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Abstract The Sheldon spectrum describes a remarkable regularity in aquatic ecosys-
tems: the biomass density as a function of logarithmic body mass is approximately
constant over many orders of magnitude. While size-spectrum models have explained
this phenomenon for assemblages of multicellular organisms, this paper introduces
a species-resolved size-spectrum model to explain the phenomenon in unicellular
plankton. A Sheldon spectrum spanning the cell-size range of unicellular plankton
necessarily consists of a large number of coexisting species covering a wide range of
characteristic sizes. The coexistence ofmany phytoplankton species feeding on a small
number of resources is known as the Paradox of the Plankton. Our model resolves the
paradox by showing that coexistence is facilitated by the allometric scaling of four
physiological rates. Two of the allometries have empirical support, the remaining two
emerge frompredator–prey interactions exactlywhen the abundances follow aSheldon
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spectrum. Our plankton model is a scale-invariant trait-based size-spectrum model:
it describes the abundance of phyto- and zooplankton cells as a function of both size
and species trait (the maximal size before cell division). It incorporates growth due
to resource consumption and predation on smaller cells, death due to predation, and
a flexible cell division process. We give analytic solutions at steady state for both the
within-species size distributions and the relative abundances across species.

Keywords Plankton · Coexistence · Allometry · Size-spectrum · Scale-invariance ·
Cell division

Mathematics Subject Classification 92D40 · 92D25 · 92C37

1 Introduction

Gaining a better understanding of plankton dynamics is of great ecological importance,
both because plankton form an important component of the global carbon cycle and
couples to the global climate system and because plankton provide the base of the
aquatic food chain and therefore drives the productivity of our lakes and oceans. In
spite of enormous progress in plankton modelling, there is still a lack of fundamental
understanding of even some rather striking phenomena. We address this in this paper
with a novel conceptual plankton model that for the first time gives analytical results
that simultaneously describes both the within-species cell size distribution and the
across-species distribution of plankton biomass.

One of the most remarkable patterns in ecology manifests itself in the distribution
of biomass as a function of body size in aquatic ecosystems (Sheldon et al. 1972). Very
approximately, equal intervals of the logarithm of bodymass contain equal amounts of
biomass per unit volume. This implies that biomass density decreases approximately
as the inverse of bodymass. Size spectrawith this approximate shape are observed over
many orders ofmagnitude, encompassing both unicellular andmulticellular organisms
(Gaedke 1992;Quiñones et al. 2003; SanMartin et al. 2006) and it has been conjectured
that this relationship applies all the way from bacteria to whales (Sheldon et al. 1972).
Accordingly, aquatic environments are more populated by small organisms than larger
ones in a predictable way (Sheldon and Kerr 1972).

Early theories, without dynamics, gave results consistent with this power law (Platt
and Denman 1977) and they were followed by dynamic theories for multicellular
organisms (size-spectrum models), where the biomass distribution is an outcome of
the processes and interactions between these organisms at different sizes (Silvert and
Platt 1978, 1980; Camacho and Solé 2001; Benoît and Rochet 2004; Andersen and
Beyer 2006; Capitán and Delius 2010; Datta et al. 2010, 2011; Hartvig et al. 2011;
Maury and Poggiale 2013). In these models, multicellular organisms grow by feeding
on andkilling smaller organisms, thereby coupling the twoopposing faces of predation:
death of the prey, and body growth of the predator—during which survivors can grow
over orders of magnitude. A common feature of the models is the allometric scaling
of the rates of the different processes. For recent reviews of size-spectrum modelling
see Sprules et al. (2016) and Guiet et al. (2016).
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Sheldon spectrum and the plankton paradox: two sides of… 69

Current models of size-spectrum dynamics are constructed with multicellular,
heterotrophic organisms in mind, and make simplifying assumptions about the uni-
cellular plankton on which they ultimately depend to provide a closure for the models
(e.g. Hartvig et al. 2011; Datta et al. 2010). The unicellular-multicellular distinction
is important. Unicellular plankton encompass autotrophs (phytoplankton) that use
inorganic nutrients and light to synthesize their own food, as well as heterotrophs
(zooplankton) that feed on other organisms, and mixotrophs that do both. Also, uni-
cellular organisms just double in size before splitting into two roughly equally-sized
cells, rather than going through the prolonged somatic growth of multicellular organ-
isms. Since cell masses of unicellular plankton span an overall range of approximately
108, the power law cannot therefore be generatedwithout coexistence ofmany species.

Coexistence of species in the plankton is itself an unresolved problem. In the case
of phytoplankton, the problem is known as ‘the paradox of the plankton’, because
of the great diversity of phytoplankton taxa, seemingly unconstrained by the small
number of resources they compete for (Hutchinson 1961). There is no consensus yet
as to what mechanism(s) can allow a large number of competing species to coexist
on a small number of resources (Roy and Chattopadhyay 2007). Hutchinson thought
environmental fluctuations could be the answer, but this is currently acknowledged to
be insufficient as an explanation (Fox 2013). One promising proposal is a strategy of
“killing the winner” that involves a trade-off between competitive ability and defence
against enemies (Thingstad and Lignell 1997; Winter et al. 2010) and that resembles
the mechanism of predator-mediated coexistence observed in ecology (Leibold 1996;
Våge et al. 2014).

In this paper we propose a dynamic trait-based size-spectrum model for plankton
that incorporates specific cellular mechanisms for growth, feeding, and reproduction,
along with their allometric laws, in order to capture the size spectrum of biomass
distribution in this size region of the aquatic ecosystem (Sect. 2). We build on well
established models of the cell cycle (Fredrickson et al. 1967; Diekmann et al. 1983;
Heijmans 1984; Henson 2003; Friedlander and Brenner 2008; Giometto et al. 2013)
but extend them to allow for many coexisting species. The resulting model describes
the dynamics of an ecosystem made of a continuum of phytoplankton species living
on a single resource, plus a continuum of zooplankton species that feed on smaller
cells. For the allometric scaling of the growth and division rate we make use of recent
experimental measurements on phytoplankton production (Marañón et al. 2013).

The model is presented in two flavours: an idealised version (Sect. 3) describing
cells that grow until exactly doubling their size and then split into two identical cells,
and a more general model (Sect. 4) in which cells are allowed to divide in a range of
sizes andproduce twodaughter cells of slightly different sizes. In both casesweprovide
analytic expressions for the abundance distribution as a function of size for any species.

For both flavours of the model we first study the conditions under which the steady
state allows for the coexistence of a continuum of infinitely many phytoplankton
species and find—not surprisingly—that a sufficient condition is a death rate that
scales allometrically with the same exponent as the growth rate. Then we introduce
zooplankton that predate on smaller cells (whether phyto- or zooplankton) and show
that predation produces the required scaling of the death rate if, and only if, the whole
plankton community conforms to Sheldon’s power law size spectrumwith an exponent
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very close to the observed one. This power law size spectrum arises as the steady state
solution in our model (Sect. 5).

In other words, within themodel assumptions, coexistence of a continuum of plank-
ton species implies a specific allometric scaling of the death rate and the zooplankton
growth rate; the latter allometric scalings imply that the whole community distributes
as a power-law in size; and a power-law size distribution of the community implies the
coexistence of a continuum of plankton species. This is the main result of our work.
It reveals that the paradox of the plankton and the observed size spectrum in aquatic
ecosystems are but two manifestations of the same phenomenon, and are both deeply
rooted in the allometric scaling of basic physiological rates. In Sect. 6 we show that
this allometric scaling makes the model invariant under scale transformations. This
provides another formulation of our explanation for the origin of the Sheldon spectrum.

2 Size- and species-resolved phytoplankton model

Our model for phytoplankton is a multispecies variant of the population balance equa-
tion (PBE) model (Fredrickson et al. 1967; Henson 2003; Friedlander and Brenner
2008). Phytoplankton are assumed to be made mostly of unicellular autotrophs that
grow through the absorption of inorganic nutrients from the environment and eventu-
ally split into two roughly equal-size daughter cells.

