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Abstract

Divergence date estimates are central to understand evolutionary processes and depend, in

the case of molecular phylogenies, on tests of molecular clocks. Here we propose two non-

parametric tests of strict and relaxed molecular clocks built upon a framework that uses the

empirical cumulative distribution (ECD) of branch lengths obtained from an ensemble of

Bayesian trees and well known non-parametric (one-sample and two-sample) Kolmogorov-

Smirnov (KS) goodness-of-fit test. In the strict clock case, the method consists in using the

one-sample Kolmogorov-Smirnov (KS) test to directly test if the phylogeny is clock-like, in

other words, if it follows a Poisson law. The ECD is computed from the discretized branch

lengths and the parameter λ of the expected Poisson distribution is calculated as the aver-

age branch length over the ensemble of trees. To compensate for the auto-correlation in

the ensemble of trees and pseudo-replication we take advantage of thinning and effective

sample size, two features provided by Bayesian inference MCMC samplers. Finally, it is

observed that tree topologies with very long or very short branches lead to Poisson mixtures

and in this case we propose the use of the two-sample KS test with samples from two contin-

uous branch length distributions, one obtained from an ensemble of clock-constrained trees

and the other from an ensemble of unconstrained trees. Moreover, in this second form the

test can also be applied to test for relaxed clock models. The use of a statistically equivalent

ensemble of phylogenies to obtain the branch lengths ECD, instead of one consensus tree,

yields considerable reduction of the effects of small sample size and provides a gain of

power.
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Introduction

The molecular clock hypothesis postulates that for a given informational macro-molecule

(DNA or protein sequence) the evolutionary rate is approximately constant over time in all

evolutionary lines of descent. This implies that if genetic divergence accumulates in a stochas-

tic clock-like manner, that is, approximately constant number of mutations accumulated per

time interval, then, time scales could be determined for evolutionary events, with calibration

using fossil evidence. Moreover, the evolutionary rate variation between lineages could shed

light on mechanisms of molecular evolution.

If the substitution rate is constant between lineages, then evolutionary distances are such

that all external nodes of a phylogenetic tree should be of the same size starting from the root.

In [1–3] authors suggest that the substitution process is approximately Poisson, meaning that

the average number of substitutions, and its variance, in different lineages during the same

time interval should be equal.

When the neutral theory of molecular evolution was proposed [4,5], the observed clock-like

behavior of molecular evolution was advocated as strong evidence supporting the theory [4–

6]. However, the reliability of the clock and its implications for the mechanism of molecular

evolution were a focus of immediate controversy, entwined in the “neutralist–selectionist”

controversy. The debate surrounding the neutral theory has generated a rich body of popula-

tion genetics theory and analytical tools. For instance, in the strict neutral model the dynamics

depends on the neutral mutation rate alone, however one may expect most sites in a functional

protein to be constrained during most of the evolutionary time. This observation motivated

the introduction of doubly stochastic Poisson process, or Cox process, as a model for the sub-

stitution process, implying that positive selection, if it occurs, is in episodic fashion and should

affect only a few sites [7,8]. More recently, these ideas motivated the introduction of relaxed

molecular clock models and advanced their use for inferring dates of divergence events.

Despite the great impact of the molecular clock in evolutionary biology, as comparative

molecular data have been accumulating over the past decades, no prediction has been proven

satisfactory; the dispersion index (the ratio of the variance to the mean value of the number of

substitutions) is generally greater than 1, suggesting that the substitution process is over-dis-

persed. Furthermore, it was observed that the substitution rate usually display variation along

lineages, a fact that has created great controversy on its use in divergence date estimates [9].

In order to address these issues, several statistical tests have been developed to examine

whether rates of molecular evolution vary significantly among phylogenetic lineages. Fitch

proposed a simple test for statistically examining whether the observed difference in evolution-

ary rates between two sequences is significantly greater than that expected by chance [10].

More powerful versions of Fitch test have appeared subsequently leading to a general frame-

work for testing the molecular clock hypothesis for both DNA and protein sequences between

two lineages, given an outgroup species [11].

More recently, new procedures for testing the molecular clock on multiple lineages simulta-

neously in a phylogenetic tree have been proposed. Some of these tests identify anomalous

groups or lineages, whereas some merely test an entire tree for conformity to the hypothesis.

The index of dispersion has been suggested as an estimator to test the molecular clock. The

rationale is that when the number of substitutions follows a Poisson law the index of dispersion

is equal to one [12]. The problems with this type of test have been extensively discussed [13,14]

and since then the approach based on this estimator has been dismissed.

Despite the observation that the strict molecular clock hypothesis does not fully explain the

substitution process, it still remains a promising concept and a powerful analytical tool in evo-

lutionary biology. Therefore, testing the molecular clock in phylogenetic trees is an essential
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task. The problem is that if one assumes that the substitution process is Poisson then there is

no homogeneity in the distribution of substitutions along a lineage, that is, even though the

clock rate is constant, the variance is as large as the rate itself. In fact, in a very precise sense, a

Poisson process is as heterogeneous as it is possible, meaning that it distributes dots “at ran-

dom” over a half-infinite line and is often called the “completely random process” [15]. Taka-

hata [16] observed that the rates of molecular evolution in several loci are more irregular than

described by simple Poisson processes and therefore the clock is over-dispersed in these situa-

tions. Accordingly, statistical models for the over-dispersed molecular clock were proposed

which suggested that the over-dispersion of molecular clock is due either to a major molecular

reconfiguration led by a series of subliminal neutral changes or to selected substitutions fine-

tuning a molecule after a major molecular change [17].

In this work we propose to directly verify Pauling-Zuckerkandl’s assumption that the sub-

stitution process along the branches of a (strictly) clock-like phylogeny is approximately Pois-

son by testing the hypothesis that the distribution of the branch lengths a phylogenetic tree,

when measured as the average number of substitutions, follows a Poisson law. Accordingly, we

developed a procedure for testing the strict molecular clock in phylogenetic trees where the

inference is made using a non-parametric goodness-of-fit test.

