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Abstract

Rationale: The vast majority of children around the world
undergoing adenotonsillectomy for obstructive sleep
apnea–hypopnea syndrome (OSA) are not objectively diagnosed by
nocturnal polysomnography because of access availability and cost
issues. Automated analysis of nocturnal oximetry (nSpO2

), which is
readily and globally available, could potentially provide a reliable and
convenient diagnostic approach for pediatric OSA.

Methods:DeidentifiednSpO2
recordings froma total of 4,191 children

originating from 13 pediatric sleep laboratories around the worldwere
prospectively evaluated after developing and validating an automated
neural network algorithm using an initial set of single-channel nSpO2

recordings from 589 patients referred for suspected OSA.

Measurements and Main Results: The automatically
estimated apnea–hypopnea index (AHI) showed high
agreement with AHI from conventional polysomnography

(intraclass correlation coefficient, 0.785) when tested in 3,602
additional subjects. Further assessment on the widely used AHI
cutoff points of 1, 5, and 10 events/h revealed an incremental
diagnostic ability (75.2, 81.7, and 90.2% accuracy; 0.788, 0.854, and
0.913 area under the receiver operating characteristic curve,
respectively).

Conclusions: Neural network–based automated analyses of
nSpO2

recordings provide accurate identification of OSA
severity among habitually snoring children with a high pretest
probability of OSA. Thus, nocturnal oximetry may enable a
simple and effective diagnostic alternative to nocturnal
polysomnography, leading to more timely interventions and
potentially improved outcomes.

Keywords: childhood obstructive sleep apnea–hypopnea
syndrome; nocturnal oximetry; blood oxygen saturation;
automated pattern recognition; neural network
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Since its initial description, pediatric obstructive
sleep apnea–hypopnea syndrome (OSA)
has become recognized not only as a
prevalent condition in children, but has
also been associated with increased risk for
major morbidities affecting neurocognitive,
behavioral, cardiovascular, and metabolic
functioning, ultimately resulting in overall
health and quality of life declines (1, 2).
These adverse consequences, along with
the increased health care use and
associated costs (3, 4), have prompted
several consensus statements and
guidelines advocating for timely
diagnosis of OSA using nocturnal
polysomnography (NPSG) (1, 5, 6).
However, the relative unavailability of
pediatric sleep laboratories around the
world, the overall high costs and labor-
intensive nature associated with NPSG
testing, and their inconvenience to both
parents and children have resulted in only a
minority of children being objectively
evaluated (7). Such findings have
prompted the search for simplified

approaches that would increase the
accessibility and effectiveness of OSA
diagnosis, and a large array of proposed
methodologies ranging from questionnaires
to biomarkers has emerged (1, 2, 5, 6,
8–12).

Nocturnal oximetry (nSpO2
) was

initially proposed as a screening tool for
OSA in symptomatic children (13–17),
and although based on relatively small
pediatric cohorts, this approach appears
to provide high specificity but limited
sensitivity (10). However, the relatively low
accuracy and interscorer reliability of
visually scored nSpO2

and the inability of
such approaches in providing an accurate
estimate of OSA severity, particularly at
the low end of its severity spectrum,
reduced the enthusiasm for wider
implementation of nSpO2

recordings.
In a preliminary study, we developed a

neural network–based signal-processing
technique that appeared to improve
remarkably the diagnostic ability of single-
channel nSpO2

recordings (15). In the
present study, we expanded the derivation
and validation of nSpO2

recordings by
prospectively assessing a large cohort of
children, using polysomnography, across
13 pediatric sleep laboratories around the
world. The cumulative findings lend
support to the use of automated signal-
processing algorithms of nSpO2

recordings
in children to diagnose OSA and
estimate its severity.

Methods

Patients
A total of 4,191 habitually snoring children
(2,517 boys and 1,674 girls), ranging in
age from 2 to 18 years and who were
referred for clinical suspicion of OSA
and underwent NPSG, composed the
population under study. Deidentified
recordings of nSpO2

were extracted from
each NPSG along with pertinent
demographic and clinical information
including NPSG-derived measures. As

indicated, all patients underwent physician-
directed in-laboratory NPSG because
of habitual snoring and/or witnessed
breathing pauses during sleep as reported
by their parents or caregivers. The study
was approved by the ethics review
committee of each of the 13 participating
centers.