Cells will be described by their current size w and by a size w∗ characteristic of
the cell’s species. For this characteristic size we choose the maximum size a cell can
reach. We measure sizes with respect to some reference size, so that w and w∗ are
dimensionless. This will avoid strange fractional dimensions that would otherwise
arise in allometric scaling expressions later.

The two basic processes of the cellular dynamics are growth and division. We
describe these in detail in the following subsections before using them in Sect. 2.3 to
give the dynamical population balance equation for phytoplankton abundances.

2.1 Cell growth

Awidely accepted model for organismal growth was proposed long ago by von Berta-
lanffy (1957). Although originally it was devised for multicellular organisms, it has
recently been argued that a similar model can be used to describe the growth of
microorganisms (Kempes et al. 2011). According to von Bertalanffy’s model, the
rate at which an organism grows is the result of a competition between the gain of
mass through nutrient uptake and its loss through metabolic consumption. Both terms
exhibit allometric scaling, thus

dw

dt
= Awα − Bwβ. (2.1)

A typical assumption is α = 2/3 (nutrient uptake occurs through the organismal mem-
brane) and β = 1 (metabolic consumption is proportional to body mass, Kempes et al.
2011). However other choices are possible and different values have been empirically
obtained (Law et al. 2016). Whichever the values, it seems reasonable to constrain the
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exponents to satisfy α < β—leading to a slow-down of growth as cells get very large.
Constants A and B will vary from species to species, so depend on w∗.

With this model we can calculate the doubling period of a cell, defined as the time
T (w∗) it takes to grow from w∗/2 to w∗:

T (w∗) =
∫ w∗

w∗/2

dw

Awα − Bwβ
= w∗

∫ 1

1/2

du

Awα∗uα − Bw
β∗ uβ

, (2.2)

where u = w/w∗.
It turns out that this doubling period has been experimentally measured for many

different species of phytoplankton under the same environmental conditions. All the
results for phytoplankton cells larger than ∼5µm seem to scale with the same func-
tion T = τw

ξ∗ , where τ is a species-independent constant. Cells smaller than ∼5µm
have a doubling period which increases, rather than decreases, as they become smaller
(Marañón et al. 2013). To all purposes then, our model will describe the community
spectrum from ∼5µm upward. There is some controversy in the experimental liter-
ature about the right value of the exponent ξ (Law et al. 2016), but we need not be
concerned by it. When we need a concrete value we will adopt the most recent value
ξ ≈ 0.15 (Marañón et al. 2013).

The allometric scaling observed for the duplication period can only be compatible
with Eq. (2.2) provided

A ≡ aw
1−α−ξ∗ , B ≡ bw1−β−ξ∗ , (2.3)

where a and b do not depend on w∗. Then the proportionality constant τ is given by

τ =
∫ 1

1/2

du

auα − buβ
. (2.4)

Since τ , α, and β can be experimentally determined, this equation imposes a constraint
on the constants a and b.

In summary, joining a von Bertalanffy model for the growth rate with the experi-
mental observations for the division rate yields the growth model

dw

dt
= Gp(w,w∗) = w

1−ξ∗

[
a

(
w

w∗

)α

− b

(
w

w∗

)β
]

. (2.5)

It is worth noting that this growth rate is a homogeneous function satisfying

Gp(λw, λw∗) = λ1−ξGp(w,w∗) (2.6)

for any λ > 0. Also notice that a > b guarantees Gp(w,w∗) > 0 for all 0 � w � w∗.

2.2 Cell division

Let K (w,w∗) denote the division rate of a cell of current size w and maximum size
w∗. We expect K (w,w∗) to grow sharply near w = w∗—to ensure that division is
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guaranteed to occur before a cell reaches its maximum size. A widely studied cell
division mechanism assumes a ‘sloppy size control’ of the cell division cycle (Powell
1964; Tyson and Diekmann 1986). Essentially, this means that cells can duplicate
at any moment after reaching a threshold size wth and before reaching their largest
possible size w∗. By proposing a suitable function K (w,w∗) Tyson and Diekmann
(1986) were able to fit the size distribution at division of a yeast.

While Tyson andDiekmann (1986) assumed that duplication produces two equally-
sized daughter cells, we will in Sect. 4 allow the size of the daughter cells to be
described by Q(w|w′), the probability density that a cell of size w′ splits into two
cells of sizes w and w′ − w. By construction Q(w|w′) = 0 if w � w′ or w � 0, it
bears the symmetry Q(w′−w|w′) = Q(w|w′) and satisfies the normalising condition

∫ ∞

0
Q(w|w′) dw = 1 (2.7)

for all 0 < w′ < ∞.
It is reasonable to assume that Q(w|w′) is peaked around w = w′/2—daughter

cells will be roughly half the size of the parent cell. Another reasonable assumption is
that this distribution scales with cell size (i.e., fluctuations around the ideal splitting
size w = w′/2 are relative to w′). This amounts to assuming that Q(w|w′) is a
homogeneous function of w and w′,

Q(λw, λw′) = λ−1Q(w,w′). (2.8)

The scaling exponent of −1 is due to the fact that Q is a probability density. We can
therefore write Q in the scaling form

Q(w|w′) = 1

w′ q
( w

w′
)

, where
∫ ∞

0
q(x) dx = 1. (2.9)

2.3 Cell population dynamics

Wewill assume that the number of species and their population is large enough so that
we can make a continuum description through a density function p(w,w∗, t), such
that p(w,w∗, t) dwdw∗ is the number of cells per unit volume whose maximum sizes
are between w∗ and w∗ + dw∗ and whose sizes at time t are between w and w + dw.

With these ingredients, the time evolution of the abundances p(w,w∗, t) will be
given by the population balance equation (PBE) (Fredrickson et al. 1967; Henson
2003; Friedlander and Brenner 2008)

∂

∂t
p(w,w∗, t) = − ∂

∂w

[
Gp(w,w∗)p(w,w∗, t)

]

+ 2
∫ w∗

0
Q(w|w′)K (w′, w∗)p(w′, w∗, t) dw′

− K (w,w∗)p(w,w∗, t) − M(w,w∗)p(w,w∗, t).

(2.10)
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The first two terms describe the dynamics of a growing organism as an extension of
the McKendrick–von Foerster equation (Silvert and Platt 1978, 1980). The third term
is the rate at which cells of size w are produced from the division of cells of size 0 <

w′ < w∗—the factor 2 taking care of the fact that each parent cell yields two daughter
cells. The fourth term is the rate at which cells of size w divide. The last term is the
rate at which cells of sizew die for whatever reason. The same equation describes this
process for any species, hencew∗ enters as a parameter in every rate function involved.

The fact that every negative term on the right hand side of the population balance
equation (2.10) is proportional to p(w,w∗, t), ensures the necessary property that the
population density p(w,w∗, t) can never evolve to be negative.

2.4 Nutrient dynamics

The growth model just developed assumes an infinite abundance of nutrients. In real
aquatic ecosystems nutrients are limited though, and growth is hinderedwhen nutrients
are scarce. Accordingly, we need to modify our growth model in order to take limited
nutrients into account.

In the von Bertalanffy equation (2.5) for the cell growth rate, the first term describes
the nutrient uptake through the cell membrane, and it is modulated by the rate a. This
rate will of course depend on the availability of the nutrients needed for growth.
Denoting by N the amount of nutrient per unit volume, we need to replace a by a
function a(N ). The simplest way to do this is through the Monod equation (Herbert
et al. 1956)

a(N ) = a∞
N

r + N
, (2.11)

with r the Michaelis–Mertens constant. This function has the important property that
the factor a(N ) monotonically increases from 0 toward its saturation value a∞. How-
ever, other choices for a(N ) with this property are also possible.

