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We here describe a selected reaction monitoring (SRM)-based
approach for the discovery and validation of peptide biomarkers
for cancer. The first stage of this approach is the direct identification
of candidate peptides through comparison of proteolytic peptides
derived from the plasma of cancer patients or healthy individuals.
Several hundred candidate peptides were identified through this
method, providing challenges for choosing and validating the small
number of peptides that might prove diagnostically useful. To
accomplish this validation, we used 2D chromatography coupled
with SRM of candidate peptides. We applied this approach, called
sequential analysis of fractionated eluates by SRM (SAFE-SRM), to
plasma from cancer patients and discovered two peptides encoded
by the peptidyl-prolyl cis–trans isomerase A (PPIA) gene whose
abundance was increased in the plasma of ovarian cancer patients.
At optimal thresholds, elevated levels of at least one of these two
peptides was detected in 43 (68.3%) of 63 women with ovarian
cancer but in none of 50 healthy controls. In addition to providing
a potential biomarker for ovarian cancer, this approach is generally
applicable to the discovery of peptides characteristic of various
disease states.
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Nearly a quarter of a million women will be diagnosed with
ovarian cancer this year, and more than 140,000 women will

die from their disease (1). If ovarian cancer is diagnosed and
treated at early stages, before the cancer has spread outside the
ovary, the 5-y relative survival rate is over 90% (1). However,
only 15% of all ovarian cancers are found at such early stages
and the prognosis for patients whose cancers are discovered at
late stages is dismal (1). There is thus a widely recognized need
for the development of biomarkers that could potentially detect
ovarian cancers earlier. There have been numerous attempts to
use conventional biomarkers, such as CA-125 or HE-4, or to use
ultrasound, for such detection (2–5). Although some show
promise, none of them is recommended for screening by the US
Preventive Services Task Force because they too frequently lead
to “important harms, including major surgical interventions in
women who do not have cancer” (6).
Proteins have historically been the most widely used and most

successful type of biomarkers for use in cancer patients, although
they are generally applied in diagnostic rather than screening
settings (7, 8). Major advances in proteomics have inspired
renewed efforts to develop improved biomarkers for ovarian and
other cancers (9–12). Some of the most sophisticated of these
use unbiased approaches wherein proteins from cancer patients
and normal individuals are proteolytically digested and the re-
sultant peptides are assessed via MS technologies. A variety of
candidate peptides are often discovered through such ap-
proaches (13). The next step in such biomarker discovery is often
rate-limiting for biomarker discovery: how does one narrow
down the large list of candidate peptides to a more manageable
list that does not compromise quantification, sensitivity, or

specificity? We here describe a peptide-centric platform for de-
veloping biomarkers that specifically addresses this issue.
Moreover, we show that peptides isolated directly from plasma,
rather than from cancer tissues, can be used for the discovery of
cancer biomarkers.

Results
Study Design. This study was designed to identify and validate
proteomic biomarkers for cancers using a combination of quali-
tative and quantitative MS techniques. Most previous studies in
this area have begun with the analysis of cancer tissues, and then
attempted to determine whether cancer-specific proteins or pep-
tides could be identified in the plasma. In the current study, we
attempted to identify candidate peptides directly from the plasma.
The study was executed in three discrete phases: phase 1, global
plasma proteomic profiling of samples from cancer patients and
healthy individuals, yielding 641 candidate peptide markers from
188 genes; phase 2, implementation of a selected reaction moni-
toring (SRM)-based assay, called sequential analysis of fraction-
ated eluates by SRM (SAFE-SRM), to evaluate each of the
641 candidate peptide markers in additional plasma samples,
yielding two peptides from peptidyl-prolyl cis–trans isomerase A
(PPIA) as promising biomarkers; and phase 3, evaluation of the
performance of these two peptides in an independent set of cancer
patients and controls using SAFE-SRM. Phase 1 was performed
on an Orbitrap mass spectrometer, which is most suitable for
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qualitative analysis of large numbers of proteins, while phases
2 and 3 were conducted on a triple-quadrupole mass spectrome-
ter, most suitable for quantitative analyses of selected analytes. A
total of 266 plasma samples from different donor sources was
evaluated during the three phases of this study (Table S1).

Phase 1: Identification of Candidate Biomarkers from Cancer Patients.
To identify potential protein biomarkers for cancers, we first
created four pooled human plasma samples composed of equal
volumes of plasma from 50 normal healthy individuals, 18 pa-
tients with ovarian cancer, 13 patients with pancreatic cancer,
and 18 patients with colorectal cancer (Dataset S1). All patients
with cancer had advanced disease so as to maximize the likeli-
hood that high concentrations of putative biomarkers would be
found in the plasma. An antibody-based plasma depletion was
performed to remove 14 highly abundant proteins, such as al-
bumin and immunoglobulins, from each of the four pools. Each
pool was then digested with trypsin and the resultant peptides
were differentially labeled with iTRAQ. iTRAQ labeling allows
the four pools to be mixed and analyzed in a single MS experi-
ment. The pools were then analyzed to assess whole proteomes
(Fig. 1A and Fig. S1A). In a separate experiment, the pooled
plasma samples were enriched for glycoproteins before trypsin
digestion and iTRAQ labeling to reveal potential differences in
the peptides derived from glycosylated proteins (Fig. S1B).
Problems with the reproducibility of large-scale proteomics

experiments such as those we carried out are well known (14), so
we performed replicates of the entire workflow outlined in Fig.
S1. In total, 223,602 peptides were identified through these
analyses, representing 10,789 unique peptides from 1,249 unique
proteins (Datasets S2 and S4). The relative abundances of each of
these peptides in the plasma samples from cancer patients and
normal individuals were then calculated using an empirical-Bayes
modified t test (Materials and Methods). A total of 8,069 unique
peptides was quantified in at least two replicates, and the corre-
lation for the abundances of these peptides between the repli-
cates was 0.74 (95% CI, 0.73–0.75). As described in detail in

Materials and Methods, our analyses eventually yielded 641 pep-
tides derived from 188 proteins with significantly increased
abundance in the pooled cancer plasma samples compared with
the pooled normal controls (Dataset S4).

