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We study how exposure to extreme temperatures in early periods
of child development is related to adult economic outcomes mea-
sured 30 y later. Our analysis uses administrative earnings records
for over 12 million individuals born in the United States between
1969 and 1977, linked to fine-scale, daily weather data and loca-
tion and date of birth. We calculate the length of time each indi-
vidual is exposed to different temperatures in utero and in early
childhood, and we estimate flexible regression models that allow
for nonlinearities in the relationship between temperature and
long-run outcomes. We find that an extra day with mean tem-
peratures above 32 °C in utero and in the first year after birth is
associated with a 0.1% reduction in adult annual earnings at age
30. Temperature sensitivity is evident in multiple periods of early
development, ranging from the first trimester of gestation to age
6–12 mo. We observe that household air-conditioning adoption,
which increased dramatically over the time period studied, miti-
gates nearly all of the estimated temperature sensitivity.

temperatures | fetal origins | early life health | long-run wellbeing |
climate change

Exposure to extreme temperatures has harmful contempora-
neous effects on human health due to an overload on the

body’s capacity to self-regulate (e.g., refs. 1–6). Fetuses and
infants are especially sensitive to hot temperatures because their
thermoregulatory and sympathetic nervous systems are not fully
developed (7, 8), with prior research showing that extreme heat
during the prenatal period and shortly after birth has adverse
effects on birth weight and infant mortality (9, 10).

Yet much less is known about the long-run persistence of the
effects of temperature or whether they influence other mea-
sures of human capital, such as adult labor market outcomes.
This study attempts to fill this gap by providing evidence on the
long-term consequences of early-life exposure to extreme tem-
peratures, using data on over 12 million individuals born in the
United States between 1969 and 1977 and observed 30 y later.

The possibility that temperature can have lasting effects on
human development may be particularly consequential in light
of the growing consensus among scientists that climate change
is contributing to a gradual warming of the earth. Researchers
predict an increase in global mean temperatures, largely driven
by a rightward shift in the upper tail of the temperature distri-
bution. For example, the number of days with mean temperature
above 32 °C in the average county in the United States is fore-
casted to increase from about 1/y to about 43/y by 2070–2099 (1).
As such, estimates of the long-term consequences of exposure to
extreme heat on individuals’ wellbeing may serve as important
inputs into calculations of the social cost of carbon (11). These
estimates may also help explain whether the persistent correlation
between income and temperature around the world in part oper-
ates through a causal link between early-life exposure and adult
productivity (see refs. 12–19 for a broader literature on the rela-
tionship between the environment and economic development).

We also examine whether observed forms of adaptation have
the ability to mitigate some of the direct biological effects of

temperature on long-term economic outcomes. Adaptation to
extreme temperatures could occur through physiological acclima-
tization (i.e., changes in skin blood flow, metabolic rate, oxygen
consumption, and core temperatures) (21), short-run temporal
substitution between activities (i.e., limiting time spent outside),
or the adoption of more permanent measures of temperature
control such as air conditioning (AC), which we study here.

Our analysis uses newly available data from the US Census
Bureau’s Longitudinal Employer Household Dynamic (LEHD)
Files, which contain information on adult labor market outcomes
linked to county and exact date of birth. We combine these
longitudinal earnings records with fine-scale daily weather data
that spans the United States on a 2.5-km × 2.5-km grid. We
use these data to construct the length of time an individual is
exposed to different temperatures in several focal windows of
early childhood development. We then estimate flexible statis-
tical models, designed to identify nonlinearities in the long-run
effect of early-life temperature exposure on adult labor market
outcomes.