Likewise, the details of how the nutrient dynamics is modelled are not important
for our conclusions. All we will require is that the uptake of nutrient by the plankton
leads to a corresponding depletion in the nutrient N . Also, in order to sustain a non-
zero plankton population, there needs to be some replenishment of nutrient. The PBE
model incorporates that through a chemostat of maximum capacity N0 (Fredrickson
et al. 1967; Heijmans 1984; Henson 2003):

dN

dt
= �(N ) − σ(N , p), �(N ) = �0

(
1 − N

N0

)
. (2.12)

Here σ(N , p) represents the rate of nutrients consumption by all phytoplankton cells,
which is proportional to the uptake rate [the positive term in the expression for
Gp(w,w∗, t) in Eq. (2.5)], integrated over all species sizes w∗ and all cell sizes w:

σ(N , p) = a(N )

θ

∫ ∞

0
dw∗ w

1−α−ξ∗
∫ w∗

0
dw wα p(w,w∗, t). (2.13)

The proportionality constant θ is the yield constant, i.e. the amount of biomass gen-
erated per unit of nutrient.
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3 Idealised cell division process

The important features of our model are insensitive to the details of the cell division
process. So it makes sense to first exhibit these features by solving the model with
the simplest idealised version of the cell division. Thus in this section we assume that
cells only split when they reach exactly the size w∗, and they generate two identically
sized daughter cells (Diekmann et al. 1983).

This idealised cell division has an undesirable property: Consider a peak in abun-
dance around a particular size. Due to growth of the cells making up the peak, it will
move through the size spectrum without changing its shape until it reaches the maxi-
mum size w∗. There all cells will divide to produce daughter cells at exactly the size
w∗/2, producing a new peak again of the same shape. This peak will then again move
up to w∗, divide and restart its journey, ad infinitum. In short: the solutions in this
idealised model will be periodic, rather than approaching the steady state solution.
This will be remedied in the general case that we will discuss in Sect. 4.

3.1 Dynamic equations

The idealised cell division amounts to choosing Q(w|w′) = δ(w − w′/2)—two
identical daughter cells—and K (w,w∗) = κ(w∗)δ(w − w∗)—division occurs only
when w = w∗. Here δ(x) denotes the Dirac delta function. The parameter κ(w∗) will
be determined below. This choice transforms the evolution equation (2.10) into

∂

∂t
p(w,w∗, t) = − ∂

∂w

[
Gp(w,w∗)p(w,w∗, t)

]
+ κ(w∗)p(w∗, w∗, t)[2δ(w − w∗/2) − δ(w − w∗)]
− M(w,w∗)p(w,w∗, t),

(3.1)

and of course p(w,w∗, t) = 0 for w > w∗ and w < w∗/2.
The two delta functions on the right-hand side of Eq. (3.1) imply that the function

p(w,w∗, t) must be discontinuous at w = w∗/2 and w = w∗ (recall that Θ ′(x) =
δ(x), where Θ(x) is a Heaviside step function, equal to 1 for x > 0 and to 0 for
x < 0). The height of the two discontinuities must be such that the derivative of the
right-hand side cancels the two deltas. This leads to the two conditions

Gp(w∗, w∗)p(w∗, w∗, t) = κ(w∗)p(w∗, w∗, t), (3.2)

Gp(w∗/2, w∗)p(w∗/2, w∗, t) = 2κ(w∗)p(w∗, w∗, t). (3.3)

Equation (3.2) determines κ(w∗) = Gp(w∗, w∗), so that Eq. (3.3) implies the bound-
ary condition

Gp(w∗/2, w∗)p(w∗/2, w∗, t) = 2Gp(w∗, w∗)p(w∗, w∗, t). (3.4)

Notice that, since δ(λw−λw∗) = λ−1δ(w−w∗), this link between the division rate
function K (w,w∗) and the growth rate Gp(w,w∗) renders the former homogeneous
in its arguments,
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K (λw, λw∗) = λ−ξ K (w,w∗). (3.5)

In summary, when considering the idealised division process, the phytoplankton
density p(w,w∗, t) is described by the equation

∂

∂t
p(w,w∗, t) + ∂

∂w

[
Gp(w,w∗)p(w,w∗, t)

] + M(w,w∗)p(w,w∗, t) = 0, (3.6)

in the interval w∗/2 � w � w∗, with the boundary condition (3.4). This is coupled to
Eqs. (2.12) and (2.13) for the nutrient.

3.2 Steady state

We can look for solutions of Eq. (3.6) that do not depend on time by solving the first
order ordinary differential equation

∂

∂w

[
Gp(w,w∗)p(w,w∗)

] + M(w,w∗)p(w,w∗) = 0,
w∗
2

� w � w∗, (3.7)

with the boundary condition (3.4). A straightforward integration of Eq. (3.7) yields

p(w,w∗) = p(w∗, w∗)
Gp(w∗, w∗)
Gp(w,w∗)

exp

{∫ w∗

w

M(w′, w∗)
Gp(w′, w∗)

dw′
}

, (3.8)

where p(w∗, w∗) is some (as yet) arbitrary value. If we now impose the boundary
condition (3.4) on the solution (3.8) we arrive at the condition

∫ w∗

w∗/2

M(w′, w∗)
Gp(w′, w∗)

dw′ = log 2. (3.9)

The left-hand side of this condition is in general a function ofw∗. This means that only
those species whose maximum sizes are such that Eq. (3.9) holds can have a non-zero
stationary abundance. The only possibility for the remaining species is p(w∗, w∗) = 0,
i.e., extinction.

There is only one case in which Eq. (3.9) can hold for all species, namely when the
death rate is a homogeneous functionM(λw, λw∗) = λ−ξ M(w,w∗), or, equivalently,
if it has the shape

M(w,w∗) = w
−ξ∗ m(w/w∗) (3.10)

for some functionm(x). This allometric scaling of the death rate is a necessary condi-
tion for coexistence. It is also a sufficient condition, because provided this condition
is met, the solution (3.8) takes the explicit form

p(w,w∗) = p(w∗, w∗)φ(w/w∗), (3.11)

with

φ(x) = a(N ) − b

a(N )xα − bxβ
exp

{∫ 1

x

m(y)

a(N )yα − b yβ
dy

}
. (3.12)
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In other words, all species show the same size distribution up to a constant p(w∗, w∗)
that determines the overall abundance of that species.

In this case the boundary condition (3.9) becomes

∫ 1

1/2

m(x)

a(N )xα − bxβ
dx = log 2. (3.13)

This equation holds for one and only one value of N (remember that a(N ) is an
increasing function of N and a(0) = 0 and a∞ > b). For any value other than this,
no steady state solution is possible except full extinction. On the other hand, for this
specific N all species coexist in the steady state.

According to Eq. (2.12), the condition for N to be the nutrient level at the steady
state is �(N ) = σ(N , p). Using the expression (3.11) for the steady-state p(w,w∗)
in the expression (2.13) for σ(N , p), this can be expressed as the following constraint
on the overall abundances:

∫ ∞

0
w

2−ξ∗ p(w∗, w∗) dw∗ = θ�(N )

a(N )

(∫ 1

0
xαφ(x) dx

)−1

. (3.14)

This is only a single linear constraint on the function p(w∗, w∗) and thus is far from
determining it uniquely.

To summarise this section: if the death rate scales allometrically with size and all
phytoplankton species share a common limited resource then there is a steady state
of the system in which all species coexist on this single resource. The resource level
is tuned by consumption. In its turn, its value imposes a global constraint on the
abundances of phytoplankton species.

This result is a manifestation of the ‘paradox of the plankton’ (Hutchinson 1961),
and reveals a mechanism by which it might come about: a similar allometric scaling
for both the growth and the death rate. As of now, it is hard to think of a reason why
this similar scaling should occur, but we will return to this point in Sect. 5 where we
will show that predation is one possible mechanism.

4 General division process

Although the idealised division process described in the previous section is a simple
setup that provides important insights on the system behaviour, it has some undesirable
features that call for improvements. Perhaps the worst of them is the fact that we
illustrated at the start of Sect. 3: any irregularity of the initial distribution of cell sizes
will remain there forever because there is nothing that smooths it out. Consequently, the
distribution could never evolve towards the steady-state distribution. Twomechanisms
can achieve the necessary size mixing to provide this smoothing: first, the fact that
cells do not split only when they exactly reach the size w∗, and second, the fact that
the sizes of the two daughter cells are not identical. Both of them require introducing
functions K (w,w∗) and Q(w|w′) more general than Dirac’s deltas.
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4.1 Model constraints

The problem boils down to solving the PBE (2.10). Although linear, this is a difficult
integro-differential problemwhose general solution can only be obtained in the formof
an infinite functional series (Heijmans 1984). This notwithstanding, there is a general
class of functions K (w,w∗) and Q(w|w′) for which a closed form solution is possible,
and the constraints that define this class are general enough to describe real situations.
Let us spell out these constraints.