Sleep Studies
All NPSGs were originally scored manually
at each participating center, based on the
2012 American Academy of Sleep Medicine
criteria (17). Included NPSG studies
required at least 6 hours of recorded
sleep. The apnea–hypopnea index (AHI)
obtained from each individual NPSG was
used as the “gold standard” for OSA
diagnosis. In this study, the following
common clinically used AHI cutoff
points were assessed: 1, 5, and 10 events
per hour (e/h). Table 1 shows the patient
demographics and OSA prevalence, overall
and for each participating center, according
to the aforementioned AHI cutoffs.

Automatic nSpO2
Signal Analysis

Four automatic signal analysis stages were
implemented to obtain useful information
from nSpO2

. A scheme of the automatic
methodology applied to the nSpO2

signals
is shown in Figure E1 in the online
supplement. The first phase was a
preprocessing step to standardize the
signals obtained from the 13 different
pediatric sleep centers. These centers
recorded nSpO2

using one or several
sampling rates ranging from 1 to 500 Hz,
as well as different decimal resolution.
Hence, all the nSpO2

recordings acquired
were resampled to 25 Hz, as recommended
by the American Academy of Sleep
Medicine (18). In addition, signals were all
rounded to the second decimal place.
Finally, artifacts were removed according
to the automatic method suggested by
Magalang and colleagues (19).

After preprocessing, a feature
extraction phase was used to characterize
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At a Glance Commentary

Scientific Knowledge on the
Subject: Obstructive sleep apnea
(OSA) is a prevalent condition in
children that currently requires an
overnight sleep study for diagnosis. In
view of the relative scarcity and cost of
sleep studies for children, major delays
occur in sleep apnea diagnosis and
treatment, and a large proportion of
children are treated without a formal
diagnosis.

What This Study Adds to the
Field: An automated neural network
algorithm based on overnight oximetry
recordings provides accurate
identification of OSA severity among
habitually snoring children with a high
pretest probability of OSA.
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pediatric OSA in each recording.
Consequently, two complementary
analytical approaches consisting of time-
domain and frequency-domain analyses
were used. The latter is justified because of
the recurrence of apneic events, whereas the

former has already shown its ability to
quantify the statistical and nonlinear
information inherent to biomedical
signals (20). Thus, up to 23 features were
obtained from each recording, which are
summarized in Table 2. All of them have

been successfully evaluated in previous
studies involving patients with OSA (20–24).

Such comprehensive characterization
of the nSpO2

recordings may lead to
redundant features (25). Hence, the third
phase of our automatic signal-processing
methodology was a feature selection stage.
The fast correlation-based filter was applied
to the extracted features to evaluate the
relevance and redundancy of their OSA-
related information. In a first step, the fast
correlation-based filter algorithm conducts
a relevancy analysis by comparing the
information shared by each feature and a
reference variable (26), that is, AHI. Then,
the features are ranked higher as more
information is shared with the reference.
A second step consists of comparing the
information shared by each feature with
the other ones, that is, conducting a
redundancy analysis. Features sharing more
information with other, higher-ranked ones
than with AHI are discarded because
of redundancy (26).

At this point of the processing, subjects
under study were characterized by a vector,
whose components are their corresponding
values of the nonredundant extracted
features. Thus, the fourth stage consisted of
the training of a multilayer perceptron
(MLP) model with the ability to
automatically estimate AHI from these
patterns. MLP is an artificial neural network

Table 1. Demographic and Clinical Data for Each Participating Site

Center
Participants

(n)

Age
(yr)

(Mean 6 SD)
Male
(%)

BMI
(kg/m2)

(Mean 6 SD)

AHI
(per Hour TST)
(Mean 6 SD)

OSA for
AHI = 1 e/h

(%)

OSA for
AHI = 5 e/h

(%)

OSA for
AHI = 10 e/h

(%)

