesis test where the two hypotheses being compared are as follows.
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H0: There exists a λ and β such that Pr(g(xt, β)) = Pr(h(xs, λ)).

HA: There does not exist any such λ and β such that Pr(g(xt, β)) = Pr(h(xs, λ)).

Since the statistic for testing H0 here needs to measure the discrepancy of Pr(g(xt, β)) and 

Pr(h(xs, λ)), one can simply use the objective from (3). Hence our test statistic is given by 

the minimal MMD estimate for a given , , xs, xt and computed at the estimates 

, 

(4)

We denote the population estimates of the parameters under the null and alternate hypothesis 

as (λ0, β0) and (λA, βA). Recall that the MMD corresponds to a statistic, and it has been 

used for testing the equality of distributions in earlier works [15]. It is straightforward to see 

that the true minimal MMD  if and only if H0 is true. Observe that (4) is the 

empirical (and hence biased) ‘approximation’ of the true minimal MMD statistic 

from the objective in (2). This will be used while presenting our technical results (in Section 

4) on the consistency and the corresponding statistical power guaranteed by this minimal 
MMD statistic based testing.

Relationship to existing approaches—Hypothesis testing involves transforming the 

inputs before comparing their distributions in some RKHS (while we solve for the 

transformation parameters). The approach in [15, 16] applies the kernel to the input data 

directly and asks whether or not the distributions are the same based on the MMD measure. 

Our approach derives from the intuition that allowing for the two-step procedure of 

transforming the inputs first, followed by computing their distance in some RKHS is 

flexible, and in some sense is more general compared to directly using MMD (or other 

distance measures) on the inputs. To see this, consider the simple example where 

 and xt = xs + 1. A simple application of MMD (from (1)) on the inputs xs and xt 

directly will reject the null hypothesis (where the H0 states that the source and target are the 

same distributions). Our algorithm allows for a transformation on the source/target and will 

correct this discrepancy and accept H0. Further, our proposed model generalizes the 

approach taken in [1]. Specifically, their approach is a special case of (3) with h(xs) = WT xs, 

g(xt) = WT xt (λ and β correspond to W here) with the constraint that W is orthogonal.

Summary: Overall, our estimation followed by testing procedure will be two-fold. Given xs 

and xt, the kernel  and the function spaces , , we first estimate the unknowns λ and β 

(described in Section 4.3). The corresponding statistic  at the estimates is then 

compared to a given significance threshold γ. Whenever  the null H0 is rejected. 

This rejection simply indicates that  and/or  are not sufficient in recovering the mismatch 

of source to target at the Type I error of α. Clearly, the richness of these function classes is 

central to the power of the testing procedure. We will further argue in Section 4 that even 

allowing h(·) and g(·) to be linear transformations greatly enhances the ability to remove the 
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distorted feature distributions reliably test their difference or equivalence. Also the test is 

non-parametric and handles missing (systematic/noisy) features among the two distributions 

of interest (see appendix for more details).

4 Consistency

Building upon the two-fold estimating and testing procedure presented in the previous 

sections, we provide several guarantees about the estimation consistency and the power of 

minimal MMD based hypothesis testing, both in the asymptotic and finite sample regimes. 

The technical results presented here are applicable for large classes of transformation 

functions  with fairly weak and reasonable assumptions on . Specifically we consider 

Holder-continuous h(·) and g(·) functions on compact sets Ωλ and Ωβ. Like [15], we have 

to be a bounded non-negative characteristic kernel i.e., , and we 

assume  to be bounded in a neighborhood of 0. We note that technical results for an even 

more general class of kernels are fairly involved and so in this paper we restrict ourselves to 

radial basis kernels. Nevertheless, even under the above assumptions our null hypothesis 

space is more general than the one considered in [15] because of the extra transformations 

that we allow on the inputs. With these assumptions, and the Holder-continuity of h(xs,·) and 

g(xt,·), we assume

4.1 Estimation Consistency

Observe that the minimization of (3) assumes that the null is true i.e., the parameter 

estimates correspond to H0. Therefore, we discuss consistency in the context of existence of 

a unique set of parameters (λ0, β0) that match the distributions of  and  perfectly. By 

inspecting the structure of the objective in (2) and (3), we see that the estimates will be 

asymptotically unbiased. Our first set of results summarized here provide consistency of the 

estimation whenever the assumptions (A1) and (A2) hold. This consistency result follows 

from the convergence of objective. All the proofs are included in the appendix.

Theorem 4.1 (MMD Convergence)—Under H0, 

 at the rate, .

Theorem 4.2 (Consistency)—Under H0, the estimators  and  are consistent.

Remarks: Theorem 4.1 shows the convergence rate of MMD distance between the source 

and the target after the transformations are applied. Recall that m and n are the sample sizes 

of source and target respectively, and  and  are the recovered transformations.
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4.2 Power of the Hypothesis Test

We now discuss the statistical power of minimal MMD based testing. The next set of results 

establish that the testing setup from Section 3.1 is asymptotically consistent. Recall that 

 denotes the (unknown) expected statistic from (2) while  is its empirical 

estimate from (4).

