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Progeroid syndromes are rare genetic disorders that phenotypi-
cally resemble natural aging. Different causal mutations have been
identified, but no molecular alterations have been identified that
are in common to these diseases. DNA replication timing (RT) is a
robust cell type-specific epigenetic feature highly conserved in the
same cell types from different individuals but altered in disease.
Here, we characterized DNA RT program alterations in Hutchin-
son–Gilford progeria syndrome (HGPS) and Rothmund–Thomson
syndrome (RTS) patients compared with natural aging and cellular
senescence. Our results identified a progeroid-specific RT signature
that is common to cells from three HGPS and three RTS patients
and distinguishes them from healthy individuals across a wide
range of ages. Among the RT abnormalities, we identified the
tumor protein p63 gene (TP63) as a gene marker for progeroid
syndromes. By using the redifferentiation of four patient-derived
induced pluripotent stem cells as a model for the onset of proge-
roid syndromes, we tracked the progression of RT abnormalities
during development, revealing altered RT of the TP63 gene as an
early event in disease progression of both HGPS and RTS. More-
over, the RT abnormalities in progeroid patients were associated
with altered isoform expression of TP63. Our findings demonstrate
the value of RT studies to identify biomarkers not detected by
other methods, reveal abnormal TP63 RT as an early event in pro-
geroid disease progression, and suggest TP63 gene regulation as a
potential therapeutic target.
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Progeroid syndromes arise from mutations that affect the
nuclear lamina or DNA repair and share phenotypic char-

acteristics with natural aging (1). One of the most studied is the
Hutchinson–Gilford progeria syndrome (HGPS) caused by a
point mutation in the LMNA gene that encodes two of the major
components of the nuclear lamina: lamin A and C. The mutation
activates an alternative splicing site, resulting in a truncated
protein referred to as “progerin” (2, 3). HGPS patients display
multiple anomalies including alopecia, loss of body fat, limited
growth, scleroderma, and cardiovascular complications that
eventually lead to their premature death (4). At the cellular
level, expression of progerin leads to its accumulation in the
nuclear envelope (5), which is linked to multiple nuclear defects
such as abnormal morphology, altered chromatin organization,
loss of heterochromatin, deficiencies in DNA-damage response,
and impaired antioxidative pathways (6, 7). Intriguingly, HGPS is
one of several disorders known as “progeroid syndromes” that,
despite their pathophysiological similarities, arise from muta-
tions in genes with distinct functions and have different cellular
alterations (1). For example, Rothmund–Thomson syndrome
(RTS) results from a mutation in the DNA helicase Q4
(RECQL4) and does not show the characteristic nuclear defects
of HGPS, but patients present similar clinical symptoms (8, 9).
Thus, despite recent progress in the characterization of cellular
phenotypes associated with HGPS (6, 7, 10), little is known about

the mechanisms linking the cellular defects to pathophysiological
manifestations of the disease.
Previously, we demonstrated that the temporal order of ge-

nome duplication (replication timing, RT) is linked to chromatin
organization and is regulated during development coordinated
with gene activation (11, 12). Hence, RT constitutes a readily
measurable functional readout of large-scale chromatin organi-
zation and transcriptional potential that can be exploited to
detect alterations in disease. Here, we analyzed cells from pro-
geroid HGPS and RTS patients to determine if the RT program
is altered and the extent to which RT alterations in progeria are
associated with the RT changes observed during normal aging.
We identified a progeroid-specific RT signature containing ge-
nomic regions that replicate early in progeroid cells but late in
cells from healthy individuals across a wide range of ages.
Among the RT abnormalities, we identified TP63 as a gene
marker for progeroid syndromes. TP63 alterations have not been
observed previously in progeroid patients but have been associ-
ated with other diseases that share clinical manifestations. Ad-
ditionally, when cells derived from HGPS and RTS patients were
reprogrammed to induced pluripotent stem cells (iPSCs), all RT
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differences with normal cells were erased, but when these iPSCs
were redifferentiated back to fibroblast cells, the abnormal RT
of TP63 reappeared, suggesting that this change is an early
epigenetic event in progeroid disease progression. Moreover,
the TP63 RT abnormality was associated with an altered ratio
of TP63 isoform expression, which previously has been linked
to cellular senescence defects and multiple developmental
alterations. These results implicate TP63 in the progression
of progeroid disease, suggest a provocative link between ab-
normal RT and altered gene-variant expression, and demon-
strate the utility of RT profiling to identify novel avenues in
disease research.