UofC 981 6.16 3.4 61.4 19.76 7.3 9.36 17.2 82.2 41.3 23.3
UofTn 611 7.26 4.6 54.6 23.36 10.1 5.86 11.3 68.1 29.6 17.7
HUBU 578 4.16 2.2 61.8 17.16 4.2 5.96 11.3 64.5 26.3 15.2
BCH 558 6.36 5.3 66.3 17.86 3.7 5.86 11.7 65.1 27.4 17.0
MSU 499 6.56 5.0 55.5 17.86 11.2 6.26 9.3 85.8 22.0 14.8
CGMH 283 9.96 3.2 72.4 19.56 4.6 4.36 10.0 72.4 21.9 8.1
UofHK 202 10.06 2.4 62.9 18.76 4.6 4.96 7.5 70.3 26.2 10.4
PUCC 183 5.46 4.8 52.5 17.86 4.2 3.76 9.1 60.1 18.6 7.6
UofA 130 11.76 3.1 37.7 30.36 5.7* 3.26 7.1 63.1 22.3 10.0
SJDCH 60 8.46 4.8 58.3 19.56 5.2 4.26 6.1 76.7 25.0 11.6
ASCH 51 7.06 3.4 66.7 20.66 6.4 10.66 13.8 90.2 54.9 37.2
UofTu 36 10.46 3.5 61.1 21.06 8.0 6.96 12.9 72.2 27.8 16.7
HSM 19 6.56 3.8 47.4 19.16 6.8 11.06 15.2 73.7 47.4 36.8

All 4,191 6.76 4.4 60.0 20.06 7.0 6.46 12.5 72.9 29.6 16.8

Definition of abbreviations: AHI = apnea–hypopnea index; ASCH = Aghia Sophia Children’s Hospital (Greece); BCH =Beijing Children’s Hospital (China);
BMI = body mass index; CGMH=Chang Gung Memorial Hospital (Taiwan); e/h = events per hour; HSM=Hospital de Santa Maria (Portugal);
HUBU =Hospital Universitario de Burgos (Spain); MSU =Michigan State University (USA); OSA = obstructive sleep apnea–hypopnea syndrome;
PUCC= Pontificia Universidad Católica de Chile (Chile); SJDCH = San Joan de Deu Children’s Hospital (Spain); TST = total sleep time; UofA = University of
Antwerp (Belgium); UofC = University of Chicago (USA); UofHK = University of Hong Kong (Hong Kong, China); UofTn = University of Tennessee (USA);
UofTu = University of Tuebingen (Germany).
*This cohort was specifically aimed at verifying the accuracy of the neural network–based algorithm in an obese pediatric population.

Table 2. Time and Frequency Domain Features Extracted from the nSpO2
Recordings

Feature Description

Time domain
Mt1–Mt4 First, second, third, and fourth statistical moment of a time

series
CTM Central tendency measure to quantify variability
LZC Lempel–Ziv complexity
SampEn Sample entropy to measure irregularity
ODI3 3% oxygen desaturation index

Frequency domain
MA Full-spectrum amplitude maximum
mA Full-spectrum amplitude minimum
Mf1–Mf4 First, second, third, and fourth statistical moment of the full

spectrum
MF Median frequency of the full spectrum to estimate the

distribution of the power of the spectrum
SpecEn Spectral entropy to measure the full spectrum flatness
WD Wootters’ distance to estimate the statistical distance of the

full spectrum and a uniform distribution
MABOI* Spectrum amplitude maximum from the band of interest*
mABOI Spectrum amplitude minimum from the band of interest
Mf1BOI–Mf4BOI First, second, third, and fourth statistical moment of the

spectral band of interest

Definition of abbreviation: nSpO2
= nocturnal oximetry.

*The band of interest (BOI) was defined as the one showing the highest statistical differences among
obstructive sleep apnea severity groups of the training set (21).
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that is typically arranged in three layers of
mathematical units called “neurons”: input,
hidden, and output (27). The input has as
many neurons as features used to train
the network, that is, the number of
nonredundant features. By contrast, the output
is composed of only a single neuron, which
provides an AHI value for each subject. Finally,
the number of neurons of the hidden layer
(NH) is a tuning parameter experimentally
determined in the training set (27). The value
of a regularization parameter (a) is another
common design choice used to minimize the
chances of overfitting training data (27).