The method proposed here introduces two novelties: (1) it is based on an ensemble of trees,

instead of using only one single consensus tree–this is quite natural from the Bayesian frame-

work point of view. Indeed, the Bayesian inference procedure generates a posterior distribu-

tion over the set of phylogenetic trees, in the form of an ensemble of representative trees; (2)

the use of well-known non-parametric goodness-of-fit test known as Kolmogorov-Smirnov
(KS) test [18–20], modified to account for discrete variables in Poisson distributions with esti-

mated parameter λ.

The classical KS test is performed given a sample of size N of independent and identically

distributed (IID) observations of the variable of interest one computes the empirical cumulative
distribution function (ECD) of the observed data, defined as

FN xð Þ ¼
number of elements in the sample which are � x

Nsu
ð1Þ

where x is a positive real number.

The expected cumulative distribution FE(x) is the cumulative distribution function corre-

sponding to the expected probability distribution function of the variable of interest, and the

test statistic is DKS = sup|FN(x) − FE(x)|, which is a measure of distance between the two distri-

butions. The null hypothesis H0: “FE(x) = FN(x) for all x” is rejected if DKS exceeds a critical

value Dα for a fixed significance level α. In the classical KS test, the null distribution of DKS

does not depend on the expected distribution FE(x) and is given by an explicit formula–tabu-

lated critical values have been available from [21]. Moreover, the test has statistical power, or

sensitivity, tending to 1 as the sample size tends to infinity [22], i.e., the probability of a Type II

Error (false negative rate) goes to zero.

However, the universality of the null distribution of DKS comes at a price: (i) the test only

applies to continuous distributions and (ii) the parameters of the expected distribution cannot

be estimated from the data (the expected distribution must be completely specified in

advance)–in fact, these two conditions are necessary to show that the distribution of DKS is

independent of expected distribution. This seems to be a serious obstruction for the use of the

KS test in practical applications. Indeed, the use of the tables associated with standard KS test

when one of the conditions (i) or (ii) are not satisfied results in conservative p-values, in the

sense that the probability of Type I Error (false positive rate) is smaller than that given by the
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standard table [23]. This difficulty has prevented the dissemination of the KS test in biology

and other fields.

Nevertheless, it is possible to circumvent these limitations and modify the KS test to the

case of discrete distributions with or without estimation of parameters [24–26]. The test statis-

tic remains unchanged, but its null distribution is not universal anymore; unlike the continu-

ous completely specified case, it depends on the type of the expected distribution–more

specifically, it depends on the set of points of discontinuity of the expected distribution–and

on the parameters that are estimated from the data. Nowadays, with the advent of fast and

cheap computers, p-values and critical values for modified KS tests can be easily calculated.

In the particular case where the expected distribution is Poisson, the modified test is a pro-

cedure for the following null hypothesis H0: “FN(x) is Poisson with estimated mean value λ”,

against the alternative hypothesis H1: “FN(x) is not Poisson”, where the Poisson parameter

(mean value) λ is estimated as the arithmetic mean of a list of non-negative integer numbers

(the observed data).

The test is performed by calculating the KS statistics (D-score):

DPKS ðNÞ ¼ supjFyðxÞ � Pðx; lÞj ð2Þ

where P(x,λ) is the cumulative distribution function for the Poisson distribution with parameter

λ, defined for all positive real values x with k� x< k+1 for all integral values k = 0,1,2,. . .,1,

as

P x; lð Þ ¼ e� l 1þ lþ l2
.

2!
þ � � � þ lk

.

k!

� �
ð3Þ

The null hypothesis is rejected if DPKS exceeds the critical value Dα for a fixed significance

level α. Now the critical value Dα must be obtained from the distribution of the statistic DPKS

which depends on the fact that the empirical distribution function is expected to be Poisson

with parameter λ. This procedure is usually referred as the Poisson-Kolmogorov-Smirnov (PKS)

test.

Campbell and Oprian [27] computed tables for approximated critical values of the PKS test

(see also [28]). One can eliminate the need for tables by performing the parametric bootstrap

(Monte Carlo simulation) for the PKS test as described in [29,30]. However, neither the tables

nor the parametric bootstrap for the PKS test provide the exact critical values and p-values.

More recently, Frey [31] gives an algorithm for the computation of exact p-values and exact

critical values for the PKS test.

The dual coverage band, also called confidence bands, for the PKS test can be constructed as

follows. Given a fixed significance level α with corresponding critical value Dα define the func-

tions: U(x) = min{FN(x) + Dα, 1} and L(x) = max{FN(x) −Dα, 0}. Then, the pair (L(x),U(x)) is a

100(1−α)% non-parametric coverage band for FN(x). Thus, for every piecewise continuous

functionH with jump discontinuities on the natural numbers, the probability that L(x)�H(x)

� U(x) for all x, conditional onH having mean value λ, is greater than (1−α) [32,33].

Another variation of the KS test is the two-sample Kolmogorov-Smirnov (2KS) test. In this

case, it is given two samples of independent and identically distributed (IID) real-valued obser-

vations of sizes N andM, respectively, and the test examines whether the two samples come

from the same continuous distribution or not. For each sample, one computes the respective

ECDs FN(x) and GM(x) (defined by the right-handed side of Eq (1) with N replaced byM) and

the test statistics (D-score) is defined as:

DðN;MÞ ¼ supjFNðxÞ � GMðxÞj ð4Þ

Here, the null hypothesis is H0: “FN(x) = GM(x) for all x” and the the alternative hypothesis H1:
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“FN(x) 6¼ GM(x) for some x”. The null hypothesis is rejected if D(N,M) exceeds a critical value

Dα for a fixed significance level α. As in the standard one-sample KS test, the null distribution

ofD(N,M) does not depend on the cumulative distributions FN and GM when they are assumed

to be continuous (that is, when the two samples are real-valued). Tabulated critical values have

been available from Massey [34]. As before, it is possible to compute approximated critical val-

ues and p-values by parametric bootstrap and the coverage bands are given by the standard

procedure [32,33].