To guarantee that all cells divide before growing beyond size w∗ the rate K (w,w∗)
is chosen to satisfy ∫ w∗

0
K (w,w∗)dw = ∞. (4.1)

Therewill be some smallest sizewth belowwhich cells cannot divide.Hence K (w,w∗)
is non-zero only forwth < w < w∗. Let us also assume that Q(w|w′) is non-zero only
for (1−δ)w′/2 < w < (1+δ)w′/2 for some δ that measures themaximum variability
of the daughter cells’ sizes relative to the parent’s. With these two assumptions it is
clear that the largest possible size of a daughter cell is w+ = (1 + δ)w∗/2. Like
(Powell 1964) we further assume w+ < wth.

Let us split the abundance into ‘large’ and ‘small’ cells according to

p(w,w∗, t) =
{
pl(w,w∗, t), w ≥ w+,

ps(w,w∗, t), w ≤ w+.
(4.2)

Then the integral term in the right-hand side of Eq. (2.10) will make no contribution
for any w > w+, and we will have, for w+ � w � w∗,

∂

∂t
pl(w,w∗, t) = − ∂

∂w

[
Gp(w,w∗)pl(w,w∗, t)

]
− K (w,w∗)pl(w,w∗, t) − M(w,w∗)pl(w,w∗, t).

(4.3)

Due to our assumption that w+ < wth we can replace p(w,w∗, t) by pl(w,w∗, t)
in the integral term of Eq. (2.10); hence, for 0 � w � w+,

∂

∂t
ps(w,w∗, t) = − ∂

∂w

[
Gp(w,w∗)ps(w,w∗, t)

]

+ 2
∫ w∗

wth

Q(w|w′)K (w′, w∗)pl(w′, w∗, t) dw′

− M(w,w∗)ps(w,w∗, t).

(4.4)

We have transformed the original problem into two, each in a different interval.
The first problem, Eq. (4.3), is a homogeneous linear differential equation decoupled
from the second one, Eq. (4.4), which turns out to be—once the solution of the first
problem is known—a non-homogeneous linear differential equation.
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These two equations, (4.3) and (4.4), have to be supplemented with the boundary
conditions

ps(0, w∗, t) = 0, ps(w+, w∗, t) = pl(w+, w∗, t), pl(w∗, w∗, t) = 0. (4.5)

4.2 Scaling behaviour of the division rate

In the idealised model (Sect. 3.1), since K (w,w∗) was proportional to a Dirac’s delta,
we could obtain its scaling from that of Gp(w,w∗) straight away. Unfortunately, the
argument is no longer valid for this more general setup. There is a workaround though:
we can prove that K (w,w∗) scales as in the idealised case from the empirical observa-
tion that the population growth rate of a single species in a nutrient-rich environment
scales as Λ ∼ w

−ξ∗ (Marañón et al. 2013).
Suppose we prepare a nutrient-rich culture of cells of maximum size w∗. Equa-

tions (4.3) and (4.4) will describe the abundances at different sizes. In this situation,
for some initial time interval we can assume M(w,w∗) = 0, so the population will
increase exponentially at rate Λ. Introducing pl(w+, w∗, t) = pl(w+, w∗)eΛt and
ps(w+, w∗, t) = ps(w+, w∗)eΛt into those equations we end up with

∂

∂w

[
Gp(w,w∗)pl(w,w∗)

] = − K (w,w∗)pl(w,w∗) − Λpl(w,w∗), (4.6)

∂

∂w

[
Gp(w,w∗)ps(w,w∗)

] = 2
∫ w∗

wth

Q(w|w′)K (w′, w∗)pl(w′, w∗) dw′

− Λps(w,w∗). (4.7)

The solution of Eq. (4.6) is

pl(w,w∗) = pl(w+, w∗)
Gp(w+, w∗)
Gp(w,w∗)

E(w,w∗), (4.8)

E(w,w∗) = exp

{
−

∫ w

w+

K (w′, w∗) + Λ

Gp(w′, w∗)
dw′

}
, (4.9)

with pl(w+, w∗) an undetermined constant.
As for Eq. (4.7), its solution is

ps(w,w∗) = pl(w,w∗)
[
1 −

∫ w+

w

H(w′, w∗)
E(w′, w∗)

dw′
]

, (4.10)

H(w,w∗) = 2
∫ w∗

wth

Q(w|w′) K (w′, w∗)
Gp(w′, w∗)

E(w′, w∗) dw′. (4.11)

The condition pl(w+, w∗, t) = ps(w+, w∗, t) is already met, and the bound-
ary condition pl(w∗, w∗, t) = 0 follows from Eq. (4.1). The boundary condition
ps(0, w∗, t) = 0 implies ∫ w+

0

H(w′, w∗)
E(w′, w∗)

dw′ = 1. (4.12)
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This equation determines the population growth rate Λ and allows us to rewrite
Eq. (4.10) as

ps(w,w∗) = pl(w,w∗)
∫ w

0

H(w′, w∗)
E(w′, w∗)

dw′. (4.13)

Equation (4.12) is the key to infer the scaling of K (w,w∗). If, in agreement with
empirical measurements, Λ = �w

−ξ∗ with � independent on w∗, then Eq. (4.12)
becomes

2
∫ 1+δ

2

0
dx

∫ 1

wth
w∗

dy

y
q

(
x

y

)
w

ξ∗K (w∗y, w∗)
a(N )yα − byβ

exp

{∫ x

y

w
ξ∗K (w∗z, w∗) + �

a(N )zα − bzβ
dz

}
= 1,

a condition that can only be met provided wth/w∗ does not depend on w∗ and

K (w,w∗) = w
−ξ∗ k(w/w∗), (4.14)

in other words, if the scaling K (λw, λw∗) = λ−ξ K (w,w∗) holds. Of course it is
also intuitively clear that the division rate has to scale as w

−ξ∗ given that the doubling
period T (w∗) scales as w

ξ∗ , as discussed in Sect. 2.1. Thus we see that the same
empirical observation that leads to the functional form (2.5) for Gp(w,w∗) also leads
to Eq. (4.14).

4.3 Steady state

The steady state of Eqs. (4.3) and (4.4) is readily obtained by replacing Λ with
M(w,w∗) in Eqs. (4.6) and (4.7). The solution will be as given by Eqs. (4.8) and
(4.13), but with E(w,w∗) given by

E(w,w∗) = exp

{
−

∫ w

w+

K (w′, w∗) + M(w′, w∗)
Gp(w′, w∗)

dw′
}

. (4.15)

The boundary condition (4.12) now fixes the value of a(N ) in the functionGp(w,w∗)
and thereby determines the steady-state nutrient level N .

The same considerations as for the idealised case hold here. Equation (4.12) will,
in general, depend on w∗ and therefore hold for at most one or a few species. The
other species are extinct in the steady state. Given the scaling (4.14) for the division
rate, the requirement for coexistence of all species is the scaling (3.10) of the death
rate, because then E(w,w∗) = e(w/w∗) and H(w,w∗) = w−1∗ h(w/w∗), where

e(x) = exp

{
−

∫ x

1+δ
2

k(y) + m(y)

a(N )yα − byβ
dy

}
, (4.16)

h(x) = 2
∫ 1

wth
w∗

k(y)e(y)

a(N )yα − byβ
q

(
x

y

)
1

y
dy, (4.17)
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and the boundary condition (4.12) becomes

∫ 1+δ
2

0

h(x)

e(x)
dx = 1 (4.18)

regardless of the species.
Finally, the steady state abundances are given by

p(w,w∗) = p(w+, w∗)ψ(w/w∗), (4.19)

where p(w+, w∗) is an undetermined function of w∗ and

ψ(x) = a(N )
( 1+δ

2

)α − b
( 1+δ

2

)β

a(N )xα − bxβ
e(x)Θ(x), (4.20)

Θ(x) =
⎧⎨
⎩
1, x > 1+δ

2 ,∫ x

0

h(y)

e(y)
dy, x < 1+δ

2 .
(4.21)

A few remarks will make clear what the abundance distribution looks like. To begin
with, property (4.1) of K (w,w∗) implies that e(1) = 0, so p(w∗, w∗) = 0. On the
other hand, given that q(x/y) = 0 except for (1 − δ)/2 < x/y < (1 + δ)/2 (i.e.
2x/(1 + δ) < y < 2x/(1 − δ)), function h(x) = 0 except for wth(1 − δ)/2w∗ <

x < (1 + δ)/2. This means that p(w,w∗) = 0 for all w � wth(1 − δ)/2 and
that it is a differentiable function in the whole interval [0, w∗]. From the fact that
∂p(w,w∗)/∂w < 0 when w > w+ we can conclude that the maximum of this
function will occur at some point wmax < w+ (Fig. 1).