Statistical Analyses
SPSS Statistics version 20 software
(SPSS/IBM, Chicago, IL) was used to
perform statistical analyses. Normality and
homoscedasticity analyses revealed that
oximetric features derived from the
population under study were not normally
distributed and variances were unequal.
Therefore, descriptive analysis of features
was presented in terms of their median
and interquartile range. In addition, the
nonparametric Mann-Whitney U test was
applied to search for statistical significant
differences between OSA-negative and
OSA-positive groups. A P value less than
0.05 was considered significant.

MATLAB R2016b (MathWorks,
Natick, MA) was used to implement feature
extraction, selection, and classification
stages. A Bland-Altman plot and intraclass
correlation coefficient (ICC) were used to
directly assess the agreement between the
NPSG-derived AHI and the neural
network–derived AHI estimate. The
agreement in the four-class classification
between the NPSG AHI and our
estimate was measured using Cohen’s k.
The four OSA groups were defined
according to the aforementioned cutoffs
(AHI, 1, 1<AHI, 5, 5<AHI, 10,
AHI> 10). In addition, the diagnostic
performance for each cutoff (AHI = 1, 5,
and 10 e/h) was assessed by means of
sensitivity, specificity, positive predictive
value, negative predictive value (NPV),
positive likelihood ratio (LR1), negative
likelihood ratio (LR2), accuracy (Acc), and
area under the receiver operating
characteristic curve (AUC).

Study Validation
Sixty percent of subjects were randomly
selected from the initial database at the
University of Chicago and were included in

the training set (n = 589). The remaining
3,602 subjects from all 13 centers composed
the test set. The training set was used for
three purposes: (1) selection of relevant and
nonredundant features, (2) optimization of
MLP neural network parameters (NH and
a), and (3) training the specific MLP model
to be tested. Each of them was differently
implemented for the sake of results
generalization. Feature selection was
conducted along with a sampling with
replacement procedure (bootstrap)
repeated 1,000 times to obtain a robust
optimum subset (25). MLP parameters
were optimized by computing Cohen’s k
for a representative range of (NH, a) pairs.
This measurement of agreement for
optimization was chosen to prioritize the
correct group classification over the exact
AHI estimation. Each k value was obtained
after a leave-one-out cross-validation
procedure (28). Finally, the specific MLP
model was derived from the entire training
set by the use of the optimum (NH, a) pair
previously found. The test set was only used
to estimate the diagnostic performance of
our candidate algorithm in a large group
of previously untested recordings.

Results

Optimum Feature Subset
The number of times that each extracted
feature was selected over the 1,000 bootstrap
repetitions exhibited substantial
redundancy (Figure E2), such that only two

features were retained as the optimum set
for the MLP training model: ODI3 (selected
995 times) and Mf3BOI (selected 621 times).

Derivation of the MLP Model
Optimization of NH and a was conducted
by training MLP models through a leave-
one-out cross-validation procedure and was
applied to the optimum selected features
from the training set. As shown in Figure
E3, the Cohen’s k obtained for each (NH, a)
pair evaluated, representing an average of
10 repetitions, was conducted to minimize
the effect of the MLP random initialization,
with ultimately optimum parameters being
set to a = 7 and NH = 6 for the sake of
model complexity, because no increase in
the third decimal of the k value was found
with increased iterations. A specific MLP
model was thus derived by training a new
neural network using these parameters and
the entire training group, that is, without
the leave-one-out cross-validation
procedure.

Agreement with NPSG AHI
Figure 1 displays the Bland-Altman plot
comparing the NPSG AHI of the subjects
from the test group with our corresponding
AHI estimation. It also shows the ICC
between these two measurements. As can
be observed, a low mean positive difference
(slight AHI overestimation) is reached
(0.230), with a 95% confidence interval of
213.80 to 14.26]. In addition, a high ICC is
reached (0.785). A scatter plot comparing
NPSG-derived AHI against our AHI
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Figure 1. Bland-Altman plot comparing NPSG AHI with the estimated AHI, using the neural
network–based algorithm. AHI = apnea–hypopnea index; ICC = intraclass correlation coefficient;
NPSG= nocturnal polysomnography.
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estimation can be found in Figure E4. In
addition, the lack of any significant
differences across either subject ages or
body mass index are also provided in
Tables E1 and E2.