Theorem 4.3 (Hypothesis Testing)—(a) Whenever H0 is true, with probability at least 
1 − α,

(5)

(b) Whenever HA is true, with probability at least 1 – ε,

(6)

where , and 

Remarks: We make a few comments about the theorem. Recall that the constant K is the 

kernel bound, and Lh, Lg, rh and rg are defined in (A1)(A2). dλ and dβ are the dimensions of 

λ and β spaces respectively. Observe that whenever H0 is true, (5) shows that 

approaches 0 as the sample size increases. Similarly, under HA the statistic converges to 

some positive (unknown) value . Following these observations, Theorem 4.3 

basically implies that the statistical power of our test (described in Section 3.1) increases to 

1 as the sample size m, n increases. Except constants, the upper bounds under both H0 and 

HA have a rate of , while the lower bound under HA has the rate 

. In the appendix we show that (see Lemma 4.5) as m, n → ∞, the 

constants |Ωλ|, |Ωβ| converge to a small positive number, thus removing the dependence of 

consistency on these constants.

The dependence on the sizes of search spaces Ωλ and Ωβ may nevertheless make the bounds 

for HA loose. In practice, one can choose ‘good’ bound constraints based on some pre-

processing on the source and target inputs (e.g., comparison of median and modes). The loss 
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in power due to overestimated Ωλ and Ωβ will be compensated by ‘large enough’ sample 

sizes. Observe that this trade-off of sample size versus complexity of hypothesis space is 

fundamental in statistical testing and is not specific to our model. We further investigate this 

trade-off for certain special cases of transformations h(·) and g(·) that may be of interest in 

practice. For instance, consider the scenario where one of the transformations is identity and 

the other one is linear in the unknowns. Specifically,  and h0(xs, λ0) = ϕ(xs)T λ0 where 

ϕ(·) is some known transformation. Although restrictive, this scenario is very common in 

medical data acquisition (refer to Section 1) where the source and target inputs are assumed 

to have linear/affine distortions. Within this setting, the assumptions for our technical results 

will be satisfied whenever ϕ(xs) is bounded with high probability and with . We have 

the following result for this scenario (Var(·) denotes empirical variance).

Theorem 4.4 (Linear transformation)—Under H0, identity g(·) with h = ϕ(xs)T λ, we 

have  For any ε, α > 0 and 
sufficiently large sample size, a neighborhood of λ0 is contained in Ωλ with probability at 
least 1 − α.

Observe that subscript k in xt,k above denotes the kth dimensional feature of xt. The above 

result implies that the search space for λ reduces to a quadratic constraint in the above 

described example scenario. Clearly, this refined search region would enhance the statistical 

power for the test even when the sample sizes are small (which is almost always the case in 

population studies). Note that such refined sets may be computed using ‘extra’ information 

about the structure of the transformations and/or input data statistics, there by allowing for 

better estimation and higher power. Lastly, we point out that the ideas presented in [16] for a 

finite sample testing setting translate to our model as well but we do not present explicit 

details in this work.

4.3 Optimization Lower Bounds

We see that it is valid to assume that the feasible set is compact and convex for our purposes 

(Theorem 4.4). This immediately allows us to use algorithms that exploit feasible set 

compactness to estimate model parameters, for instance, conditional gradient algorithms 

which have low per iteration complexity [23]. Even though these algorithms offer practical 

benefits, with non-convex objective, it is nontrivial to analyze their theoretical/convergence 

aspects, and as was noted earlier in Section 3, except for simplistic ,  and , the 

minimization in (3) might involve a non-convex objective. We turn to some recent results 

which have shown that specific classes of non-convex problems or NP-Hard problems can 

be solved to any desired accuracy using a sequence of convex optimization problems [33]. 

This strategy is currently an active area of research and has already shown to provide 

impressive performance in practice [3].

Very recently,[4] showed that one such class of problems called signomial programming can 

be solved using successive relative entropy relaxations. Interestingly, we show that for the 

widely-used class of Gaussian kernels, our objective can be optimized using these ideas. For 

notational simplicity, we do not transform the targets i.e,  or g(·) is identity and only 
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allow for linear transformations h(·). Observe that, with respect to the estimation problem 

(refer to (3)) this is the same as transforming both source and target inputs. When  is 

Gaussian, the objective in (3) with identity g(·) and linear h(·)(λ corresponds to slope and 

intercept here) can be equivalently written as,

(7)

for appropriate aj, bij and c. Denoting γ = λλT, the above objective can be made linear in 

the decision variables γ and λ thus putting it in the standard form of signomial optimization. 