Early-life exposure to temperature is potentially correlated
with other determinants of human capital development. For
example, children born in different seasons within the year dif-
fer in their socio-economic backgrounds (22), and families non-
randomly choose to live in geographic locations with distinct cli-
mates. The empirical challenge of this paper is to isolate the
causal relationship between early-life temperature exposure and
adult outcomes from the possible confluence of these other fac-
tors. We address this challenge by focusing on the following
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thought experiment that we observe in our data many thousands
of times: Consider two children of the same gender and race,
born in the same county on the same day of the year but in dif-
ferent years. Now, suppose that one child experiences an extreme
heat wave in his or her second trimester of gestation, while the
other does not. Our goal is to quantify any differences in these
individuals’ outcomes measured 30 y after birth.

The evidence on the pathways through which temperature
influences human health suggests that our statistical models
must be flexible enough to account for nonlinearities. We fol-
low recent work, allowing the marginal effect of temperature
to differ over both the temperature distribution and different
periods of child development (3, 5, 9, 17, 23, 24). Our mod-
els also control for county × day of year × race × sex fixed
effects (e.g., African-American males born in Harris County,
TX on November 18) and year fixed effects. Thus, estimates
are purged of time-invariant observed and unobserved determi-
nants of long-run human capital formation in a given county,
any seasonal determinants of fertility that may also be cor-
related with later-life outcomes such as compulsory school-
ing laws (25) and socio-economic status (22), and aggregate
cohort trends.

Finally, we take advantage of the rapid increase in house-
hold AC adoption over the course of our sample period to ana-
lyze the role of adaptation. We examine whether individuals
born in counties with higher levels of household AC penetra-
tion exhibit different long-term responses to extreme temper-
atures relative to individuals born in counties with lower rates
of AC adoption. These results are useful for understanding the
extent to which adaptation vis-a-vis AC adoption could mitigate
the adverse effects of future climate change.

Our study relies on the identifying assumption that, holding
constant the county of birth, birth day of year, race, and gender of
an individual, there are no unobserved variables that are system-
atically correlated with both temperature exposure in early life
and adult labor market outcomes. While this assumption is inher-
ently untestable, we conduct several indirect tests. First, we check
whether temperature episodes occurring before conception are
correlated with later-life outcomes. Second, we analyze whether
observable population characteristics such as sex and race are
correlated with temperature exposure across birth county × birth
day of year cells.

Results
SI Appendix, Table S1 reports some basic statistics from our anal-
ysis sample. Areas in the Northeast experience far fewer days
above 32 °C than areas in the Southwest. These translate to
differences in the average number of days during various criti-
cal periods of a child’s development spent in different temper-
ature bins (SI Appendix, Table S1B). In addition, the Western
states in our sample experienced some of the smallest changes
in AC penetration relative to the states with hotter climates in
the South.

To get a sense of the possible scale and scope of the influence
of extreme temperature on human capital formation, we first
examine the relationship between the conditional mean earn-
ings at age 30 and the conditional mean temperature for a given
month of birth. The conditional earnings and temperature mea-
sures come from auxiliary regressions, where the dependent vari-
able is either earnings or temperature, and we include a set of
fixed effects for birth month, a set of fixed effects for county of
birth × race × sex, and a set of year fixed effects. The coef-
ficients from the birth month fixed effects in each regression
model correspond to the conditional means and are plotted in
SI Appendix, Fig. S1 A and B. The R2 from a regression of these
conditional monthly earnings on the conditional monthly tem-
perature is 0.25, suggesting that 25% of the conditional variation
in age 30-y earnings by month of birth is explained by exposure to

extreme temperatures during gestation. Of course, there may be
other unobserved determinants of long-run human capital for-
mation that covary with month of birth. We next turn to results
from statistical models that attempt to address these issues
while also flexibly modeling the temperature–human capital
relationship.

Fig. 1 plots the baseline estimates from a single regression
model, relating adult earnings in dollars to temperature at dif-
ferent critical periods of childhood development and at different
points of the temperature distribution. Each dashed line in the
graph plots the coefficients corresponding to an additional day
with mean temperature falling in a temperature bin during the
critical period indicated in the key. For example, the dashed blue
line in Fig. 1 shows the estimated effect of an extra day in the
first trimester of gestation (estimated from the date of birth, as
in the case of all critical periods), holding other critical periods
fixed and where the coefficient on the effect of a 0 ◦C to 4 ◦C day
has been normalized to 0. This regression model also controls
for race × sex × birth county × birth day of year fixed effects
and year fixed effects.