In statistics, the term “non-parametric” has at least two different meanings. The first mean-

ing refers to techniques that do not rely on data belonging to any particular distribution. In

particular, it includes procedures that test hypotheses that are not statements about population

parameters and procedures that make no assumption about the sampled population, also

called distribution free procedures [35]. The second meaning refers to techniques that do not

assume that the structure of a model is fixed. For instance, the simple procedures for testing

the molecular clock hypothesis between two lineages of [10,11] are non-parametric in this sec-

ond sense, given that they do not require information on the model of evolutionary change.

The methods proposed in this paper are non-parametric tests in the first meaning described

above.

Results and discussion

The Poisson-Kolmogorov-Smirnov test for the strict molecular clock

Our first proposal for testing the (strict) molecular clock is to apply the Kolmogorov-Smirnov

test for Poisson distributions with estimated parameter to an ensemble of phylogenetic trees

that has been generated by the Bayesian inference method. The PKS test for the (strict) molec-

ular clock phylogeny is performed as follows:

1. Generate one ensemble of unconstrained phylogenetic trees. It is recommended to choose

an “outgroup taxon” that should be used to root the tree. The “outgroup branch” must be

removed before performing the test.

2. Perform a burn-in discarding at least 25%. After the burn-in the log-likelihood scores stabi-

lize, and therefore all trees are considered statistically equivalent.

3. Extract all branch lengths of each tree and convert each real value into a non-negative inte-

ger, the average number of substitutions, by multiplying each branch length by the size of

the alignment and rounding the value, producing an ensemble of discrete, integer-valued,

branch lengths.

4. Compute the ECD FN(x) using all the discrete branch lengths of the ensemble by formula

(1). Here, the unadjusted sample size N is a cut-off value that determine the number of trees

used in the test (see below).

5. Compute the discrete mean branch length λ using the same set of branches from item (4),

as the average value of all branch lengths and compute the expected cumulative distribution

P(x,λ) by formula (3).

6. Compute the test statistics DPKS(N) by formula (2) with the unadjusted sample size N.

7. Compute the adjusted PKS sample size NADJ (see below).

8. Compute the appropriate critical value Dα (for a fixed significance level α) or the p-value,

using the adjusted sample size NADJ. The simplest way to obtain PKS critical values or p-val-

ues is from the tables of Campbell and Oprian [27].
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Conclusion: If DPKS(N)> Dα or the p-value is smaller than the threshold (say p< 0.01)

then the null hypothesis is rejected, that is, the phylogeny is not clock-like, more precisely, the

clock-like phylogenetic model does not fit the data well enough (under-fitting). If DPKS(N)<

Dα or the p-value is bigger than the threshold (say p> 0.01) then the null hypothesis is not

rejected, that is, the phylogeny is clock-like, more precisely, the clock-like phylogenetic can fit

the data as well as the non-clock like phylogenetic model, and since the clock-like model has

fewer parameters it is preferable.

Definition of PKS sample sizes: The unadjusted sample size is defined as N = τ B, where B is

number of branches of the trees and τ is the least number of trees that satisfies the following

two conditions: (i) τ� number of taxa; (ii) DPKS is minimal with respect to τ, that is, the fit of

the ECD is the best possible, given that condition (i) is satisfied. The adjusted sample size is

defined as NADJ = k N = k τ B, where the auto-correlation coefficient is defined as k = TESS/T,

with T the total number of trees generated by the MCMC sampler, after the burn-in and TESS

the effective sample size associated to the tree lengths (TL) computed by the MCMC sampler.

The two-sample Kolmogorov-Smirnov test for molecular clock

Our second proposal for testing the molecular clock is to apply the 2KS test with two ensem-

bles of trees that have been generated by Bayesian phylogeny inference. The test is performed

as follows:

1. Generate one ensemble of unconstrained phylogenetic trees. It is recommended to choose

an “outgroup taxon” that should be used to root the tree.

2. Generate one ensemble of clock-constrained phylogenetic trees. If the clock being tested is

the strict clock then the trees are rooted by default and hence the “outgroup taxon” should

not be included.

3. Perform a burn-in discarding at least 25%. After the burn-in, the log-likelihood scores sta-

bilize, and therefore all trees in the ensemble are considered statistically equivalent.

4. Extract all the branch lengths, as real numbers, of each tree in both ensembles.

5. Compute the ECD FN(x) using all the branch lengths in the ensemble of unconstrained phy-

logenetic trees by formula (1). Here the 2KS sample size N is the total number of branches

used to compute the ECD FN(x) (see below).

6. Compute the ECD GM(x) using all the branch lengths in the ensemble of clock-constrained

phylogenetic trees by formula (1) with N replaced byM. Here the 2KS sample sizeM is the

total number of branches used to compute the ECD GM(x) (see below).

7. Compute the test statistics D(N,M) using formula (4).

8. Compute the adjusted sample sizes NADJ andMADJ (see below).

9. Compute the appropriate critical value Dα (for a fixed significance level α) or p-value, using

the adjusted sample sizes NADJ andMADJ. In the 2KS test, critical values Dα or p-values are

the usual ones (see Massey [34]).

Conclusion: If D(N,M)> Dα or the p-value is smaller than some threshold (say p< 0.01)

the null hypothesis is rejected, that is, the phylogeny is not clock-like, more precisely, the

clock-like phylogenetic model does not fit the data well enough (under-fitting). If D(N,M)<

Dα or the p-value is bigger than the threshold (say p> 0.01) then the null hypothesis is not

rejected, that is, the phylogeny is clock-like, more precisely, the clock-like phylogenetic can fit

the data as well as the non-clock like phylogenetic model.
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Definition of 2KS sample sizes: The unadjusted sample sizes are defined as N =M = τ B and

where B is number of branches of the trees and τ is the least number of trees that satisfies the

following two conditions: (i) τ� number of taxa; (ii) DPKS is minimal with respect to τ, that is,

the fit of the ECD is the best possible, given that condition (i) is satisfied. The adjusted sample

sizes are defined as NADJ = kC N andMADJ = kU M, where the auto-correlation coefficient kC is

obtained from the clock-constrained ensemble and the auto-correlation coefficient kU is

obtained from the unconstrained ensemble, associated to the tree lengths (TL) computed by

the MCMC sampler, as before.