0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x

Ψ
(x

)

Fig. 1 The steady-state within-species size-distribution ψ(x), with constant mortality, growth parameter
values a = 0.7, b = 0.5, α = 0.85, β = 1, a division threshold of 0.7w∗ and rate K (w,w∗) given by
Eq. (4.14) with k(x) = 4(x − 0.7)2/(1 − x) and daughter cell sizes distributed uniformly between 0.4w∗
and 0.6w∗
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5 Predation by zooplankton

In the idealised model of cell division of Sect. 3 as well as in the more general model
of Sect. 4, we have seen that the allometric scaling of the death rate is a crucial
ingredient to the coexistence of multiple phytoplankton species living on one or a few
resources. The main cause of phytoplankton death is predation. Many species feed on
phytoplankton, from unicellular organisms to whales. Even though a detailedmodel of
the marine ecosystem would have to include these very many types of grazers as well
as their predators, in order to keep the model simple—and at the same time to illustrate
how predation can provide the sort of death rate necessary for coexistence—we will
focus only on unicellular zooplankton.

We will denote the density of zooplankton cells by z(w,w∗, t), so that the number
of cells in a unit volume with a maximum size between w∗ and w∗ + dw∗ that at time
t have a size between w and w + dw is z(w,w∗, t)dwdw∗.

To model predation, we introduce a new rate function S(w,w′): the rate at which
a given predator cell of size w preys on a given prey cell of size w′. This rate could
also be allowed to depend on the specific predator and prey species through w∗ and
w′∗. However, this would introduce unnecessary notational complexity without adding
anything qualitatively different to the discussion.

A common ansatz for this rate function in the literature is

S(w,w′) = wνs(w/w′). (5.1)

The second factor is a kernel that selects the preferred prey size relative to the size
of the predator (Wirtz 2012). The power of w in front of it arises from the foraging
strategy, which is known to depend allometrically on cell size (DeLong and Vasseur
2012).

The mortality rate due to predation is obtained by integrating the contributions
from all predators. For the sake of completeness, a background death due to other
sources—for which we will adopt the allometric scaling (3.10)—will be added. Thus
we set

M(w,w∗, t) =
∫ ∞

0
S(w′, w)zc(w

′, t) dw′ + w
−ξ∗ mb(w/w∗), (5.2)

where the zooplankton community spectrum is defined as

zc(w, t) =
∫ ∞

0
z(w,w∗, t) dw∗. (5.3)

Zooplankton abundance is described by an equation similar to Eq. (2.10),

∂

∂t
z(w,w∗, t) = − ∂

∂w

[
Gz(w,w∗, t)z(w,w∗, t)

]

+ 2
∫ ∞

0
Q(w|w′)Kz(w

′, w∗, t)z(w′, w∗, t) dw′

− Kz(w,w∗, t)z(w,w∗, t) − M(w,w∗, t)z(w,w∗, t),

(5.4)
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where the growth rate is now

Gz(w,w∗, t) =
∫ ∞

0
S(w,w′)εw′ [pc(w′, t) + zc(w

′, t)
]
dw′ − bw1−ξ∗

(
w

w∗

)β

,

(5.5)
with the phytoplankton community spectrum defined as

pc(w, t) =
∫ ∞

0
p(w,w∗, t) dw∗. (5.6)

The first term in (5.5) represents the uptake of nutrients from predation. The fac-
tor ε expresses the efficiency with which prey biomass w′ is converted into predator
biomass. It is assumed that predators prey indiscriminately on all species of cells,
whether zoo- or phytoplankton. The second term accounts for the metabolic con-
sumption. Although we choose this to be the same as for phytoplankton cells [see
Eq. (2.5)], substituting different values for b and β would not change the results of the
model qualitatively.

The steady state of themodel we have just introduced has an important property that
is the main result of this paper, namely that, under the assumptions of the model—
in particular the allometric scalings assumed for for the phytoplankton growth rate
[Eq. (2.6)] as well as for the predation kernel [Eq. (5.1)], the death rate M(w,w∗) and
the zooplankton growth rate Gz(w,w∗) scale allometrically as

M(λw, λw∗) = λ−ξ M(w,w∗) and Gz(λw, λw∗) = λ1−ξGz(w,w∗) (5.7)

if, and only if, the community spectra of the phyto- and zooplankton scale as

pc(λw) = λ−γ pc(w) and zc(λw) = λ−γ zc(w), (5.8)

with γ = 1 + ν + ξ .
The importance of this result lies in the fact that, according to the discussion of

Sects. 3.2 [in the paragraph containing Eq. (3.10)] and 4.3 (second paragraph), this
allometric scaling of M(w,w∗) is a necessary and sufficient condition for the steady
state to exhibit a species-rich phytoplankton community, and similarly, given the scal-
ing ofM(w,w∗), that ofGz(w,w∗) becomes then a necessary and sufficient condition
for the steady state to exhibit a species-rich zooplankton community. Accordingly, the
paradox of the plankton and the power-law size spectrum of the plankton community
are two manifestations of one single phenomenon—which also expresses itself in the
allometric scaling of those two rates.

We will discuss this point further in Sect. 7, and devote the rest of this section to
proving this result. If we substitute zc = z0w−γ within Eq. (5.2) we obtain

M(w,w∗) = w
−ξ∗ m(w/w∗), m(x) = mb(x) + z0 x

−ξ

∫ ∞

0
y−ξ−1s(y) dy. (5.9)

123



Sheldon spectrum and the plankton paradox: two sides of… 83

This trivially satisfies the required allometric scaling. If we substitute both pc =
φ0w

−γ and zc = z0w−γ within (5.5) we arrive at

Gz(w,w∗) = w
1−ξ∗

[
apz

(
w

w∗

)1−ξ

− b

(
w

w∗

)β
]

,

apz = ε(p0 + z0)
∫ ∞

0
xγ−3s(x) dx .

(5.10)

This also complies with the required allometric scaling.
To prove the converse we impose the scaling M(λw, λw∗) = λ−ξ M(w,w∗) on

Eq. (5.2), which leads to

∫ ∞

0
S(w′, λw)zc(w

′) dw′ = λ−ξ

∫ ∞

0
S(w′, w)zc(w

′) dw′.

Changing the variable w′ = λu and using the scaling S(λw, λw′) = λνS(w,w′)
derived from (5.1), this equation transforms into

λ1+ν

∫ ∞

0
S(u, w)zc(λu) du = λ−ξ

∫ ∞

0
S(w′, w)zc(w

′) dw′,

which holds if, and only if, zc(λw) = λ−γ zc(w) with γ = 1+ ν + ξ . Doing the same
with the zooplankton growth rate (5.5) amounts to imposing the scaling

∫ ∞

0
S(λw,w′)w′[pc(w′) + zc(w

′)
]
dw′ = λ1−ξ

∫ ∞

0
S(w,w′)w′[pc(w′)

+ zc(w
′)
]
dw′,

which, using the same argument as above, leads to pc(λw) = λ−γ pc(w).
An interesting by-product of this result is that the expressions for M(w,w∗) and

Gz(w,w∗) have the same scaling form as those introduced in the analysis of phy-
toplankton in previous sections. Therefore we can obtain the steady state of the full
system doing similar calculations. We will discuss this steady state first as obtained
under the idealised division assumption and then as obtained for the general model.