There are two key takeaways from Fig. 1. First, the effect of
exposure to temperature during gestation and in the first year
of life is highly nonlinear—exposure to hot days with average
temperatures above 28 ◦C and, more strongly, above 32 °C has
disproportionately large negative effects on adult earnings. Sec-
ond, the effect across different critical periods between concep-
tion and age 1 y is fairly homogeneous, and the negative effect
of exposure to temperature above 32 °C on earnings exists in
nearly all of the early-life stages we consider. We cannot reject
the null hypothesis that the effect of a day with mean tempera-
tures above 32 °C in the first trimester is significantly different
from the effect of a day with mean temperatures above 32 °C in
the third trimester. (In SI Appendix, Table S5, we find that the
effect of exposure to hot temperatures dissipates after around
age 1 y.)

Fig. 1 suggests the marginal effect of temperature is con-
stant across the temperature range 0–24 °C. Thus, we estimate
more parsimonious models that impose a constant effect over
this range to reduce the number of coefficients to be estimated.
Table 1 presents results from a specification that aggregates
exposure into five temperature bins (<0 ◦C, 0–24 ◦C, 24–28 ◦C,
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Fig. 1. Heterogeneous effect of temperature on annual earnings by focal
period. The regression estimates are plotted from a single version of Eq. 1.
Each circle corresponds to the predicted marginal effect of a 1-d increase
in average temperatures in the associated temperature bin (indicated on
the x axis) on adult earnings in the critical period indicated in the key. The
regression controls for birth county× day of year× race× sex fixed effects,
year fixed effects, and a cubic polynomial in precipitation.
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Table 1. Effects of temperature over different critical periods on ages 29–31 y annual earnings

Period of exposure No. days <0 ◦C No. days 24–28 °C No. days 28–32 °C No. days 32+ ◦C

1st trimester −6.890 2.772 −8.329* −55.735***
(5.112) (2.948) (4.668) (15.425)

2nd trimester −8.063 −2.220 −4.153 −16.477
(5.002) (2.560) (5.600) (23.485)

3rd trimester −10.997* −4.627 −6.513 −41.789**
(5.839) (3.260) (7.083) (16.420)

0–3 mo −10.857** −6.188** −4.059 −38.526***
(4.991) (2.968) (6.483) (12.875)

3–6 mo −11.097*** −4.169 −6.599 −51.553***
(4.152) (2.964) (6.672) (12.993)

6–12 mo −9.332*** −4.379* 3.550 3.279
(3.041) (2.553) (4.329) (15.844)

Shown are regression coefficients from a version of Eq. 1. Robust standard errors, clustered by state, are in parentheses.
All regressions control for birth county × day of year × race × sex fixed effects, year fixed effects, and a cubic polynomial in
precipitation. ***P < 0.01, **P < 0.05, *P < 0.1.

28–32 ◦C, 32+ ◦C), with the 0–24 °C temperature bin normal-
ized to be equal to zero in each critical period. The estimates
of the coefficients on exposure to high daily temperatures (i.e.,
28–32 °C and 32+ °C) in Table 1 are very similar to those in the
baseline nine-bin model.