Poisson mixtures

When the tree topology is highly unbalanced, with some branches much longer than others, it

is expected that the long branches accumulate more changes than the short branches. For

example, in a tree ((A,B),C), if it is perfectly clock-like, branches “A” and “B” will be equal in

length, but branch “C” will be longer than both. The interior branch is unlikely to be exactly

the same length as the three exterior branches. In such cases, if the tree is clock-like, we would

expect that the (discretized) branch length distribution is amixture of several Poisson

distributions.

In such cases, the PKS test is expected to reject the null hypothesis. This does not mean that

the tree is not clock-like, even though the branch length distribution is multi-modal. It would

be more appropriate to consider that the test was inconclusive and try other approaches: (i)

directly test the null hypothesis of a Poisson mixture using the branch lengths of the consensus

tree to estimate the several Poisson parameters; (ii) apply the PKS test to appropriate sub-trees;

(iii) apply the 2KS test.

Performing the tests

We have performed the test proposed here with several ensembles of trees obtained from three

types of sequence data: a set of simulated sequences, a set of sequences generated by in vitro
evolution [36], three small datasets of real sequences and a large data-set of real sequences [37]

of fungal 18S rRNA gene (18S rDNA).

Simulated data. We generated a dataset of simulated sequence containing 9 sequences

with 10,000 nucleotides each, using the Kimura 2-Parameter (K2P) nucleotide substitution

model [38] to evolve the sequences. Since the counting process associated to the K2P substitu-

tion model is a Poisson process [12] we expected the branch lengths to follow a Poisson law.

The tree used to evolve the nucleotide sequences was the “nine-taxon tree” of [39] (Fig 1). The

tree has a long branch corresponding to the “outgroup” {O} and a sub-tree, the “ingroup”

{S1,. . .,S8}, consisting of 8 taxa. We generated an ensemble of 1,000 trees (obtained from 2,000

trees with 50% burn-in). The topology was fixed to be the nine-taxon tree, with the taxon “O”

as the outgroup and the K2P model was used to estimate the substitution rates.

First, we observe that the mean branch length of the ingroup is λ = 5.75, while the mean

branch length of the outgroup is λ = 25.18; the outgroup branch is approximately 5 times lon-

ger than the branches of the ingroup. Taking into account that the tree is unrooted, this is con-

sistent with the fact the long branches accumulate an average of five times more substitutions

than the branches of the ingroup. The mean branch length of the full tree is λ = 7.01, is approx-

imately equal to the weighted average of branch lengths of the ingroup and the outgroup: 14/

15 x 5.75 + 1/15 x 25.18 = 7.03. This fact suggests, as expected, that the branch length distribu-

tion of the full tree is a (14/15,1/15) weighted mixture of two independent Poisson distribu-

tions with parameters λ1 = 5.75 and λ2 = 25.18, respectively. The hypothesis of Poisson

mixtures is further strengthened by comparing the ECD obtained from the branch lengths of
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full tree ensemble with a Poisson cumulative distribution with parameter λ = 7.01 and the

cumulative distribution of a Poisson mixture with parameters λ1 = 5.75 and λ2 = 25.18 with

weights (14/15, 1/15) (Fig 2A and 2B).

We have performed the PKS test with the full tree, with the purpose of illustrating the situa-

tion when the observed data is a (bimodal) Poisson mixture. As expected the PKS test con-

cludes that the phylogeny was not clock-like, with a p-value< 0.001%. On the other hand,

when we removed the “outgroup branch” and performed the test with the ingroup the PKS

test concluded that the phylogeny was clock-like, with p-value of 98% (Table 1). We also per-

formed the test with the outgroup and the PKS test concluded that the tree is clock-like, with

p-value of 34% (Table 1). The ECDs of branch lengths obtained from the ingroup and the out-

group ensembles with the respective expected cumulative Poisson distributions are shown in

Fig 2C and 2D.

In vitro evolution data. The 16 sequences of 2,238 nucleotides were generated by four-

step serial bifurcate PCR method, where the ancestor sequence 18S rRNA gene (18S rDNA)

evolved in vitro for 280 nested PCR cycles [36]. The real phylogeny obtained in the experiment,

with the number of substitutions on each branch is shown in Fig 3.

We generated an ensemble of 1,000 trees (obtained from 2,000 trees with 50% burn-in).

The additional “outgroup taxon” that was removed during the extraction of branch lengths,

and we used the General Time Reversible (GTR) model to estimate the substitution rates (actu-

ally, the best substitution model fitting the in vitro evolution obtained in [36] is not even time-

reversible).

We have performed the PKS test with the ensemble of trees and with the real tree. The PKS

test concluded that phylogeny was not clock-like, with a p-value< 0.001%. On the other hand,

when performed just with the consensus tree the PKS test concluded that the phylogeny was

clock-like, with a p-value of 65% (Table 2). The ECDs of branch lengths with the respective

Fig 1. The “nine-taxon tree” used to evolve the simulated nucleotide sequences. Dataset of simulated

sequences containing 9 sequences with 10,000 nucleotides each, using the Kimura 2-Parameter (K2P)

nucleotide substitution model [38] to evolve the sequences.

https://doi.org/10.1371/journal.pone.0190826.g001
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expected cumulative Poisson distributions are shown in Fig 4A and 4B. The incongruence

found between the results of the test on the real tree and the ensemble of trees is most likely

because the adjusted PKS samples size (NADJ = 465) obtained for the ensemble of trees, even

though being small in relation to the ensemble, was capable of providing enough information

and power to the test. Another possibility is that the tree topology was not well balanced and

hence a test for a Poisson mixture could provide another conclusion.

Small data-sets of real sequences. In order to illustrate the method with highly unbal-

anced tree topologies we have performed both tests with three data-sets of real sequences: (1)

the ENV viral gene of immunodeficiency Lentiviruses (9 sequences of 3,013 nucleotides), (Fig

5); (2) the COX1 gene of Primates (9 sequences of 1,569 nucleotides), (Fig 6); (3) the 18S

rRNA gene (18S rDNA) of Ascomycete yeasts (17 sequences of 1,845 nucleotides), (Fig 7). For

each data-set we generated 3 ensembles with 1,000 trees (2,000 trees with 50% burn-in)–one

non-clock, one strict clock and one relaxed clock–each of them under the GTR model.