Results
RT Abnormalities in HGPS. We measured the RT programs of
progeroid and normal fibroblasts and characterized changes in
RT upon reprogramming to iPSCs and redifferentiation back to
fibroblasts. Overall, we generated 61 genome-wide RT datasets
of fibroblasts, iPSCs, and redifferentiated cells derived from
progeroid patients and healthy donors (Fig. 1A and Table S1).
We first confirmed the known HGPS cellular abnormalities (13,
14), such as altered nuclear morphology and increased number
and size of γH2AX foci associated with DNA damage (Fig. 1 B
and C). Since earlier studies observed similar alterations in cells
undergoing in vitro-induced senescence (15, 16), we also ana-
lyzed cells entering replicative or oncogene-induced senescence
(OIS). Consistent with previous findings demonstrating that RT
is a highly stable epigenetic property (17), we found strong
genome-wide correlation of RT among all samples (Fig. 1D).
Nonetheless, progeria cells were separated from normal fibro-
blasts, albeit more correlated with cells from the oldest healthy

donors (Fig. 1D). Overall, RT differences across all samples
comprise 7% of the autosomal genome, with 25% of those RT
changes specific for HGPS. Exemplary RT profiles showing al-
terations specific for progeria patient cells are shown in Fig. 1E.

A Specific RT Signature Distinguishes HGPS Cells. Previously, we
characterized the RT changes during human development and
identified RT signatures that distinguish each cell lineage (11).
Here, we identified RT signatures between samples of different
age or disease groups. Briefly, RT-variable regions were identi-
fied and clustered by unsupervised analysis (Fig. 2A and see
Methods) into three major groups: fetal fibroblasts, healthy
postnatal (0–96 y) cells, and HGPS cells (Fig. 2B). Moreover, we
identified a specific RT signature containing regions that repli-
cate early only in progeria (E-progeria regions) but replicate
later in cells from all healthy donors, including cells from natu-
rally aging donors, and in cells entering cellular senescence (Fig.
2 B–D). Although several genomic regions replicate later during
early S phase in progeria than in the age-matched controls (Fig.
2A), we did not identify an RT signature of chromosomal seg-
ments that replicates late during S phase in progeria but early in
all normal cells (Fig. 2B). The progeria-specific RT signature
includes only 1.6% of the genome (Dataset S1). Additional RT
signatures identified differences between fetal cells and all
postnatal fibroblasts (Fig. 2 B and E and Dataset S1); however,
all the fetal datasets were derived from a single cell line
(IMR90), so their significance is uncertain. To determine the
biological significance of the RT signatures and their relation-
ship to disease pathogenesis, we performed gene ontology (GO)
analysis on each of them (Fig. S1). Our results revealed that the
E-progeria regions are strongly associated with phenotypic
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characteristics of the disease (Fig. 2F). Intriguingly, none of the
ontology terms has been previously associated with progeroid
syndromes, but the terms have been associated with other
genetic diseases.

TP63 Is a Marker of HGPS. To identify candidate markers of
HGPS, we examined the genes within each of the GO terms.
Surprisingly, from the 200 genes within the genomic regions
that replicate early only in progeria cells we found only a single
gene common in all the GO terms: TP63, which encodes the
tumor-suppressor protein p63 (Fig. 3A). Remarkably, multiple
GO terms associated with TP63 match the progeroid patho-
physiological symptoms, suggesting that TP63 is associated with