5.1 Steady state with idealised divisionprocess

We can again make the idealised division assumption that cells divide exactly at
size w∗ into two equal-size cells. As in the case of phytoplankton, this amounts to
choosing Kz(w,w∗, t) = Gz(w,w∗, t)δ(w − w∗) and Q(w|w′) = δ(w − w′/2),
which transforms the population balance equation (2.10) into

∂

∂t
z(w,w∗, t) = − ∂

∂w

[
Gz(w,w∗, t)z(w,w∗, t)

] − M(w,w∗, t)z(w,w∗, t),
(5.11)
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valid in the interval w∗/2 � w � w∗, with the boundary condition

2Gz(w∗, w∗, t)z(w∗, w∗, t) = Gz(w∗/2, w∗, t)z(w∗/2, w∗, t). (5.12)

The expressions for the death and growth rates for zooplankton are formally the
same as those for phytoplankton. Therefore the steady state size distributions of species
abundances are given by

p(w,w∗) = p(w∗, w∗)φp(w/w∗), z(w,w∗) = z(w∗, w∗)φz(w/w∗), (5.13)

where

φp(x) = a(N ) − b

a(N )xα − bxβ
exp

{∫ 1

x

m(y)

a(N )yα − byβ
dy

}
, (5.14)

N being the steady state value of the nutrient concentration, and

φz(x) = apz − b

apzx1−ξ − bxβ
exp

{∫ 1

x

m(y)

apz y1−ξ − byβ
dy

}
(5.15)

with apz given in Eq. (5.10).
The overall species abundances p(w∗, w∗) and z(w∗, w∗) can be obtained through

Eqs. (5.3) and (5.6). For the phytoplankton, for instance, given that p(w,w∗) = 0 for
w > w∗,

pc(w) =
∫ ∞

w

p(w∗, w∗)φp(w/w∗) dx = w

∫ 1

0
p

(w

x
,
w

x

)
φp(x)

dx

x2
.

Now, given the scaling pc(λw) = λ−γ pc(w), this equation implies that p(λw∗, λw∗)
= λ−γ−1 p(w∗, w∗), i.e.,

p(w∗, w∗) = p0
Ip(γ − 1)

w
−γ−1∗ , (5.16)

in terms of the functions

Ip(η) =
∫ 1

0
xηφp(x) dx, Iz(η) =

∫ 1

0
xηφz(x) dx . (5.17)

A similar argument yields

z(w∗, w∗) = z0
Iz(γ − 1)

w
−γ−1∗ . (5.18)

As in the case of phytoplankton alone, the level of nutrient at the steady state is
determined by the boundary condition (3.13), which fixes the value of a(N ). There is
a problem though. In this idealised version of a plankton community we are implicitly
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assuming an infinite biomass, because we are not imposing any lower nor upper limit
on the size of cells. This translates into an infinite nutrient uptake by the phytoplankton,

σ(N , p) = a(N )

θ

∫ ∞

0
dw∗ w

1−α−ξ∗
∫ w∗

0
dw wα p(w,w∗)

= a(N )

θ
p0

Ip(α)

Ip(γ − 1)

∫ ∞

0
dw∗ w

1−ξ−γ∗ ,

which will then require an infinite amount of nutrient to survive.
In reality there will always be a minimum size wmin and a maximum size wmax , so

if we introduce the factor

Ξ =
∫ wmax

wmin

dw∗ w
1−ξ−γ∗ (5.19)

and assume that all resource-related quantities diverge proportional to Ξ , we can
rescale those quantities accordingly, so that they stay finite also in the limit ofwmin →
0 and wmax → ∞. Hence we introduce a renormalised nutrient concentration N̂ =
lim N/Ξ , where the limit takes wmin → 0 and wmax → ∞, and similarly with other
variables (a hat will henceforth denote these renormalised quantities). The dynamics
of the nutrient (2.12), in terms of renormalised quantities, becomes1

d N̂

dt
= �̂(N̂ ) − σ̂ (N̂ , p). (5.20)

Hence in the steady state the renormalised nutrient concentration satisfies �̂(N̂ ) +
σ̂ (N̂ , p), which can be rewritten as

p0 = θ�̂(N̂ )Ip(γ − 1)

â(N̂ )Ip(α)
. (5.21)

Once we have determined p0, the boundary condition

∫ 1

1/2

m(y)

apz y1−ξ − byβ
dy = log 2 (5.22)

yields apz , which in turns determines z0 via Eq. (5.10).

5.2 Steady state with general division process

We can introduce a division rate for zooplankton Kz(w,w∗) with similar properties
as that for phytoplankton. The simplest choice is to take the same function—as it
is conceivable that the dynamics of cell division does not depend on the feeding
mechanism—or any other alternative, but in any case scaling (4.14) must hold for

1 In these expressions â(N̂ ) = a∞ N̂/(r̂ + N̂ ) and �̂(N̂ ) = �̂0(1 − N̂/N̂0).
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Kz(w,w∗) as well. Also, we assume that the size distribution of daugher cells is
described by the same function Q(w|w′).

Then we can introduce a similar splitting for zooplankton abundance

z(w,w∗, t) =
{
zl(w,w∗, t), w ≥ w+,

zs(w,w∗, t), w ≤ w+,
(5.23)

and write equations similar to (4.3) and (4.4). The steady state of those equations will
be given by

p(w,w∗) = p(w+, w∗)ψp(w/w∗), z(w,w∗) = z(w+, w∗)ψz(w/w∗), (5.24)

where

ψp(x) = a(N )
( 1+δ

2

)α − b
( 1+δ

2

)β

a(N )xα − bxβ
ep(x)Θp(x), (5.25)

ep(x) = exp

{
−

∫ x

1+δ
2

k(y) + m(y)

a(N )yα − byβ
dy

}
, (5.26)

h p(x) =
∫ 1

wth
w∗

k(y)ep(y)

a(N )yα − byβ
q

(
x

y

)
dy, (5.27)

Θp(x) =
⎧⎨
⎩
1, x > 1+δ

2 ,∫ x

0

k(y)

ep(y)
dy, x < 1+δ

2 ,
(5.28)

and

ψz(x) = apz
( 1+δ

2

)1−ξ − b
( 1+δ

2

)β

apzx1−ξ − bxβ
ez(x)Θz(x), (5.29)

ez(x) = exp

{
−

∫ x

1+δ
2

k(y) + m(y)

apz y1−ξ − byβ
dy

}
, (5.30)

hz(x) =
∫ 1

wth
w∗

k(y)ez(y)

apz y1−ξ − byβ
q

(
x

y

)
dy, (5.31)

Θz(x) =
⎧⎨
⎩
1, x > 1+δ

2 ,∫ x

0

k(y)

ez(y)
dy, x < 1+δ

2 .
(5.32)

Introducing the functions

Jp(η) =
∫ 1

0
xηψp(x) dx, Jz(η) =

∫ 1

0
xηψz(x) dx, (5.33)
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and reproducing the arguments of Sect. 5.1, we obtain

p(w+, w∗) = p0
Jp(γ − 1)

w
−γ−1∗ , z(w+, w∗) = z0

Jz(γ − 1)
w

−γ−1∗ , (5.34)

with

p0 = θ�̂(N̂ )Jp(γ − 1)

â(N̂ )Jp(α)
(5.35)

and z0 derived from (5.10), with apz obtained through the boundary condition

∫ 1+δ
2

0

hz(y)

ez(y)
dy = 1. (5.36)

What we can conclude from the analysis of the last two sections is that only two
steady states are possible in this system in which zooplankton predate on phytoplank-
ton: (a) a collapsed community in which at most a few species of phytoplankton—and
possibly of zooplankton—survive; or (b) a communitymade of a continuum of species
of sizes 0 < w < ∞ that align on a single power law spectrum, with an exponent γ

determined by the allometry of the phytoplankton growth rate and of the zooplankton
predation rate.

It is interesting to realise how the different facts assemble together to yield this
result. On the one hand, as zooplankton predation is the main cause of phytoplank-
ton mortality, in order for several phytoplankton species to coexist the zooplankton
community is forced to distribute their abundances on a power law. In turn, zooplank-
ton grow by predation, and in order for several zooplankton species to coexist the
phytoplankton community is forced to lie on the same power law. We see then that
both communities sustain each other, and that biodiversity is both the cause and the
consequence of the power law size spectrum.