Diagnostic Performance
Table 3 shows the four-class confusion
matrix comparing the classification derived
from the NPSG AHI with the classification
of our AHI estimation in the test set.
General accuracy over the four classes (sum
of the main diagonal of the matrix) was
54.7%. Accordingly, Cohen’s k was 0.348.
Table 4 displays sensitivity, specificity, Acc,
positive predictive value, NPV, LR1, and
LR2 for the AHI = 1, 5, and 10 e/h cutoffs,
derived from the confusion matrix. Our
AHI estimation showed an increasing
degree of diagnostic ability as the cutoff
increased. The highest Acc (90.2%) was
reached when AHI = 10 e/h was defined as
the OSA threshold, and was accompanied
by specificity, 94.1%; NPV, 94.3%; and
LR1, 11.64. Figure 2 displays the receiver
operating characteristic curves for the three
AHI cutoffs for the diagnosis of OSA. The
corresponding AUC for each diagnostic
cutoff was high, with improving values as
the AHI cutoff increased. Accordingly, the
maximum AUC value (0.913) was reached
for AHI = 10 e/h.

Discussion

This study shows that neural network–based
analytic approaches of nSpO2

recordings are
capable of reliably identifying children with
OSA, using any of three commonly used
AHI clinical cutoff values, while also
allowing for accurate estimates of NPSG-

derived AHI. Considering the extensive
derivation and validation precautions
undertaken in this work, the current
findings should enable their expanded
and widespread use in clinical settings,
particularly when pediatric sleep laboratory
facilities are not readily available.

Before we discuss some of the clinical
implications of our findings, several
methodological considerations should be
mentioned. In our aim to maximize the
diagnostic ability of nSpO2

a careful
automatic signal analysis was conducted,
because sampling rates, resolution, and
averaging time settings may impose
significant influence on the collected
data, which could affect time response and
reproducibility of nSpO2

(29). Thirteen
medical centers were involved in this study,
each of them using its own oximetry
data acquisition settings. However, we a
posteriori proceeded to standardize the
nSpO2

recordings to 25 Hz as the sampling
rate recommended by the American
Academy of Sleep Medicine (18). In
addition, two decimal places were set post
hoc for all SpO2

measures, which avoided
intercenter inequalities when conducting
time domain analyses (14). These
precautionary steps enabled expanded
application of our analyses to all recordings,
regardless of the center where they had
been acquired. Other steps aimed at
enhancing both the validation of our
methodology and its generalizability
were also implemented, such that 86% of
samples were used only for testing purposes
and included subjects from the 13 different
centers involved in the study, but only an
untested proportion of the database from
which the neural network algorithm was
originally derived. Moreover, the three

objectives pursued with the analysis of the
training set (feature selection, MLP
parameter optimization, and MLP model
derivation) were reached with three
different validation approaches
(bootstrapping, leave-one-out, and hold-
out, respectively), thereby enhancing the
robustness of the approach. Of note, a
high degree of redundancy in the nSpO2

information provided by the features
commonly used to evaluate OSA in adults
is present when applied to children. This
may be due to the more restrictive rules
that are commonly used to diagnose
pediatric OSA, which led to many of the
adult-related features being suboptimal
for pediatrics, and should prompt
future exploration of nSpO2

features
that enable improved specific ability to
analyze nSpO2

recordings in children.
Nevertheless, our MLP model showed
high diagnostic ability even when using
information from only two features
(ODI3 and Mf3BOI).

Overall, the accuracy of our proposed
approach ranged between 75 and 90% for
AHI estimates of 1 to 10 e/h, respectively,
along with the anticipated shift from higher
sensitivity at lower AHI to higher specificity
at the higher AHI cutoff (Table 4). Thus,
the maximum benefit of our automated
methodology in terms of simplicity and
screening capability can be achieved when
using the more widely used and clinically
relevant cutoff for OSA (i.e.,>5 e/h), which
corresponds to the point of upward
inflection in morbidity risks associated with

Table 3. Four-Class Confusion Matrix Showing Classification Agreement of Neural
Network–based AHI Estimate and Nocturnal Polysomnography–derived AHI

MLP AHI

Estimated Severity

AHI < 1 1<AHI < 5 5<AHI < 10 10<AHI

NPSG AHI
AHI, 1 551 427 44 14
1< AHI, 5 356 892 206 63
5< AHI, 10 51 193 149 104
10< AHI 3 87 83 379

Definition of abbreviations: AHI = apnea–hypopnea index; MLP =multilayer perceptron; NPSG=
nocturnal polysomnography.
Bold indicates patients correctly classified into their severity degree category.