the disease phenotype (Fig. 3A). TP63 alterations have not
been previously observed in progeroid patients but have been
observed in other disorders characterized by developmental
abnormalities. TP63 replicates early only in progeria cells but
replicates late in fibroblasts from all healthy donors (Fig. 3B);
since RT is often correlated with transcriptional activity (11,
12), we reasoned that abnormal TP63 RT might be associated
with altered gene regulation. Consistently, analysis of datasets
obtained from a previous study (18) showed depletion of
H3K27me3 throughout the TP63 locus relative to healthy do-
nors (Fig. 3C). Importantly, these datasets were derived from
one of the patient cell lines analyzed here for RT and gene
expression, cell line HGADFN167.
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TP63 is a member of the p53 family and encodes multiple var-
iant protein isoforms with distinct functions (19, 20). Alternative
promoters, located >150 kb apart from each other, drive the
expression of the main isoforms: TAp63 (containing the 5′
transactivation domain) and ΔNp63 (N-terminally truncated).
Additionally, alternative splicing sites produce distinct C-terminal
variants (Fig. 3D). To determine the patterns of TP63 isoform
expression in healthy individuals, we analyzed RNA-sequencing
(RNA-seq) data from the Genotype-Tissue Expression (GTEx)
Project (21). The highest expression was detected in skin, and
ΔNp63 was the predominant family of isoforms (Fig. 3E). Since
GTex data derive from heterogeneous cell populations within
each tissue, we analyzed transcriptome data from earlier studies
(7, 18) by extracting specific microarray probes that hybridize to
each isoform. We found a slight but significant unbalanced ex-
pression of TP63 in HGPS (not previously reported), with TAp63
expressed at higher levels than ΔNp63 isoforms (Fig. S2). To
validate these findings in the cells from this study, we analyzed
isoform-specific expression by qRT-PCR. We detected similar ex-
pression levels of both TP63 isoforms in cells derived from young
healthy donors but higher levels of TAp63 isoforms in cells de-
rived from HGPS patients (Fig. 3F). Our results demonstrate that
abnormal RT of TP63 is correlated with an altered ratio of TP63
variants in the progeroid diseases.

Abnormal TP63 RT Is Not Dependent on Progerin Expression. Ectopic
expression of progerin in WT cells recapitulates the HGPS cel-
lular defects (7). Hence, we analyzed whether TP63 alterations
are dependent on progerin. First, we confirmed that progerin
overexpression in WT cells induced the HGPS nuclear alter-
ations vs. a control cell line overexpressing lamin A (Fig. 4A and
Fig. S3). Nuclear alterations matching the HGPS cellular phe-
notype were detected as early as day 2 after induction (7). We
analyzed RT up to 6 d after progerin overexpression and found
that, despite nuclear alterations, no significant RT changes were
detected genome wide, including at the TP63 locus. Consistently,
we did not find unbalanced expression of TP63 isoforms after
progerin overexpression (Fig. S3). These results demonstrate

that the expression of progerin is not sufficient to alter the RT or
isoform expression of TP63 (Fig. 4 B and C and Fig. S3). These
results are, however, consistent with our previous findings showing
that RT is robust to depletion of many factors that disrupt chro-
matin architecture (17) and underscore the importance of the RT
alterations that we do detect in progeroid disease.

Altered RT in RTS. To determine whether altered TP63 RT is also
detected in progeroid diseases that are not associated with pro-
gerin expression, we analyzed fibroblasts from RTS patients.
RTS is a progeroid syndrome characterized by poikiloderma,
sparse hair, skeletal and dental abnormalities, and a high risk of
cancer and is linked to inactivating mutations of the RECQL4
gene (22). Notably, we found that 75% of the genomic regions
that replicate early in progeria also replicate early in RTS fi-
broblasts. In fact, RTS and HGPS cells clustered together,
demonstrating that the two progeroid syndromes share RT ab-
normalities (Fig. 4D). Among the RT alterations shared by
HGPS and RTS was TP63 (Fig. 4E). Importantly, these results
confirm that abnormal TP63 RT is independent of progerin ex-
pression. Moreover, we also detected the same unbalanced TP63
isoform expression in cells from RTS patients and from HGPS
patients (Fig. S2), demonstrating that altered regulation of TP63
expression is common to these two progeroid diseases. Interestingly,
additional RT abnormalities in RTS cells, which are not seen in
HGPS cells, include late replication of the RECQL4 gene (Fig. 4F).