Table 1. PKS test for strict clock on the simulated data (9 taxa) (1,000 trees, k = 0.50).

Full Tree (K2P) Ingroup (K2P) Outgroup (K2P)

Mean Branch Length (λ) 7.01 5.75 25.18

DPKS 0.15 0.01 0.06

τ (B) 33 (15) 49 (14) 182 (1)

NADJ 247 343 91

Critical Value (1%) 0.05 0.04 0.10

p-value < 0.00001 0.98 0.34

Power estimate > 0.99 > 0.99 > 0.99

https://doi.org/10.1371/journal.pone.0190826.t001

Fig 2. Empirical cumulative distributions and expected cumulative distributions of the simulated

sequences ensemble. Vertical dotted line indicates the mean value. Panels (a) and (b) display the ECD of

the full tree against the expected cumulative Poisson distribution with mean branch length λ = 7.01 and the

expected cumulative Poisson mixture, respectively. Panel (c) displays the ECD of the ingroup against the

expected cumulative Poisson distribution with mean branch length λ = 5.75. Panel (d) displays the ECD of the

outgroup against the expected cumulative Poisson distribution with mean branch length λ = 25.18.

https://doi.org/10.1371/journal.pone.0190826.g002
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We performed the PKS test with the three ensembles. The PKS test concluded that the phy-

logenies were not clock-like in all the three cases (Table 3). Since the trees are highly unbal-

anced this was expected as the branch length distributions are multi-modal in all cases.

However, the PKS test could have concluded this because of the unbalanced topology and not

because the tree is nor clock-like.

We performed the 2KS test for the unconstrained ensemble against the strict clock-con-

strained ensemble and the uncorrelated rates log-normal relaxed clock model [40]. The 2KS

test concluded that the phylogenies were not strict clock-like in the three cases (Table 4). In all

three cases, it is clear from the ECDs that the branch length distribution of the unconstrained

ensemble is over-dispersed in relation to the strict clock-constrained ensemble. On the other

hand, the 2KS test concluded that the phylogenies were clock-like for the relaxed clock model

(Table 5). Nevertheless, it is apparent from the ECDs that for the Lentiviruses ENV the test

was not overwhelmingly conclusive as in the other cases. The difference between the ENV and

the other two cases can be seen by constructing the coverage bands for the three cases (we have

removed the longer branches from the ENV ensemble). In fact, the 99% confidence band of

the ENV ECD was very wide (0.125) compared with other two cases (0.062 for COX1 and

Fig 3. The real phylogeny obtained by in vitro PCR evolution. As described in Sanson et al. [36] with the

number of observed substitutions along each branch.

https://doi.org/10.1371/journal.pone.0190826.g003

Table 2. PKS test for strict clock on Sanson et al. [36] data (16 taxa) (1,000 trees, k = 0.50).

Ensemble of Trees (GTR) Real Tree (Sanson et al. 2002)

Mean Branch Length (λ) 5.76 5.36

DPKS 0.07 0.07

τ (B) 31 (30) 1 (30)

NADJ 465 30

Critical Value (1%) 0.04 0.16

p-value < 0.00001 0.65

Power estimate > 0.83 > 0.83

https://doi.org/10.1371/journal.pone.0190826.t002
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0.091 for 18S rDNA), see Fig 8. The situation of ENV could be resolved by trying to fit other

relaxed clock models and/or performing more powerful two-sample tests. More importantly,

it should be noted that ultrametricity of the chronogram/timetree is not a requirement for this

method [41].

Large data-set of real sequences. Until now we have used some small data-sets to illus-

trate several aspects of the method, which might give the impression that the size of the data-

set is a limitation of the method. This is not the case, the method works equally well, indepen-

dently of the number of sequences.

Fig 4. Empirical cumulative distributions of the Sanson et al. [36] sequences ensemble. Vertical dotted

line indicates the mean value. Panels (a) and (b) display the empirical cumulative distribution of the observed

data from ensemble of trees against the expected cumulative Poisson distribution with mean branch length

λ = 5.75 and the empirical cumulative distribution of the observed data from the real tree against the expected

cumulative Poisson distribution with mean branch length λ = 5.36, respectively.

https://doi.org/10.1371/journal.pone.0190826.g004

Fig 5. The ENV phylogeny of immunodeficiency Lentiviruses. Taxa and accession numbers are: HIV1 (K03455.1), HIV2 (M30502.1), BIV (M32690.1),

FIV (M25381.1), SIVgm (U58991.1), SIVcpz (X52154.1), SIVmne (M32741.1), SIVrh (FJ842859) and SIVsmm (X14307.1).

https://doi.org/10.1371/journal.pone.0190826.g005
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We have performed the tests on the data-set of [37], consisting of an alignment of 134

sequences (with 1474 bp) of fungal 18S rDNA, of which 131 are representative of all groups of

Fungi, 2 are representatives of animal (Clathrina cerebrum) and plants (Sphagnum cuspidatum)

and 1 outgroup (Developayella elegans), see [37] for the complete list of taxa, accession num-

bers and the phylogeny. We generated 3 ensembles with 15,000 trees (20,000 trees with 25%

burn-in)–one non-clock, one strict clock and one relaxed clock–each of them under the GTR

model.

We performed the PKS test, which concluded that the phylogeny was not clock-like

(Table 6). Since the tree is extremely unbalanced this was expected, as the branch length distri-

butions are multi-modal in all cases. However, the PKS test could have concluded this because

of the unbalanced topology and not because the tree is nor clock-like.