The average estimate across all critical periods suggests than
an extra day of exposure to temperatures above 32 °C in utero
or in the first year of life is associated with around $30 (in
2008 dollars) lower average annual earnings at ages 29–31 y,
which translates to a 0.1% effect size when evaluated at the
sample mean. This effect size is larger than what would be
implied from a back-of-the-envelope calculation that combines
prior estimates on the impacts of in utero exposure to temper-
ature on birth weight (9) and the relationship between birth
weight and adult earnings from studies of twins (26). There
are at least three reasons for this discrepancy. First, our esti-
mates are consistent with the idea that the impacts of early-life
shocks operate through channels other than birth weight, which
is an imperfect proxy for fetal health (see a recent overview
by ref. 27). Second, prior estimates of the effects of tempera-
ture on birth weight may be significantly understated, as they
come from studies that consider more recent cohorts relative
to the ones considered here. Since AC adoption has increased
over time, and we show below that AC adoption offsets nearly
all of the effects of hot temperatures, it is likely that the rela-
tionship between temperature and birth weight is substantially
larger for the older cohorts that we study. Third, twin studies of
the relationship between birth weight and adult outcomes may
generate estimates that are downward biased because of possi-
ble compensatory investments by parents (28).

To interpret the magnitude of this effect, we calculate the life-
time earnings impact implied by our estimates. We assume that
the percentage loss in earnings remains constant at 0.1% over the
life cycle and that earnings are discounted at a 3% real rate (i.e., a
5% discount rate with 2% wage growth) back to age zero, follow-
ing similar assumptions in other studies of long-run effects (e.g.,
refs. 29 and 30). Under these assumptions, the mean present
value of lifetime earnings at age zero in the US population is
∼$434,000. We calculate this number using the mean wage earn-
ings from the March 2008 Current Population Survey to obtain
an earnings profile over the life cycle. Thus, the financial loss
associated with being exposed to an additional day with temper-
ature above 32 °C during gestation or in the first year of life is
0.1% of $434,000 or $430 per person. While today, the aver-
age person is exposed to about one such hot day per year, this
number is expected to increase substantially in the next several
decades (1).

We next examine the potential for adaptation to mitigate
these negative effects. During the time period that we study, the
United States underwent a rapid expansion in the prevalence of
in-home AC. In 1960, only about 10% of households had AC
in their homes. By 1980, 50% did. AC adoption also varied sig-
nificantly across counties. We use county-level data on house-
hold AC adoption from the 1960, 1970, and 1980 decennial cen-
suses to examine the extent to which AC mitigates the observed
effects of extreme temperature. Formally, we augment our main
regression model to include an interaction between each of the
24 temperature bins of interest (i.e., 6 critical periods and 4
temperature bins) and the share of households in a county that
have AC.

Table 2 presents results from a single regression where each
column indexes a particular temperature bin and each row
indexes a particular focal period. Focusing on the estimates in
Table 2, No. days 32+ ◦C, the baseline coefficients in column 2
of the table deliver the estimated effect of an extra day of mean
temperatures above 32 °C for a county with 0% of households
having AC. These estimates are larger than the correspond-
ing estimates in Table 1, consistent with AC adoption being a
critical determinant of treatment effect heterogeneity. The cor-
responding interaction terms in column 4 of Table 2 deliver
estimates for a hypothetical county with 100% household AC
penetration. Our results suggest that moving from 0% to 100%
household AC adoption would completely mitigate any adverse
effects of exposure to extreme heat. Taken literally, the magni-
tudes of the coefficients on the interaction terms in Table 2 sug-
gest that exposure to extremely hot days in a hypothetical county
with 100% AC adoption would have a net positive impact on
adult earnings. However, confidence intervals imply that we can-
not reject the net effect of temperature in a county with 100%
AC adoption is zero.

Discussion
Our results point to a strong nonlinear relationship between tem-
perature exposure during the fetal period and in the first year
of life and adult outcomes measured 30 y later. Exposure to
extreme heat in these critical periods of human development has
lasting adverse effects on adult earnings, and this relationship is
very responsive to adaptive behavior (i.e., AC).

Our results are robust to different control variables (includ-
ing air pollution) and model specifications (SI Appendix, Tables
S3 and S9). We have also explored the effects of temperature
exposure throughout the earnings distribution (SI Appendix,
Table S4). The estimates suggest that the number of days
with average temperatures exceeding 32 °C during gestation is
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Table 2. Does the marginal effect of temperature on ages 29–31 y earnings vary with household AC
adoption?