6 Scale invariance

In the last paragraph of Sect. 5 we gave an intuitive explanation of why both the
phytoplankton and the zooplankton spectrum have to follow a power law in the steady-
state. There is also a more formal explanation that we would like to exhibit in this
section: the steady-state equations are scale-invariant in the sense that if an abundance
spectrum p(w,w∗), z(w,w∗) is a solution of the steady-state equations for some level
of nutrient N̂ , then so is the scale-transformed spectrum

pλ(w,w∗) = λγ+1 p(λw, λw∗), zλ(w,w∗) = λγ+1z(λw, λw∗), (6.1)

for any positive λ. Thus solutions come in one-parameter families. The steady-state
however is expected to be unique, and this implies that it must be scale invariant, which
in turn implies that it must be of the power-law form

p(w,w∗) = w
−γ−1∗ f p(w/w∗) and z(w,w∗) = w

−γ−1∗ fz(w/w∗) (6.2)
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for some scaling functions f p and fz . These scaling functions were calculated explic-
itly in earlier sections and depend on some details of the model, but the power-law
form of the abundances follows directly from the scale-invariance of the model and is
insensitive to other details.

Note that the scaling discussed here, where rates and abundances can be expressed
in terms of scaling functions of the ratio of individual size to characteristic size of
the species, has also been employed by Giometto et al. (2013). It is different from the
scaling discussed by Banavar et al. (2007) that scales size and area.

The viewpoint that the crucial property of the aquatic ecosystem is its scale invari-
ance was previously taken by Capitán and Delius (2010), where a scale-invariant
model for the fish part of the spectrum was presented. That paper did not model the
dynamics of the plankton part of the spectrum but simply assumed that it was given by
a power-law. The plankton model in this paper can be combined with the fish model
of Capitán and Delius (2010) to give a dynamic scale-invariant model of the entire
spectrum. What remains to be done is to explain why evolution, presented with the
opportunity to fill a physical environment that itself exhibits scale invariance over
many orders of magnitude, like an ocean or a large lake, would evolve organisms that
preserve this scale invariance to a great degree.

7 Discussion and conclusions

Traditionally, size-based models for the population dynamics of unicellular organisms
concentrate either on cell-level processes like cell growth and cell division to describe
the size distribution of cells within a species (Fredrickson et al. 1967; Diekmann
et al. 1983; Heijmans 1984; Henson 2003; Friedlander and Brenner 2008), or they
concentrate on population-level processes like predator–prey interactions to describe
the abundance distribution across species of different characteristic size (Moloney and
Field 1991;Gin et al. 1998;Armstrong 1999;Baird andSuthers 2007; Stock et al. 2008;
Poulin and Franks 2010; Banas 2011; Ward et al. 2014). We have introduced a model
that does both simultaneously: it resolves the distribution of cell sizes within a species
and the distribution of biomass across species and thereby allows us to start from
individual-level processes and their allometric scaling and from themderive population
level phenomena like the power-law Sheldon spectrum. The only other works of a
similar nature that we are aware of are Giometto et al. (2013) and Rossberg (2012).

At the cell level, our model combines a von Bertalanffy cell growth model with a
flexible cell division model. This cell division model allows a sloppy size control, so
that division can occur for a wide range of sizes. In addition, the two daughter cells do
not necessarily have equal size but instead are described by a size distribution. Even
though this is quite a general model for cell growth and cell division, we were able
to give exact analytic solutions for the steady state cell size distribution. This is novel
and may be useful also for studying size distributions of cells other than plankton
cells. We also worked with an idealised version of the cell cycle (cells split into two
identical daughter cells once they exactly double their size) in parallel to the more
realistic model to show that the main conclusions of our paper do not depend on the
details of the division model.
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The most important aspect of our model is the coupling of the growth of a predator
cell to the death of a smaller prey cell. This makes the cell growth rate depend on
the abundance of prey and the cell death rate depend on the abundance of predators,
leading to a non-linear model. It is remarkable that, in spite of this non-linearity, this
coupling together of cells of all species allows an exact steady-state solution giving
the size distributions for a continuum of coexisting species.

The model has the property that, at steady state, the coexistence of multiple uni-
cellular plankton species and the Sheldon power-law size spectrum are two different
manifestations of just one single phenomenon—‘two sides of the same coin’. This
conclusion rests very much on the allometry of the four rates involved: the growth
rates of phyto- and zooplankton, the death rate, and the predation kernel. The first and
last of these allometries are supported by empirical data and have specified allometric
exponents. However, the allometries of the zooplankton growth and death rates have to
emerge from the predator–prey interactions at steady state, and are technical outcomes
of our modelling. In summary, one can assume in the model any one of the following
properties: (a) allometry of the rates, (b) coexistence of multiple species, and (c) a
power-law community size spectrum. Then, from this, the other two properties can be
derived.

While we have been able to show analytically in this paper that the model predicts a
coexistence steady state that agrees with the Sheldon spectrum, we have not discussed
the stability of this steady state against small perturbations. Due to the complicated
form of the steady state solution, an analytic stability analysis is not feasible. We
have therefore performed the numerical calculations and have reported on them in
a less analytically demanding paper (Law et al. 2016). The numerical results show
that additional stabilising terms, like for example an extra density dependence of
the predation rate, need to be added to the model to stabilise the steady state. This
is in agreement with observations in Maury and Poggiale (2013, section 4.2). As
those stabilising terms are reduced, the system undergoes a Hopf bifurcation during
which the steady-state becomes unstable and the new attractor is an oscillatory state
describing waves of biomass moving up the size spectrum. When averaged over time,
these oscillations average out to a power-law abundance.

Our analyticalmodel presented in this paper is trait-based rather than species-based,
whichmeans that, rather than taking afinite set of species, it uses a continuumof species
distinguished by a continuous trait variable, in our case the maximum size of a cell
of that species. All analytical results in this paper very much rely on the existence of
this continuum of species, which is clearly an idealisation of a real aquatic ecosystem
that can only contain a finite set of species. In that case the community abundance
can never be an exact power law, and therefore also the resulting allometric scaling
can not be exact. One may wonder whether the qualitative results of this paper will
continue to apply.

To test that, we have carried out numerical simulations of a version of the model
(Law et al. 2016) with a finite number of species. A single zooplankton species feeding
on an assemblage of twenty phytoplankton species drives its phytoplankton prey to
very low densities while on the path to extinction itself, leaving a community far
from being described by a Sheldon spectrum. However, increasing the number of
zooplankton species to nine, distributed over a range of characteristic cell sizes, leads
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to a community closer to a Sheldon spectrum. This is because with more zooplankton
species there is a closer approximation to the scaling needed for predation mortality in
the prey, in conjunction with the scaling needed for growth in the predator. Moreover,
the steady state is locally asymptotically stable. This is quite different from the results
on randommatrices (May 1972; Allesina and Tang 2015) which have been interpreted
in ecology as making it less likely for a community to be stable as species-richness and
connectance increase. Ecologists have looked extensively for more realistic network
structures that could counter such instability in complex communities, e.g. Neutel
et al. (2002), Neutel et al. (2007), Neutel and Thorne (2014), James et al. (2015) and
Jacquet et al. (2016). Our results in Law et al. (2016) suggest that stable, unicellular,
ecological networks with Sheldon-like structure cannot be achieved unless enough
species are present to generate approximations to the scalings in predation.

In previous models investigating the continuous coexistence of species, e.g., Gyl-
lenberg and Meszéna (2005) and Sasaki (1997), it had been found that even when a
model has a coexistence steady state that is dynamically stable, this steady state is
unstable against any small structural change to the model, and regions of exclusion
develop in trait space in which no species can exist. However, the results in Law et al.
(2016) show that our model does not suffer from this structural instability. When we
go from the exact power-law death and growth rates of the continuous model to the
approximate power-law in the presence of a finite number of species, the steady-state
remains stable and the abundance of these species still approximately follows the
Sheldon spectrum power law. How much of this structural stability is due to the extra
density dependence in the predation rate and how much of it is due to the fact that we
explicitly model the growth of individuals whereas previous works assumed that all
individuals of a species had the same size, remains to be investigated.