We performed the 2KS test for the unconstrained ensemble against the strict clock-con-

strained ensemble and the uncorrelated rates log-normal relaxed clock model [40]. The 2KS

test concluded that the phylogeny was not strict clock-like. Moreover, the 2KS test concluded

that the phylogeny was not clock-like for the relaxed clock model, as well (Table 7). From the

ECDs it seems that the strict clock and the relaxed clock look very similar. We performed the

2KS test for the strict clock-constrained ensemble against the relaxed clock-constrained

ensemble and, as expected, the test concluded that they are not the same (Table 7). It is clear

from the ECDs that the branch length distribution of the unconstrained ensemble is highly

over-dispersed in relation to the strict clock-constrained and the relaxed clock-constrained

ensembles. In fact, the 99% confidence band of the unconstrained ensemble ECD excludes a

Fig 6. The COX1 phylogeny of Primates. Taxa and accession numbers are: Homo sapiens (YP003024028.1), Pan troglodytes (NP008188.1), Pan

paniscus (NP008201.1), Gorilla gorilla (YP002120661.1), Pongo abelii (NP007837.1), Nomascus leucogenys (YP008379101.1), Macaca fascicularis

(YP002884228.1), Mus musculus (NP904330.1).

https://doi.org/10.1371/journal.pone.0190826.g006
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large portion of the ECDs of the other two clock constrained ensembles (Fig 9). In this case,

the conclusion indicates that other relaxed clock models should be considered.

Comparison with other tests

There are other statistical tests for the molecular clock, including relaxed clocks and they are of

two types: (i) tests that are applied directly to a consensus tree or to the ensemble of trees gen-

erated by a standard run of the MCMC sampler (e.g., Likelihood Ratio (LR) test [42]); (ii) tests

that require extensive additional computations beyond the standard run of the MCMC

Fig 7. The 18S rDNA phylogeny of Ascomycetes. Taxa and accession numbers are: Schizosaccharomyces pombe (CU329672.1), Lachancea waltii

(X89527), Wickerhamomyces canadensis (AB054565.1), Eremothecium gossypii (AY046265.1), Zygosaccharomyces rouxii (AY227011.1),

Kluyveromyces lactis (HM009311.1), Vanderwaltozyma polyspora (JQ698890.1), Nakaseomyces bacillisporus (AY046252.1), Nakaseomyces delphensis

(AY198400.1), Candida glabrata (KT229542.1), Naumovozyma castellii (HE576754), Candida castellii (AY046253.1), Saccharomyces bayanus

(AY046227), Saccharomyces cerevisiae (JQ409454.1), Saccharomyces paradoxus (BR000309.1), Lachancea kluyveri (Z75580.1), Lachancea

thermotolerants (CU928180.1).

https://doi.org/10.1371/journal.pone.0190826.g007

Table 3. PKS test for strict clock on three data-sets of real sequences ENV, COX1 and 18S rDNA (1,000 trees, k = 0.50).

Lentiviruses ENV Primates COX1 Yeasts 18S rDNA

Mean Branch Length (λ) 752.3 186.2 26.5

DPKS 0.53 0.67 0.63

τ (B) 224 (13) 17 (15) 89 (31)

NADJ 1,458 127 1,382

Critical Value (1%) 0.02 0.09 0.02

p-value < 0.00001 < 0.00001 < 0.00001

https://doi.org/10.1371/journal.pone.0190826.t003
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sampler (e.g., Bayes Factor). Since our test is of the first type we have performed a simple com-

parison between the PKS test and the LR test in order to illustrate their application.

Let us recall the main points of the Likelihood Ratio (LR) test [42]. Under the strict clock

hypothesis (H0), there are S−1 parameters corresponding to the ages of the S−1 internal nodes

on a rooted tree with S species. The more general non-clock hypothesis (H1) allows every

branch to have its own rate. Because time and rate are confounded, there are 2S−3 free parame-

ters, corresponding to the branch lengths in the unrooted tree. The clock model is equivalent to

the non-clock model by applying S−2 equality constraints. If L0 and L1 are the log-likelihood

values under clock and non-clock models, respectively, then 2ΔL = −2(L1−L0) is compared with

the critical value from the χ2 (chi-square) distribution with ν = S−2 degrees of freedom to decide

whether the clock hypothesis is rejected (the chi-square distribution is the asymptotic null dis-

tribution of the test when ν is sufficiently large). In order to perform the LR test with trees gen-

erated by Bayesian inference one must compute two consensus trees (one for each ensemble).

We have performed the LR test with both the simulated data and in vitro evolution data in

order to compare with the PKS test (Table 8). To perform the LR test we also needed to compute

a clock-constrained consensus tree. In both cases, the null hypothesis that the phylogeny is strictly

clock-like was not rejected. This is incongruent with the result of the PKS test performed on the

ensemble of trees obtained for the in vitro evolution data, most likely because the effective samples

size achieved in the PKS test was capable of providing enough information and power to the test.

It should be noted that the LR test does not examine whether the rate is constant over time. In

fact, what is tested is the weather the hypothesis that all tips of the tree are equidistant from the

root, with distances measured by the number of substitutions. Therefore, if the evolutionary rate

has been equally accelerating (or decelerating) over time in all lineages, in the absence of a calibra-

tion the tree will be ultra-metric, although the rate is not constant. Second, the test cannot distin-

guish a constant rate from an average variable rate within a lineage, although the latter may be a

more sensible explanation than the former when the clock is rejected and the rate is variable

across lineages.

Table 4. Two-sample KS test for strict clock on three data-sets (ENV and COX1 with 9 taxa and 18S rDNA with 17 taxa) of real sequences (1,000

trees, kU = 0.192, kC = 0.116).

Lentiviruses ENV Primates COX1 Yeasts 18S rDNA

τ (B) 349 (15) 940 (15) 211 (31)

NADJ (Non-clock) 670 2,707 1,255

MADJ (Strict clock) 404 1,635 758

D(M,N) 0.21 0.11 0.11

Critical Value (1%) 0.10 0.05 0.07

p-value < 0.00001 < 0.00001 < 0.00001

https://doi.org/10.1371/journal.pone.0190826.t004

Table 5. Two-sample KS test for relaxed clock on three data-sets (ENV and COX1 with 9 taxa and 18S rDNA with 17 taxa) of real sequences (1,000

trees, kU = 0.192, kC = 0.099).