TP63 Recapitulates Its Abnormal RT upon Differentiation of iPSCs.We
analyzed whether the abnormal progeroid RT program can be
reset by reprogramming primary cells to iPSCs (Fig. 5A). HGPS-
iPSCs showed normal morphology and decreased signal for
γH2AX (Fig. 5B). Moreover, the RT program was completely
reprogrammed in all iPSCs, regardless of the age of the donors
or progeroid disease (Fig. 5C and Fig. S4). Next, we rediffer-
entiated the iPSCs and confirmed that the fibroblast RT pro-
gram can be reestablished in the redifferentiated cells (Fig. 5C
and Fig. S4). However, in contrast with previous studies show-
ing reestablishment of altered nuclear morphology, loss of
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heterochromatin, and increases in DNA damage and mitochon-
drial reactive oxygen species after redifferentiation (23, 24), we
found that redifferentiated cells from both progeroid syndromes
retained normal RT globally, including most of the progeroid-
specific RT signature regions (Fig. 5D, red branch). In fact,
95% of the genomic regions with altered RT in progeroid cells
replicate normally in the redifferentiated cells (Fig. S4).
Nonetheless, 10 specific genomic regions reacquired the
progeroid-specific abnormal RT pattern upon redifferentiation
(Fig. 5D and Fig. S4). Among these few loci the TP63 locus
reacquired abnormal RT very early during redifferentiation of
iPSCs from patients with either of the progeroid diseases
(passages 3–4), despite being fully reset to “healthy” late RT at
the pluripotent stage (Fig. 5 E and F). Moreover, increased ex-
pression of TAp63 isoforms is also observed after redifferentiation
of progeroid, but not healthy, iPSCs (Fig. 5G).

RT Changes in TP63 During Normal Human Development. To un-
derstand the biological significance of TP63 alterations, we an-
alyzed gene expression and RT during human development. We
found that the TP63 locus is late replicating in human ES cells
(hESCs), changes transiently to early replication during cell-fate
commitment, and changes back to late replication in the differ-
entiated cell types of all differentiation pathways analyzed (Fig.

5H and Fig. S5). Moreover, TP63 transcriptional induction is
restricted to early stages of mesodermal differentiation corre-
lated with early replication (Fig. 5H and Fig. S5). Finally, anal-
ysis of RNA-seq data from ENCODE show that TP63 expression
is higher in hESCs than in differentiated fetal and newborn fi-
broblasts, correlated the with enrichment of H3K27me3 (Fig.
S5). These results show that early TP63 replication is a normal
epigenetic state restricted to the early stages of cell differentia-
tion when the gene is highly expressed. The locus then switches
back to late replication in coordination with epigenetic down-
regulation of the gene.

Discussion
Despite recent advances in the characterization of progeroid
diseases and the dissection of molecular mechanisms associated
with its cellular defects (7, 10), the link between cellular alter-
ations and the physiological abnormalities observed at the or-
ganismal level remain unknown. Moreover, progeroid diseases
arise from mutations in functionally different genes, but no
common defects have been identified among cells from patients
with these different mutations. We performed a comprehensive
genome-wide characterization of RT abnormalities in progeroid
diseases compared with natural aging, revealing a molecular link
between progeroid diseases of different origin. In contrast to
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numerous studies linking abnormalities of these congenital disor-
ders to natural age-related defects (1), we identified a specific RT
signature that distinguishes progeroid syndromes from natural ag-
ing. More importantly, GO analysis revealed an intriguing associ-
ation of TP63 RT alterations with many of the phenotypic defects
characteristic of this family of disorders. Although TP63 alterations
have not been previously linked to progeroid syndromes, alterations

in this gene are linked to developmental defects. In fact, genotyping
studies have identified TP63mutations associated with ectrodactyly-
ectodermal dysplasia and cleft-lip/palate (EEC3), Rapp–Hodgkin
ectodermal, acro-dermato-ungual-lacrimal-tooth (ADULT), and
ankyloblepharon–ectodermal defects–clefting (AEC) syndromes
(20). All these disorders show alterations of the skin, hair, teeth,
nails, and sweat glands, and all these alterations are also observed
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in progeroid syndromes. Consistently, p63−/− mice have epidermal
developmental defects and a shorter life span (25–28), and TP63 is
required for proper skin stratification (29, 30). Moreover, TP63
deficiency induces cellular senescence and causes accelerated aging
phenotypes in mice (31). Until this study, why TP63 alterations
were not identified in progeroid disease remained a mystery.
A long-standing correlation between early replication and