Table 4. Diagnostic Performance of
Neural Network Estimated Apnea–
Hypopnea Index for the Cutoffs 1, 5, and
10 Events per Hour

AHI Cutoff

1 e/h 5 e/h 10 e/h

Se, % 84.0 68.2 68.7
Sp, % 53.2 87.2 94.1
PPV, % 81.6 68.6 67.7
NPV, % 57.3 87.0 94.3
LR1 1.79 5.32 11.64
LR2 0.30 0.36 0.33
Acc, % 75.2 81.7 90.2

Definition of abbreviations: Acc = accuracy; AHI =
apnea–hypopnea index; e/h = events per hour;
LR1 = positive likelihood ratio; LR2 = negative
likelihood ratio; NPV = negative predictive value;
PPV = positive predictive value; Se = sensitivity;
Sp = specificity.
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sleep-disordered breathing in children
(30–33). In other words, the accuracy of the
surrogate diagnostic method, using the
nSpO2

-based approach described here, is
increasingly robust as the severity of NPSG-
based OSA increases, such that we can
confidently both confirm and discard cases
that would or would not fulfill OSA criteria.
According to the confusion matrix shown
in Table 3, 94.4% of children predicted to
have an estimated AHI less than 1 e/h
would have an actual NPSG AHI no greater
than 5 e/h. In addition, 94.4% of children
predicted to have an estimated AHI> 5 e/h
would actually have an NPSG AHI greater
than 1 e/h. A diagnostic protocol could
then be derived from these results as
follows: (1) if our neural network model
predicts an estimated AHI less than 1 e/h,
OSA would be discarded because most
patients (94.4%) probably will have an
NPSG AHI value less than 5 e/h; (2) if
our neural network model predicts an
estimated AHI> 5 e/h, consider referring
for treatment because most patients
(94.4%) probably will have an NPSG AHI
value> 1 e/h in the context of snoring
children; and (3) if our neural network
model predicts an estimated AHI> 1 e/h
but less than 5 e/h, we would recommend
referral for NPSG, because doubts arise
about the actual definitive diagnosis. Such a
protocol would potentially reduce the need
for 52.6% of NPSGs, while indicating
treatment for only 5.7% of the snoring

children with an actual NPSG AHI, 1 e/h;
in addition, this approach would not lead to
treatment for only 5.5% of the children with
an actual NPSG AHI> 5 e/h. In the latter
case, persistence of clinical symptoms for
2–3 months should then prompt referral
for NPSG.

Notwithstanding such considerations,
the relatively small proportion of children
who would be potentially missed using
nSpO2

might be minimized by repeating the
oximetry-based test within a short period of
time (weeks to a few months) if the child’s
symptoms persist. Alternatively, highly
symptomatic children identified through
the use of existing alternative tools such as
the sleep medical record (34), and whose
nSpO2

assessments were negative using the
methodology proposed above, could then
be referred for NPSG, thereby markedly
reducing the overall need for more costly
testing in resource-constrained settings.
Because a large number of sleep
laboratories appear to use the AHI cutoff of
1 e/h for interpretation of NPSG (1), the
elevated sensitivity and lower specificity
features that emerged in our nSpO2

approaches to predict AHI> 1 e/h would
increase the number of positive diagnoses
by the proposed methodology, while
reducing the rate of false negative cases.
Considering the broad variance in AHI
cutoffs applied for therapeutic decision
making in the field, such an approach may
be preferred by those clinicians who are

more inclined to advocate treatment such
as adenotonsillectomy at the low end of
abnormal AHI levels. Thus, similar to the
options offered by NPSG to use the AHI as
one of the major parameters guiding
clinical management decisions, the nSpO2

neural network–derived AHI would offer
similar options, that is, different AHI
cutoffs at a fraction of the cost and
effort involved in NPSG testing.