Lentiviruses ENV Primates COX1 Yeasts 18S rDNA

τ (B) 349 (15) 940 (15) 211 (31)

NADJ (Non-clock) 670 2,707 1,255

MADJ (Relaxed clock) 354 1,395 647

D(M,N) 0.043 0.005 0.007

Critical Value (1%) 0.107 0.050 0.070

p-value 0.773 0.999 0.999

https://doi.org/10.1371/journal.pone.0190826.t005
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Conclusion

In the present paper we introduce two non-parametric goodness-of-fit GOF tests based on the

empirical cumulative distribution (ECD) to the context of testing for the molecular clock in

phylogeny, by using branch lengths extracted from an ensemble of statistically equivalent

Fig 8. Empirical cumulative distributions and 99% confidence bands for the three data-sets of real

sequences. The confidence band (the two black curves) is constructed around the ECD of the unconstrained

ensemble. In the COX1 and 18S rDNA, the blue curve is underneath the red curve.

https://doi.org/10.1371/journal.pone.0190826.g008

Table 6. PKS test for strict clock on Padovan et al. [37] data (134 taxa) (15,000 trees, k = 0.04).

Non-clock ensemble

Mean Branch Length (λ) 15.0

DPKS 0.47

τ (B) 377 (264)

NADJ 4,366

Critical Value (1%) 0.01

p-value < 0.00001

https://doi.org/10.1371/journal.pone.0190826.t006
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trees. The use of an ensemble of statistically equivalent trees to compute the ECD from the

observed data, instead of a consensus tree, relieves the effects of small sample size and issues

related to lack of power and lack of information.

The PKS test allows to directly verify whether a phylogeny is clock-like following a Poisson

law. The PKS test is very simple to apply and could even be performed simultaneously with the

generation of the ensemble of trees, but it is more limited since it has a very restricted null

hypothesis. The test may be extended to the case of Poisson mixtures in order to allow for

more flexible null hypothesis.

The 2KS test is more flexible allowing for the investigation whether a phylogeny follows a

relaxed clock model, but has more intricate usage since it requires the generation and compari-

son of two ensembles of trees. The 2KS test can distinguish the strict clock model from a

relaxed clock model but it seems that it is not powerful enough to distinguish one relaxed

clock model from another. Generally speaking, in both methods it is possible to replace the KS

tests by another ECD based goodness-of-fit test, such as the Cramér-von Mises test or the

Anderson-Darling test [43–45]. Another possible extension of these methods is to employ

Bayesian non-parametric goodness-of-fit tests.

Table 7. Two-sample KS tests for strict and relaxed clock on Padovan et al. [37] data (134 taxa)

(15,000 trees, kU = 0.04, kC = 0.19 (strict clock), kC = 0.05 (relaxed clock)).

Non-clock x Strict Non-clock x Relaxed Strict x Relaxed

τ (B) 274 (267) 274 (267) 274 (267)

NADJ 2,926 2,926 13,900

MADJ 13,900 3,657 3,657

D(N,M) 0.078 0.059 0.044

Critical Value (1%) 0.033 0.040 0.030

p-value < 0.000001 0.000019 0.000020

https://doi.org/10.1371/journal.pone.0190826.t007

Fig 9. Empirical cumulative distributions for the unconstrained (blue), strict clock (red) and relaxed

clock (green) and a 99% confidence band for the large data-set of real sequences. The confidence band

(the two black curves) is constructed around the ECD of the unconstrained ensemble.

https://doi.org/10.1371/journal.pone.0190826.g009
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Materials and methods

Theoretical framework

In this section we provide the theoretical basis for the tests described in Section 2. Let us start

with the computation of the ECD using the branch lengths obtained from an ensemble of

trees. There are two points that must be clarified: (i) the fact that the trees used in the computa-

tion of FN(x) are not independent–this is an important issue, since one of the assumptions of

all KS tests is that the data used to compute FN(x) is that it is IID and of failure this assumption

may cause a pseudo-replication effect; (ii) what is the appropriate sample size N for the KS test,

that is, how many trees must be used to compute FN(x)–in our case this definition is not trivial,

since it is not the original data (the sequence alignment) that is used in the test, but the trees

generated by a MCMC sampler from it.

The issue of non-independence of the trees is due to the fact that Bayesian phylogeny infer-

ence employs a Markov Chain Monte Carlo (MCMC) sampler to compute the trees. In addi-

tion, it is well known that critical values of the KS statistics are sensitive to sample auto-

correlation, that is, the actual false positive rate tends to be higher when there exists a positive

sample auto-correlation. As a result, direct use of the KS test might give misleading results

when used with an auto-correlated sample, even though, it is possible to modify the test to

account for sample auto-correlations [46,47]. Nevertheless, when sample auto-correlation is

due to a process with short range memory (e.g. markovian process) there are two simple

adjustments that allows for the application of KS test for IID samples to the case of auto-corre-

lated samples [48]. Fortunately, both adjustments are already implemented in most of the

MCMC samplers for Bayesian phylogeny inference. The first adjustment is called thinning of
sample, which consists in discarding a fixed number of consecutive sampled trees after one tree

is included in the ensemble so that the remaining trees are almost independent of each other.

The second procedure is called effective sample size (ESS). When a sample has auto-correlations,

the information contained in the data is (usually) less than the information contained in an IID

sample with the same size. In other words, the number of equivalent independent observations

is fewer than the actual sample size. The effective sample size (ESS) is the size of a putative IID

sample that carries the same amount of information as the correlated sample. In [49] the authors

discuss the notion of effective number of independent observations in an auto-correlated time

series, specifically with respect to estimating the mean and the variance of a distribution. Fur-

thermore, it has been demonstrated that several hypothesis tests can be modified for auto-corre-

lated data using an ESS adjustment. For example, [50] proposed a modified Mann-Kendall trend

detection test with ESS adjustment. Similar to the KS test, the original Mann-Kendall test is a

non-parametric test based on the IID sample assumption, which is not satisfied by most of time

series data. The modification proposed in [50] is simply to replace the actual sample size by the

effective sample size in the computation of the p-value or the critical value. With the the ESS

adjustment the modified Mann-Kendall provides the correct rejection rate. Here we propose the

same type of ESS adjustment for the KS test, by replacing the actual sample size by the effective

sample size computed by the MCMC sampler for the tree length (TL) estimation. It should be

remarked that in a strict clock-constrained tree the branch lengths are not independent, as well.

In fact, the branch lengths are constrained in such a way that the distance from the root to the

Table 8. Likelihood ratio tests (1% significance level).