gene expression has been observed in all eukaryotes (12, 32).
Hence, we explored whether altered RT in progeroid syndromes
is associated with abnormal TP63 regulation. A previous study
showed a genome-wide depletion of H3K27me3 in HGPS pa-
tients (18). Our analysis of data derived from that study also
detected loss of H3K27me3 at the progeroid-specific RT signa-
ture regions (Fig. S6) including the TP63 locus (Fig. 3C). Ad-
ditionally, the RT abnormalities in progeroid syndromes at the
TP63 locus include the TP63-regulated 1 gene (TPRG1), which is
also depleted of H3K27me3 in the disease (Fig. 3 B and C).
TPRG1 encodes a cytoplasmic protein of unknown function and
is highly expressed in epithelial cells under the control of TP63
(33). Although no alterations in TP63 expression were detected
in previous HGPS studies (7, 18, 23, 34), none of the prior
studies distinguished isoform expression. In fact, closer in-
spection of microarray data derived from two of these studies (7,
18) revealed a slight but significantly altered ratio of the ex-
pression of TP63 variants in HGPS. Moreover, we confirmed by
qPCR that the TAp63 isoform is expressed at higher levels than
the ΔNp63 isoform in HGPS and RTS. Interestingly, fibroblasts
derived from two aged (81-y-old and 82-y-old) donors expressed
only TAp63 isoforms, suggesting that alterations in TP63 regu-
lation may also occur during natural aging through mechanisms
not associated with early RT. While we cannot explain why the
sample from the 96-y-old patient did not show the skew, this
could be due to a difference between chronological and bi-
ological aging. Many of the HGPS cellular alterations are
thought to be dependent on the accumulation of progerin (23,
24, 35–37). However, alterations in RT and TP63 regulation are
independent of the LMNA mutation, as overexpression of pro-
gerin does not alter the RT of TP63 (Fig. 4 B and C), and cells
from patients with RTS, which do not express progerin, also
display the TP63 RT alteration and preferential expression of the
TAp63 isoform (Figs. 4E and 5G). Hence, our study has iden-
tified progeroid-specific alterations in TP63 RT that are in-
dependent of progerin expression, are shared in HGPS and RTS
patients, and are associated with a depletion of H3K27me3 and
skewed variant expression but we did not find increased overall
steady-state levels of TP63 transcript.
We also employed ESC differentiation to characterize normal

development and iPSC reprogramming and redifferentiation as a
model of disease progression. Distinct progeria-specific hall-

marks (nuclear envelope alterations, γH2AX foci, and loss of
heterochromatin) are reset in reprogrammed iPSCs; however,
these hallmarks are reestablished spontaneously upon rediffer-
entiation (23, 24, 37). Consistently, RT abnormalities in HGPS
cells revert to normal in progeroid iPSCs (Fig. 5C). It has been
speculated that the resetting of HGPS alterations in iPSCs is due
to the lack of progerin expression in pluripotent cells (23, 24).
However, the fact that RT abnormalities in cells derived from
RTS patients also revert to normal in iPSCs suggests that the
establishment of pluripotency, rather than down-regulation of
progerin, is responsible for the RT resetting in iPSCs. Moreover,
in contrast to previous studies showing a resetting of cellular
defects in iPSCs but spontaneous reestablishment of these al-
terations after redifferentiation (23, 24), we found that fibro-
blasts derived from progeroid iPSCs retained normal RT, except
for few regions, including the TP63 locus. Since alterations in RT
occur early during differentiation, even before changes in nuclear
morphology are evident, early RT and skewed isoform usage of
TP63 constitutes a potential early marker of the progeroid
phenotype. Consistently, fibroblasts from the youngest HGPS
patient (HGPS_2 y) showed fewer RT differences with normal
fibroblasts (Figs. 2B and 4D) than did fibroblasts from older
patients (HGPS_8yr_A and HGPS_8yr_B) with the same mu-
tation (1824C > T) but still included the TP63 RT difference,
suggesting that an increase in the number of RT changes is as-
sociated with progeroid disease progression and that RT alter-
ations at the TP63 locus are one of the earliest progeroid defects.
Together, our results support a model in which TP63 is em-

bedded in a late-replicating compartment of the nucleus where
its transcription is restricted to low basal levels. During differ-
entiation, transcriptional activation of TP63 is coordinated with a
switch to early replication, while in fully differentiated cells the
gene is lowly expressed and switches back to the late-replicating
compartment (Fig. 6). Hence, alterations in TP63 in progeroid
syndromes might be due to failure of RT to switch back to late
replication, potentially leading to an altered isoform expression
pattern (Fig. 6). An altered increase in the expression of TAp63
isoforms could then lead to abnormal control of cell differenti-
ation of epithelial cells, resulting in the characteristic phenotype
of progeroid patients (Fig. S7). Although we can only speculate
about the mechanisms linking RT alterations to isoform ex-
pression, the correlation observed in six progeroid patients from
two distinct genetic origins and reappearing again in four redif-
ferentiated cell samples constitutes compelling evidence that
altered RT is linked, directly or indirectly, to the altered ex-
pression of TP63 isoforms. One formal possibility is that, since
the TAp63 promoter is normally later replicating than ΔNp63
when they show balanced expression, but both promoters are
equally early replicating when showing imbalanced expression,