Period of exposure No. days 28–32 °C No. days 32+ ◦C No. days 28–32 °C × AC No. days 32+ ◦C × AC

1st trimester −16.068 −12.487 31.943 −32.310
(14.394) (26.158) (19.755) (44.021)

2nd trimester −20.692 −4.327 40.700 38.610
(19.206) (31.092) (28.876) (43.899)

3rd trimester −25.498* −79.162** 44.099* 125.243***
(14.997) (33.335) (22.986) (45.819)

0–3 mo −44.819*** −56.221 68.943*** 83.872
(10.977) (66.257) (14.784) (97.185)

3–6 mo −37.815** −78.937*** 63.751*** 121.596***
(17.986) (29.924) (23.928) (43.462)

6–12 mo −32.894*** −132.973* 49.441*** 181.783**
(9.655) (77.951) (12.874) (89.822)

Shown are regression coefficients from a version of Eq. 2. The regression augments Eq. 1 by including an additional set
of temperature response coefficients, now interacted with the fraction of households in a county that have household AC.
Robust standard errors, clustered by state, are in parentheses. All regressions control for birth county × day of year × race ×
sex fixed effects, year fixed effects, and a cubic polynomial in precipitation. ***P < 0.01, **P < 0.05, *P < 0.1.

correlated with an increase in the likelihood of being in the bot-
tom half of the earnings distribution and a decrease in the likeli-
hood of being in the top half of the earnings distribution.

Further, we explore the sensitivity of our results to measuring
exposure at older ages (through age 3 y) as well as measuring
earnings at different follow-up ages (ages 28–32 y) (SI Appendix,
Tables S5 and S6). With regard to differences in effects across
ages at exposure, we find that the effect of hot temperatures dis-
sipates after around age 1 y. With regard to differences across
ages at follow-up, we find that, at each age, the results are qual-
itatively consistent with the baseline results from before; a day
with mean temperature exceeding 32 °C predicts reductions in
earnings at all of the ages we consider. While there is some het-
erogeneity across age categories, the confidence intervals over-
lap. These results reflect the fact that earnings are highly corre-
lated across ages, but they also provide evidence that (i) earnings
responses are found at more than one (somewhat arbitrary) age
category, and (ii) our results are not confounded by some con-
temporaneous change in earnings determinants in later years.
As evidence of the latter point, consider that columns 1–5 in SI
Appendix, Table S6 are estimated using the same individuals, but
the earnings are collected at different years [i.e., cohorts born
in 1970 show up between 1998 (column 1) and 2002 (column
5)]. Our preferred earnings measure in SI Appendix, Table S6,
column 6 serves as a type of “summary index” over the various
age categories while also reducing the residual variance in annual
earnings. The constant effects over different ages are similar to
the findings in ref. 31, which show that early-life exposure to air
pollution has a constant and lasting effect on labor market out-
comes between the ages of 28 y and 32 y.

There is growing evidence suggesting that seasonal variation
in birth outcomes may be correlated with demographic charac-
teristics (22, 32–35). If certain populations give birth in periods
of very warm temperatures, and those groups are more econom-
ically disadvantaged for reasons unrelated to temperature, then
we could falsely attribute temperature variation to this omitted
variable. We have attempted to control for this differential sea-
sonality by including race × sex × birth county × birth day of
year fixed effects. Nevertheless, SI Appendix, Table S8 explores
how differential fertility that is correlated with extreme temper-
atures may lead to biases in models with a less restrictive set of
controls. The outcome measure is an index of observable popu-
lation characteristics (SI Appendix, Table S8, table notes), and
the model controls for birth county× birth day of year fixed
effects (as opposed to our baseline race × sex× birth county ×
birth day of year fixed effects) to ask whether there is a rela-

tionship between observable characteristics of the population
and the temperature variation in our data. The results provide
little evidence that more disadvantaged populations (indicated
by a lower index measure) disproportionately experience high
temperature anomalies during gestation. Nonetheless, follow-
ing prior literature and because differential fertility that covaries
with the observed, conditional temperature variation may still be
an important source of bias, we control for race × sex × birth
county × birth day of year fixed effects in all of our other regres-
sion models.