Clock (L0) Non-clock (L1) 2ΔL = −2(L1−L0) χ2 (S−2)

Simulated −1,476.80 −1,477.02 0.44 18.47 (8)

Sanson et al. −4,312.59 −4,321.71 18.24 29.14 (14)

https://doi.org/10.1371/journal.pone.0190826.t008
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tips is the same for all tips. In this case, the ESS adjustment in the 2KS takes into account the lack

of independence of the branch lengths by employing the adjustment with the coefficient kC asso-

ciated to the tree length (TL) estimation.

Regarding the definition of appropriate sample size of the KS test, the reason why this is an

issue here is because the the ensemble of trees used as the sample for the tests is generated by a

MCMC sampler from the original data, and so the sample size Nmay, in principle, be arbi-

trarily large. But this would be an artifact, since the input for the computation of the ensemble

is a finite set of finite sequences and one cannot extract an arbitrary amount of information

form it by computing an arbitrarily large number of sample trees. Moreover, it is known that

the critical value Dα = Dα(λ,N) of the PKS test, as a function of the sample size, goes to zero as

fast as N ½, when N goes to infinity [51,52]. On the other hand, since DPKS(N) does not go to

zero, when N goes to infinity (because the original data contains a finite amount of informa-

tion), it is possible to increase the number of trees used to compute DPKS in such a way that the

null hypothesis is always rejected, thus, rendering the test completely useless. In order to cir-

cumvent this difficulty we proposed the definition of the sample size in terms of the least num-

ber of trees τ such that DPKS is minimal with respect to τ, given that τ� the number of taxa

(this last condition ensures that the ensemble of trees is not too small). Then, if the null

hypothesis is rejected under these conditions, increasing the sample size will not change the

result, although it would artificially inflate the power of the test. In this case, the use of the ESS

adjusted sample size NADJ ensures that the power is not inflated. On the other hand, if the null

hypothesis is not rejected, increasing the sample size would artificially revert this result.

Hence, in this case, the use of NADJ ensures that this reversion does not occur. Failure to reject

the null hypothesis have two different meanings, depending on the magnitude of NADJ: (i) if

NADJ is sufficiently large and (H0) is not rejected then it is possible that the null hypothesis is

actually true; (ii) if NADJ is small and (H0) is not rejected then the test is inconclusive due to

lack of information in the data from which the ensemble of trees was generated.

It is convenient to be able to estimate the power of the KS test in order to evaluate if the test

correctly rejects the null hypothesis when the alternative hypothesis is true, equivalently, the

probability of accepting the alternative hypothesis when it is true. However, it is very difficult

to compute the asymptotic distribution of the KS statistics under the alternative hypothesis

and thus it is difficult to compute the power of the KS test. It is possible, nevertheless, to find a

lower bound for the power and use it to evaluate the asymptotic power of the KS test [22,53].

Although, this lower bound is conservative for discrete versions of the KS test [54], which

includes the PKS version used here, it still may be used to evaluate the power of the test.

Historically, KS tests have only been used as goodness-of-fit tests for continuous distribu-

tions, while the chi-square test has been commonly employed for discrete data. In [55] the

author gives a comprehensive review of both and their competitors. The chi-square test statis-

tics may also be written as a measure of discrepancy between the ECD FN(x) and expected

cumulative distribution FE(x). However, it does not take into account the natural ordering

among the observations, a fact exploited in analysis of attribute data. More specifically, the chi-

square test statistics is invariant under permutations. In contrast, the KS test statistics is sensi-

tive to the over-weighting or under-weighting of any tail or segment of the empirical distribu-

tion relative to the hypothesized distribution. It is for this reason that KS tests derive their

greater advantages and is the main motivation behind several efforts to adapt KS tests to dis-

crete data.

Finally, it is interesting to observe that the idea behind the likelihood ratio (LR) test of

examining if all tips of the tree are equidistant has an analogue in the non-parametric setting

proposed here. For each tree in the ensemble, a tree branch randomly picked and the distance

from the root computed. Then, the ECD of distances from the tips to the root is computed and
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tested if the distribution follows a Poisson law (the same discussion about sample size and ESS

adjustment should apply here). A hint that this procedure might work is provided by the analy-

sis involving the outgroup ECD in the simulated example, which is the distance from the root

to the tip and is very close to a Poisson distribution. The potential importance of this variation

in the PKS test, is beyond the scope of the present study and may be investigated in a future

work.

Software and computation resources

The alignments were made with Clustal W2 [56], the phylogenies were computed with

MrBayes 3.2.6 [57] and the model selection was computed with jModelTest 2 [58]. The statis-

tical software R 3.3.2 [59] was used to prepare figures of ECDs and confidence bands, compute

critical values and p-values. Phylogenetic tree manipulation and branch length extraction was

made with the R package APE 3.5 [60]. The simulation of nucleotide sequence was made with

Seq-Gen 1.3.2 [61]. Alternatively, we have created a simple program to perform the one-sam-

ple PKS test. The program imports the output files generated by MrBayes, extract the branch

lengths from the ensemble of trees. The PKS critical values are computed using the tables of

Campbell and Oprian [27]. The user may choose one of the three possible significance levels α:

10%, 5% and 1%. The program outputs the following information: (i) the mean value and vari-

ance of the log-likelihood scores of the ensemble of trees; (ii) the mean and the variance of the

ECD of branch lengths, measured in number of substitutions; (iii) the PKS statistics DPKS and

the PKS critical value Dα for the chosen significance level. Finally, it is possible to plot the ECD

of branch lengths and the expected Poisson cumulative distribution. The implementation of

the PKS test is done in Python 2.7 [62] with the libraries Numpy, Pylab, Matplotlib, Tkinter.

Program availability

The source code of program PKS, that implements the method here described, is available at

GitHub (github.com/FernandoMarcon/PKS_Test).

Supporting information

S1 File. Alignments used to generate phylogenies and analyses shown in all tables and fig-

ures in this study are available as a single zip file containing 6 folders named 18SrRNA,

COX1, ENV, Fungi, Sanson and simulated. Each folder contains the corresponding align-

ments in nexus format.
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