Late replication 
compartment

Early replication 
compartment

Early replication 
compartment

Late replication 
compartment

H3K27me3
TP63
Low expression

High expression

Fig. 6. Model of TP63 alterations in progeroid diseases. Schematic depiction of TP63 locus organization and gene regulation in normal and progeroid fi-
broblasts. In normal cells, TP63 is localized to late replication compartments where it is expressed at low levels (consistent with an increased enrichment of
H3K27me3). In contrast, in cells from patients with progeroid diseases the TP63 gene replicates early and is depleted of H3K27me3, which is associated with
unbalanced isoform expression.
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the Tap63 promoter could be more affected by its larger RT
shift. Unraveling the mechanisms linking the abnormalities of
TP63 regulation to the clinical symptoms of progeroid patients
will be challenging due to the multiple TP63 isoforms with dis-
tinct functions and the very limited lifespan of the primary cells
from progeroid patients and because, so far, no cellular abnor-
malities have been directly linked to the pathophysiological ab-
normalities of the disease. In fact, the alterations described here
identify cellular abnormalities that are common to both HGPS
and RTS. However, evidence suggests that proper modulation of
expression ratios between TP63 isoforms is essential for epithelial
development (20); abnormal TP63 regulation affects maintenance
and homeostasis of the epidermis (19, 38, 39). In fact, mice de-
ficient in TP63 have multiple developmental defects including
truncated limbs, craniofacial anomalies, lack of epidermis, hair
follicles, teeth, and mammary, lachrymal, and salivary glands (25,
28, 40, 41). Moreover, a mouse knockin of the TP63 mutation
observed in EEC3 syndrome patients develops multiple ectodermal
defects and craniofacial abnormalities (42). The roles of each
TP63 isoform and their downstream targets are also the subject
of active investigation, and it has been suggested that TP63
prevents aging and cellular senescence by controlling the pro-
liferation and maintenance of stem cell precursors in mouse
models (26). Overexpression of the TAp63 group of isoforms
induces cellular senescence in mice fibroblasts (43), while
ΔNp63 isoforms are necessary for proper differentiation of
epithelial cells (44) and are down-regulated in a mouse model
of progeria (45). TP63 alterations also have been associated
with cardiac defects; TAp63 is required for cardiac differenti-
ation of ESCs (46, 47), and p63−/− mice have severe cardio-
myopathy (19). Although further experimentation is needed to
elucidate the mechanisms linking TP63 alterations to the pro-

geroid phenotype, abnormal RT associated with the skewed
expression of gene variants opens new avenues of investigation
into progeroid diseases. Specifically, abnormal RT may be as-
sociated with altered proximity to transcription machinery or
altered regulation of the alternative promoters of TP63.

Materials and Methods
Primary fibroblasts obtained from Coriell Institute for Medical Research), the
Progeria Research Foundation, and from donors from the Centre Hospitalier
Régional Universitaire (CHRU) Montpellier cohort (Table S1) were reprog-
rammed to iPSCs and redifferentiated back to fibroblasts. All human cell
lines were managed according to the guidelines in the Declaration of Hel-
sinki, and donor privacy and confidentiality were ensured by the cell banks’
blinding of samples with a numerical identification code. Experimental de-
tails are described in SI Materials and Methods.

All datasets generated in this study are deposited in the National Center for
Biotechnology Information Gene Expression Omnibus (GEO) database (https://
www.ncbi.nlm.nih.gov/geo/; GEO series GSE98475) and on The Florida State
University ReplicationDomain database at www.replicationdomain.org.
H3K27me3 data were obtained from GSE41764, gene expression data from
HGPS, and normal fibroblast data were extracted from GSE41751 and
GSE69391, and RT and transcription datasets during human ESCs differentia-
tion toward endoderm, mesoderm, ectoderm, and neural crest were extracted
from GSE63428 and GSE63592.
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