Our model works with a single trait variable. It ignores all other characteristics
that distinguish different species, except whether it is an autotroph or a heterotroph.
Clearly the model could be made more realistic by also distinguishing between differ-
ent functional types, for example between diatoms and dinoflagelates. Also, it would
be easy to include mixotrophs without changing the conclusions of our model. How-
ever we wanted our model to be the simplest conceptual model that clarifies how
coexistence on a Sheldon spectrum emerges. For the same reason, we included only
a single resource described by a very simple equation, whereas in reality the resource
dynamics are complicated and very seasonal.

One question that we have not addressed in this paper is the reason for the observed
allometric scaling of the phytoplankton growth rate and the predation rate. As these
are at the basis of our derivation of coexistence and the Sheldon spectrum, finding an
explanation for them would be very interesting. The allometry of the phytoplankton
growth rate may possibly be imposed by physical constraints. Allometric scaling has
been studied a lot over the last 30 years, startingwith the classics (Calder 1984; Bonner
andMcMahon 1983; Schmidt-Nielsen 1984) andwith important contributions byWest
et al. (1997), Banavar et al. (1999), Banavar et al. (2014), Kooijman (2010) and many
others.

The predation kernel, on the other hand, combines two ingredients: a preferred prey
size and a foraging term. Although there may also be physical constraints for the latter,
both ingredients are to a great extend behavioural—hence subject to evolution. Take the
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preference for a prey size, for instance. It is hard to believe that if the abundance of the
preferred prey is seriously depleted the predatorwill not adapt its consumption habits to
keep a sufficient food supply. We believe that, instead of an input, the predation kernel
should be an emergent feature, consequence of an underlying evolutionary principle
that guides efficient predation habits. We have to leave this interesting question for the
future.
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Appendix: Check of scale-invariance of steady-state equations

In this appendix we will verify our claim that the pair of functions

pλ(w,w∗) = λγ+1 p(λw, λw∗), zλ(w,w∗) = λγ+1z(λw, λw∗), (7.1)

where
γ = 1 + ν + ξ, (7.2)

solve steady-state equations provided the original functions p(w,w∗), z(w,w∗) do
for the same nutrient value N̂ .

The steady state equations, obtained by setting the time derivative to zero in the
dynamical equations (2.10) for p(w,w∗), (5.4) for z(w,w∗), and (5.20) for N̂ are

∂

∂w

[
Gp(w,w∗)p(w,w∗)

] =2
∫ w∗

0
Q(w|w′)K (w′, w∗)p(w′, w∗) dw′

− K (w,w∗)p(w,w∗) − M(w,w∗)p(w,w∗). (7.3)

∂

∂w

[
Gz(w,w∗)z(w,w∗)

] =2
∫ ∞

0
Q(w|w′)Kz(w

′, w∗)z(w′, w∗) dw′

− Kz(w,w∗)z(w,w∗) − M(w,w∗)z(w,w∗), (7.4)

�̂(N̂ ) =σ̂ (N̂ , p). (7.5)
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To check that pλ(w,w∗), zλ(w,w∗) solve these equations we simply substitute them.
Let us start with (7.3) and consider each term individually. The left-hand side gives

∂

∂w

[
Gp(w,w∗)pλ(w,w∗)

] = ∂

∂w

[
Gp(w,w∗)λγ+1 p(λw, λw∗)

]

= λ
∂

∂(λw)

[
λξ−1Gp(λw, λw∗)λγ+1 p(λw, λw∗)

]

= λγ+1+ξ ∂

∂(λw)

[
Gp(λw, λw∗)p(λw, λw∗)

]
,

(7.6)
where we used the scaling property (2.6) of the growth rate Gp(w,w∗). The first term
on the right-hand side of (7.3) gives

2
∫ w∗

0
Q(w|w′)K (w′, w∗)pλ(w

′, w∗) dw′

= 2
∫ λw∗

0
λQ(λw|λw′)λξ K (λw′, λw∗)λγ+1 p(λw′, λw∗) λ−1d(λw′)

= λγ+1+ξ2
∫ λw∗

0
Q(λw|λw′)K (λw′, λw∗)p(λw′, λw∗) d(λw′),

(7.7)

where we used the scaling properties (2.8) and (3.5). The second term gives

−K (w,w∗)pλ(w,w∗) = −λξ K (λw, λw∗)λγ+1 p(λw, λw∗)
= −λγ+1+ξ K (λw, λw∗)p(λw, λw∗)

(7.8)

again due to the scaling property (3.5) of the division rate. Finally, using the expression
(5.2) for the mortality rate, the last term gives

−M(w,w∗)pλ(w,w∗) = −
[∫ ∞

0
S(w′, w)

∫ ∞

0
zλ(w

′, w′∗) dw′∗ dw′

+w
−ξ∗ mb(w/w∗)

]
pλ(w,w∗)

= −
[ ∫ ∞

0
λ−νS(λw′, λw)

∫ ∞

0
λγ+1z(λw′, λw′∗) λ−1d(λw′∗) λ−1d(λw′)

+ λξ (λw∗)−ξmb(λw/λw∗)
]
λγ+1 p(λw, λw∗)

= −λγ+1+ξ M(λw, λw∗)pλ(λw, λw∗).

(7.9)

We substituted both pλ and zλ, used the scaling property of the predation rate S(w,w′)
that follows from Eq. (5.1) and the relation (7.2) between the exponents.

Putting these four terms back together, we see that the resulting equation is the same
as the original equation evaluated at scaledweights λw and λw∗, up to an overall factor
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of λγ+1+ξ . Given that the original equation holds for all weightsw andw∗, this shows
that the transformed equation is equivalent to the original one, establishing its scale
invariance.

In the Eq. (7.4) for the zooplankton abundance the left-hand side involves the
zooplankton growth rate given in Eq. (5.5) and we first determine its behaviour when
pλ and zλ replace the original functions:

Gz(w,w∗) =
∫ ∞

0
S(w,w′)εw′

[∫ ∞

0
(pλ(w

′, w′∗) + zλ(w
′, w′∗))dw′∗

]
dw′

− bw1−ξ∗
(

w

w∗

)β

=
∫ ∞

0
λ−νS(λw, λw′)ελ−1(λw′)

[∫ ∞

0
λγ+1(p(λw′, λw′∗)

+z(λw′, λw′∗))λ−1d(λw′∗)
]
λ−1d(λw′)

− bλ−1+ξ (λw∗)1−ξ

(
λw

λw∗

)β

= λξ−1Gz(λw, λw∗).
(7.10)

Thus under the scale transformation the left-hand side of the zooplankton equation
(7.4) becomes

∂

∂w

[
λξ−1Gz(λw, λw∗)λγ+1z(λw, λw∗)

]

= λγ+1+ξ ∂

∂(λw)

[
Gz(λw, λw∗)z(λw, λw∗)

]
.

(7.11)

The terms on the right-hand side transform just like those in the phytoplantkon equa-
tion. So againwe find that the transformed equation is the same as the original equation
at rescaled weights up to an overall factor of λγ+1+ξ .

Finally, in the renormalised resource equation (7.5) the left-hand side does not
depend on weights or plankton abundances, so is invariant under the scale transfor-
mation. The right hand side transforms to

σ̂ (N̂ , pλ) = lim
â(N̂ )

θ

∫ wmax
wmin

w
1−α−ξ∗

∫ w∗
0 wα pλ(w,w∗)dwdw∗∫ wmax

wmin
w

1−ξ−γ∗ dw∗

= lim
â(N̂ )

θ

∫ λwmax
λwmin

λ−1+α+ξ (λw∗)1−α−ξ
∫ λw∗
0 λ−α(λw)αλγ+1 p(λw, λw∗)λ−1d(λw)λ−1d(λw∗)∫ λwmax

λwmin
λ−1+ξ+γ (λw∗)1−ξ−γ λ−1d(λw∗)

= σ̂ (N̂ , p)
(7.12)

and thus is also invariant, meaning the entire equation is invariant. This completes the
proof that all the steady-state equations are scale-invariant.
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