Multiple alternatives to NPSG have
been examined over the years in an effort to
improve the accessibility of habitually
snoring symptomatic children to a timely
diagnosis and treatment. To this end, a large
number of approaches have been advocated
ranging from questionnaires to unattended
NPSG at home. The overall consensus from
such efforts indicates that clinical history
and physical examination or questionnaire-
based instruments lack the required
diagnostic accuracy, precluding their use as
a routine diagnostic tool for OSA (35, 36).
However, respiratory polygraphy is
becoming increasingly accepted as a
surrogate diagnostic approach in adults
and children, even if its accuracy is
reduced at the low end of OSA severity
(9, 37). In the present study, our findings
in a large and diverse clinical cohort
indicate that automated analysis of single-
channel nSpO2

is at least as accurate as
respiratory polygraphy in the diagnosis of
OSA in children, further confirming the
adequacy and potential limitations of
such approaches as reported in other
studies (9, 24).

The obvious simplicity of nSpO2

recordings has prompted efforts to evaluate
their potential diagnostic properties; to
date, commonly used oximetric indices
such as the number of desaturations,
clusters of events within a particular
timeframe, and percentage of time spent
with a SpO2

below a particular threshold
have been examined (9, 38–43). However,
such conventional nSpO2

analytical
approaches have not achieved the desirable
diagnostic performance for detecting OSA
in children. Conversely, as shown by Garde
and colleagues (14), more sophisticated
mathematical analyses of the oximeter
signal achieved 88.4% sensitivity and 83.6%
specificity for an AHI cutoff of 5 e/h,
albeit in a small single-center cohort.
Notwithstanding these considerations, the
methodological approach presented herein
aims to confirm or discard the presence of
OSA, that is, to perform binary
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Figure 2. Receiver-operating characteristic curves of neural network–based AHI estimate in the test
set for 1, 5, and 10 events per hour (e/h). AHI = apnea–hypopnea index; AUC = area under the curve.
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classification. Although three commonly
used AHI cutoff points in clinical practice
were assessed to classify the absence or
presence of OSA (1, 5, and 10 e/h), it may
be useful to couple the current approach to
a pattern recognition methodology that
would aim at not only classifying high
pretest symptomatic pediatric patients
into the four common categories of severity
(no disease and mild, moderate, and severe

disease) as performed here, but further
enable estimates of the actual PSG-derived
AHI of each patient.

Conclusions
This study provides extensive validation
of the satisfactory diagnostic performance
of automated analysis of nocturnal single-
channel oximetry as a low-cost alternative
to standard NPSG in the context of

childhood OSA. Therefore, the current
findings indicate that automated
processing of the nSpO2

signal provides
an accurate and widely implementable
diagnostic tool for childhood OSA,
particularly in resource-constrained
environments. n

Author disclosures are available with the text
of this article at www.atsjournals.org.
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16. Álvarez D, Kheirandish-Gozal L, Gutiérrez-Tobal GC, Crespo A, Philby MF,
Mohammadi M, Del Campo F, Gozal D, Hornero R. Automated
analysis of nocturnal oximetry as screening tool for childhood
obstructive sleep apnea–hypopnea syndrome. Conf Proc IEEE Eng
Med Biol Soc 2015;2015:2800–2803.

17. Berry RB, Budhiraja R, Gottlieb DJ, Gozal D, Iber C, Kapur VK, Marcus CL,
Mehra R, Parthasarathy S, Quan SF, et al.; American Academy of
Sleep Medicine; Deliberations of the Sleep Apnea Definitions Task Force
of the American Academy of SleepMedicine. Rules for scoring respiratory
events in sleep: update of the 2007 AASM Manual for the Scoring of
Sleep and Associated Events. J Clin Sleep Med 2012;8:597–619.

18. Iber C, Ancoli-Israel S, Chesson A, Quan SF. The AASM manual for the
scoring of sleep and associated events: rules, terminology and
technical specifications, Vol. 1. Westchester, IL: American Academy
of Sleep Medicine; 2007.

19. Magalang UJ, Dmochowski J, Veeramachaneni S, Draw A, Mador MJ,
El-Solh A, Grant BJ. Prediction of the apnea–hypopnea index from
overnight pulse oximetry. Chest 2003;124:1694–1701.

20. Costa M, Goldberger AL, Peng CK. Multiscale entropy analysis of biological
signals. Phys Rev E Stat Nonlin Soft Matter Phys 2005;71:021906.
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