One additional concern for our statistical model is that our
temperature variation is picking up some unobserved, differen-
tial, time-varying shocks across counties. To investigate this con-
cern, we estimate models in which we include leads in tempera-
ture data for the same county–day 2 y before birth (SI Appendix,
Table S7). In other words, for each individual, we calculate the
hypothetical exposure to temperature in each critical period had
he or she been born 2 y before his or her actual date of birth.
We choose a 2-y lead to avoid confounding our estimates with
any possible conception/fertility effects of temperature (10, 33,
35). Our leads should thus be uncorrelated with the actual treat-
ment effect of exposure during gestation or in the first year of
life. SI Appendix, Table S7 presents results from a single regres-
sion, where column 1a shows the lead coefficients, while column
1b shows the coefficients on exposure by trimester and through
age 12 mo. For parsimony, we report only coefficients on the
32 °C temperature bin. We are not able to reject the null hypoth-
esis from an F test that the temperature coefficients other than
32 °C are equal to zero. We find that exposure to extreme heat
2 y before birth is uncorrelated with age 30 y earnings, while
the coefficients on actual early-life exposure to hot temperature
remain negative, larger in absolute magnitude, and mostly statis-
tically significant.

Finally, the results in Table 2 suggest that county-level house-
hold AC penetration mitigates nearly all of the observed long-
run effect of extremely hot temperature. One concern when
interpreting these results is that household AC adoption may
be correlated with other unobservable determinants of later-life
wellbeing, such as income. We investigate this hypothesis in two
ways. First, we estimate whether county-level changes in house-
hold AC adoption are correlated with other observed changes in
that county that may predict later-life outcomes (e.g., per-capita
income and population size), using data from the Bureau of Eco-
nomic Analysis local area employment statistics file (SI Appendix,
Table S10). In SI Appendix, Table S10, column 1, we regress the
change in the fraction of households in a county that have AC
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between 1970 and 1980 on the log change in per-capita income
over the same time period. We repeat this exercise using instead
the log difference in population growth between 1970 and 1980
as the explanatory variable in SI Appendix, Table S10, column 2.
Finally, SI Appendix, Table S10, column 3 includes both the log
change in population and the log change in per-capita income
jointly in the regression model. In all three specifications, we
observe little relationship between within-county changes in per-
capita income, changes in population, and changes in household
AC adoption.

The second way in which we test the robustness of our AC
analysis is by using state-level AC penetration, which is likely
to be more exogenous (conditional on our baseline controls)
than county-level AC adoption (SI Appendix, Table S11). Results
remain very similar to those before.

Materials and Methods
We use a newly available data resource that allows us to observe both
the county and exact date of birth for 12 million individuals as well as
their longitudinal earnings history 30 y later. We combine these data with
fine-scaled, daily weather measures on a 2.5 × 2.5-mile grid for the entire
United States.

LEHD Files. The main data source for this analysis comes from the US
Census Bureau’s LEHD Files. (These are restricted-use data that are available
to researchers with approved projects through the Federal Statistical Census
Research Data Centers. Interested researchers may apply for these data by
following the instructions provided by the US Census Bureau at https://www.
census.gov/ces/rdcresearch/howtoapply.html.) These files consist of quar-
terly administrative earnings records for approximately 98% of the US work-
force (36, 37). For each worker, these data contain information on race, sex,
place of birth, and date of birth, as well as a detailed longitudinal earnings
history. (Race and place of birth information comes from the Social Security
Administration’s numident file which the Census Bureau has merged to their
own internal LEHD files. We aggregate the race codes in the numident file
to three different race codes corresponding to White/Caucasian, African-
American, and Other.) The place of birth variable in the LEHD is a string
variable detailing in most cases the city and state of birth (e.g., “Los Ange-
les, California”). We developed a matching algorithm to create a crosswalk
between this variable and county Federal Information Processing Standards
codes (see ref. 31 for more details on the matching algorithm).