The convex relaxation of the quadratic equality constraint is γ − λλT ⪰ 0, hence we seek to 

solve,

(8)

Clearly the objective is exactly in the form that [4] solves, albeit we also have a convex 

constraint. Nevertheless, using their procedure for the unconstrained signomial optimization 

we can write a sequence of convex relaxations for this objective. This sequence is 

hierarchical, in the sense that, as we go down the sequence, each problem gives tighter 

bounds to the original nonconvex objective [4]. For our applications, we see that since 

confidence interval procedure (mentioned earlier) naturally suggests a good initial point in 

addition, any generic (local) numerical optimization schemes like trust region, gradient 

projection etc. can be used to solve (7) whereas the hierarchy of (8) can be used in general 

when one does not have access to a good starting point.

5 Experiments

Design and Overall Goals

We performed evaluations on both synthetic data as well as data from an AD study. (A) We 

first evaluate the goodness of our estimation procedure and the power of the minimal MMD 

based test when the source and target inputs are known transformations of samples from 

different distribution families (e.g., Normal, Laplace). Here, we seek to clearly identify the 

influence of the sample size as well as the effect of the transformations on recoverability. (B) 
After these checks, we then apply our proposed model for matching CSF protein levels of 

600 subjects.

These biomarkers were collected in two different batches; it is known that the measures for 

the same participant (across batches) have high variability [20]. In our data, fortunately, a 

subset of individuals have both batch data (the “real” measurement must be similar in both 

batches) whereas a fraction of individuals’ CSF is only available in one batch. If we find a 
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linear standardization between the two batches it serves as a gold standard, against which we 

compare our algorithm which does not use information about corresponding samples. Note 

that the standardization trick is unavailable in multi-center studies; we use this data in this 

paper simply to make the description of our evaluation design simpler which, for multi-site 

data pooling, must be addressed using secondary analyses.

Synthetic data

Fig 1 summarizes our results on synthetic data where the source are Normal samples and 

targets comes from different families. First, observe that our testing procedure efficiently 

rejects H0 whenever the targets are not Normal (blue and black curves in Fig. 1(a)). If the 

transformation class is beyond linear (e.g., log), the null is efficiently rejected as samples 

increase (see Fig. 1(b)). Beyond the testing power, Figs. 1(c,d) shows the error in the actual 

estimates, which decrease as the sample size increases (with tighter confidence intervals). 

The appendix includes additional model details. To get a better idea about the minimal 

MMD statistic, we show its histogram (over multiple bootstrap simulations) for different 

targets in Fig 1(e,f). The green line here denotes the bootstrap significance threshold (0.05). 

In Fig. 1(e,f), the red curve is always to the left of the threshold, as desired. However, the 

samples are not enough to reject the null the black and blue curves; and we will need larger 

sample sizes (Fig. 1(f)). If needed, the minimal MMD value can be used to obtain a better 

threshold. Overall, these plots show that the minimal MMD based estimation and testing 

setup robustly removes the feature distortions and facilitates the statistical test.

AD study

Fig 2 shows the relative errors after correcting the feature distortions between the two 

batches in the 12 CSF proteins. The bars correspond to simple linear “standardization” 

transformation where we assume we have corresponding sample information (blue) and our 

minimal MMD based domain adaptation procedure on sets S1 and S2 (S1: participants 

available in both batches, S2: all participants). Our models perform as well as the gold 

standard (where some subjects have volunteered CSF sampling for both batches). 

Specifically, the trends in Fig 2 indicate that our minimal MMD based testing procedure is a 

powerful procedure for conducting analyses on such pooled datasets. To further validate 

these observations, we used the ‘transformed’ CSF data from the two batches (our algorithm 

and gold standard) and performed a multiple regression to predict Left and Right 

Hippocampal Volume (which are known to be AD markers). Table 1 shows that the 

correlations (predicted vs. actual) resulting from the minimal MMD corrected data are 

comparable or offer improvements to the alternatives. We point out that the best correlations 

are achieved when all the data is used with minimal MMD (which the gold standard cannot 

benefit from). Any downstream prediction tasks we wish to conduct are independent of the 

model presented here.

6 Conclusions

We presented a framework for kernelized statistical testing on data from multiple sources 

when the observed measurements/features have been systematically distorted/transformed. 

While there is a rich body of work on kernel test statistics based on the maximum mean 
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discrepancy and other measures, the flexibility to account for a given class of 

transformations offers improvements in statistical power. We analyze the statistical 

properties of the estimation and demonstrate how such a formulation may enable pooling 

datasets from multiple participating sites, and facilitate the conduct of neuroscience studies 

with substantially higher sample sizes which may be otherwise infeasible.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
(a,b) Acceptance Ratios, (c,d) Estimation errors, (e,f) Histograms of minimal MMD statistic.
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Figure 2. 
Relative error in transformation estimation between CSF batches.
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Table 1

Performance of transformed (our vs. gold standard) CSF on a regression task.

Model Left Right

None 0.46± 0.15 0.37 ±0.16

Linear 0.46± 0.15 0.37 ±0.16

0.48± 0.15 0.39± 0.15

0.48± 0.15 0.40± 0.15
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