As the main outcomes in our analysis, we study mean earnings and the
mean number of quarters used between the ages of 29 y and 31 y. We
focus on these ages since the correlation between annual earnings and life-
time income rises rapidly as individuals enter the labor market and begins
to stabilize only in their late 20s (38, 39). To calculate the average annual
number of quarters used and the average annual earnings of an individ-
ual between the ages of 29 y and 31 y, we use the following procedure:
For each individual in our sample, we calculate the years when he or she
turns 29 y, 30 y, and 31 y, and we search for his or her earnings record in
the employment history file. We take the combined earnings for a worker
in a given year, adding over both employers and states (in the event of
multiple job spells within a year). We also calculate the number of quarters
the worker has positive earnings in a given year (i.e., ∈ [0, 4]). If the earn-
ings record is missing for a particular age category (i.e., because the worker
is unemployed or has attritted from the data), we estimate specifications
where we either keep this earnings record as missing or we replace it with
a zero.

We study labor market outcomes averaged for each individual over a set
of ages rather than outcomes measured at a particular age (e.g., age 30 y) to
(i) minimize the residual variance in the observed employment and earnings
distributions and (ii) ameliorate concerns that any effects we see are driven
by a contemporaneous economic shock in one particular earnings year. We
express all monetary variables in real 2008 dollars, using the Consumer Price
Index. For each cohort, we cap earnings at age 28 y equivalent to $100,000,
allowing for 2% annual growth in earnings to limit the influence of outliers.
(Specifically, we cap earnings at $100,000 for 28-y olds, $102,000 for 29-y
olds, $104,040 for 30-y olds, $106,121 for 31-y olds, and $108,243 for 32-y
olds.) Our baseline sample consists of earnings records between the years
1998 and 2007 for 12 million individuals born between 1969 and 1976. The
mean annual earnings between the ages of 29 y and 31 y are $24,117 in our
sample (in 2008 dollars). Additional detail on LEHD data and construction
can be found in SI Appendix.

Fine-Scaled Weather Data. We combine our longitudinal earnings records
with fine-scaled, daily weather measures, using information on county and
exact date of birth. We begin by constructing the number of days for which
the daily mean temperature fell into one of 10 temperature bins (<0 ◦C,
0–4 ◦C, 4–8 ◦C, 8–12 ◦C, 12–16 ◦C, 16–20 ◦C, 20–24 ◦C, 24–28 ◦C, 28–32 ◦C,
and 32+ ◦C) over the course of a particular focal period. We examine expo-
sure in the following focal periods: the first, second, and third trimesters of
gestation and 0–3 mo, 3–6 mo, and 6–12 mo postbirth. Additional detail on
weather data and construction can be found in SI Appendix.

Additional Datasets. We supplement our data with a variety of other pop-
ulation and demographic data from the Bureau of Economic Analysis Local
Area Personal Income files. We also use county-level data on household AC
penetration rates in the United States between 1960 and 1980 from the US
Census of Population.

Methods. Eq. 1 describes the primary estimation equation of interest:

yirgcdt =
∑

k

∑
j

(θk
j Tempk

cdtj) + Preck
cdtΦ + γrgcd + λt + εirgcdt. [1]

We regress a labor market outcome yirgcdt measured between the ages
of 29 y and 31 y for person i of race r and sex g born into county c on day
of year d in year t on a series of temperature bins j that describe the total
number of days the average daily temperature in a county fell within bin j
during critical period k. (To calculate the number of days falling into each
temperature bin during pregnancy, we assume a 40-wk gestation period.)

Temperature bins are defined in 4 ◦C intervals (i.e., j∈ [<0 ◦C, 0–4 ◦C,
4–12 ◦C, 12–16 ◦C, 16–20 ◦C, 20–24 ◦C, 24–28 ◦C, 28–32 ◦C, 32+ ◦C]), and
critical periods k are defined as k ∈ [first, second, or third trimester; 0–3 mo,
3–6 mo, and 6–12 mo]. The 10 temperature bins j are meant to model the
effect of temperature in a nonlinear, semiparametric fashion. Similar esti-
mators have been used in recent work by refs. 3, 5, 9, 17, 23, and 24, albeit
in the context of different outcomes. This estimation strategy is fairly flex-
ible, except that we restrict the marginal effect of temperature to be the
same within 4 ◦C ranges.

For each critical period k, we also include a flexible polynomial (up to a
cubic) in mean precipitation Preck

cdt for the county over that time period.
The model also includes race × sex × birth county × birth day of year fixed
effects, γrgcd , to control for time-invariant observed and unobserved deter-
minants of long-run outcomes that vary across space, separately by race and
sex. At the same time, race × sex × birth county × birth day of year fixed
effects are designed to control for location-specific seasonal patterns in fer-
tility that may also be correlated with later-life earnings (e.g., through com-
pulsory schooling laws). To capture overall trends across cohorts, we include
birth-year fixed effects λt . The parameter εirgcdt is the error term.

Since our temperature bins span the full range of possible temperature
outcomes, they are not all separately identified, and we are forced to make
a normalization. We normalize the coefficients on j ∈ [0–4 ◦C] to be equal
to zero for each critical period k. One virtue of Eq. 1 is that we can exam-
ine the independent relationship between extreme temperatures and later-
life outcomes at various critical periods while holding other critical periods
constant. The large amount of conditionally random temperature variation
provides us with the unique opportunity to examine which periods of child
development are most critical for predicting long-run outcomes.

We present several auxiliary specifications that include results in which
we estimate Eq. 1 separately for each critical period k, results in which we
aggregate over temperature bins j to examine more parsimonious forms
of temperature heterogeneity j∈ [< 0 ◦C, 0–24 ◦C, 24–28 ◦C, 28–32 ◦C,
32+ ◦C], results for outcomes at different follow-up ages, and results using
different sets of outcome variables. Finally, we estimate regressions that
include additional interaction terms between Tempk

cdtj and our county ×
year measure of AC adoption, while also including the main effects of
county AC exposure,

yirgcdt =
∑

k

∑
j

[(
Θ

k
j Tk

cdtj

)
+ β

k
j

(
Tk

cdtj × ACct

)
+ Pk

cdtφ
]

[2]

+δACct + Γrgcd + Λt + ιirgcdt,

where the new set of coefficients βk
j provides an estimate of the dose–

response relationship of earnings at ages 29–31 y to early childhood tem-
perature exposure in various critical periods and in hypothetical counties
that have 100% of households with AC in the county × year (i.e., where
ACct = 1). This specification tests the extent to which AC can mitigate the
effects of extremely hot temperature days on long-run outcomes.

The baseline model delivers 54 regression coefficients (9 temperature bins
j and 6 critical periods k). We summarize our results graphically to better
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interpret the large number of coefficients. Our table-form results rely on
more parsimonious specifications with fewer temperature bins j∈ [<0 ◦C,
0–24 ◦C, 24–28 ◦C, 28–32 ◦C, 32+ ◦C], with j ∈ [0–24 ◦C] as the omitted
category. We conduct inference using standard errors clustered at the state
level to account for various forms of both spatial and temporal dependence
in the data. Clustering at the state level gives comparable standard errors
to approaches that more specifically model the covariance of error terms
between counties as a function of distance (40), while also remaining com-
putationally easier to implement (41).

The research described has been approved by the University of California
at Berkeley Institutional Review Board and the University of California at
Santa Barbara Office of Research Human Subjects Committee.
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