Phase 2a: Development of SAFE-SRM. The validation of hundreds of
potential peptide biomarkers is a daunting task. The difficulty is
exacerbated by the fact that the abundances of peptides from
plasma proteins are generally low and the abundances of dif-
ferent peptides vary considerably within this low range. We de-
veloped an approach to tackle these challenges, with five major
components. First, the 641 peptides of interest were individually
synthesized, but not highly purified, so as to keep costs man-
ageable. Second, an SRM method was created for each of these
peptides. Each of the 641 methods was optimized for the colli-
sion energies and dwell times of the precursor ions that yielded
the highest intensities of the postcollision peptide-specific tran-
sitions of major interest. The dwell time given to each peptide
was inversely proportional to the peptide’s intensity measured
from a human plasma peptide sample spiked with equal amounts
of synthetic peptides. This feature permitted the instrument to
spend more time on detecting the peptides with lower signal
intensities, thereby improving the overall ion statistics for the
detection of low-abundance peptides. This protocol led to the
identification of 4,384 transitions (approximately seven transi-
tions per peptide; Dataset S5).
Third, the peptides were fractionated using basic pH reversed-phase

liquid chromatography (bRPLC), yielding 96 fractions organized into
32 “fraction groups” each containing three sequential fractions;
20 fraction groups were selected for further analysis. Fourth, the
peptides in each fraction group were separated by an orthogonal
high-performance liquid chromatography (HPLC) method based on
hydrophobic interactions (C18-RPLC). Finally, continuous elutes
from the second HPLC column were analyzed using an SRM
method composed of the collision energies, dwell times, and tran-
sitions that had been preoptimized using the synthetic peptides
noted above. We termed this approach SAFE-SRM (Fig. S2).
One advantage of SAFE-SRM is that it employs a two-

dimensional chromatographic fractionation. The individual frac-
tions contain much less peptide than the total, thereby reducing ion
suppression from unwanted peptides and increasing the signal-to-
noise ratio. A second advantage of SAFE-SRM is that it converts
the qualitative approach used for peptide discovery to a quantitative
approach during the validation phases. Finally, the method is highly
tolerant to fluctuations in elution times that are commonly observed
in bRPLC chromatography because sequential fractions are re-
dundantly tested for peptide abundances (Materials and Methods).
To assess the performance of SAFE-SRM, we chose six peptides

with different hydrophobicity characteristics in HPLC and synthe-
sized them as heavy isotope-labeled forms (SI Materials and Meth-
ods). We then mixed these peptides and performed a standard
SRM analysis using the optimized collision energies and dwell times
described above. All six peptides were detected at high confidence,
as expected. However, when we spiked these peptides into trypsin-
digested samples generated from normal plasma as described
above, their average intensities were only around 5% of that
obtained with the pure peptides, and three of the six peptides were
not detectable at all. When this spiked sample was analyzed with
SAFE-SRM, all six peptides could be detected, with an intensity
that averaged 70% of that obtained with the pure peptides (Fig. 2).

Phase 2b: Testing of Candidate Peptides by SAFE-SRM. We began by
using SAFE-SRM to evaluate the four plasma pools used for the
initial iTRAQ-based discovery phase of the study. We expected
that the peptides detectable in these pooled samples would be
those least likely to be affected by ion suppression, the coelution
of unwanted peptides in the same chromatographic fractions, or
other technical issues. After careful examination, 318 out of the

Fig. 1. Workflow of plasma biomarker identification and validation. Plasma
biomarker discovery and identification were conducted through labeling-
dependent quantitative proteomics, such as iTRAQ or TMT assays (A); plasma
biomarker validation was conducted through SAFE-SRM (B).
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641 tested peptides proved to be reproducibly detectable in the
pooled samples through 1,990 transitions (6.3 transitions per pep-
tide; Dataset S5). These 318 peptides were mapped to 121 proteins.
We then used SAFE-SRM to evaluate 94 individual plasma

samples, none of which was used in the discovery phase. Forty-
eight of these samples were from normal individuals and 14, 14, and
18 were from patients with colorectal cancers, ovarian cancers, and
pancreatic cancers, respectively (Dataset S1). SAFE-SRM abun-
dance scores were calculated for the 318 peptides in each of the
94 individual and 4 pooled plasma samples (Dataset S6). We used
statistical methods to determine whether any peptide or combina-
tion of peptides was able to accurately classify the origin of a sample
from the peptide signatures. For this purpose, we randomly selected
approximately one-half of the samples for training (27 from healthy
donors and 7, 7, and 9 samples from patients with colorectal can-
cers, ovarian cancers, or pancreatic cancers, respectively). The
remaining half of the samples were used to test the performance
of the classifiers derived from the training samples.
A recursive, leave-one-out cross-validation strategy was used

to estimate the predictive performance of the classification model
as it evolved. The peptides yielding the highest cross-validated
classification scores on the training set were first selected. Data on
other peptides were then searched to determine whether any sec-
ond peptide could increase the classification score. This process of
selecting a peptide biomarker to be added was repeated until no
further increases in the classification score could be achieved by
addition of other peptides. Using this approach, several combina-
tions of peptides with excellent classification potential were iden-
tified (Fig. 3 A and B).
The best performance was observed for the classification of

ovarian cancers with a combination of several markers. The top
single peptide marker for ovarian cancers was VSFELFADK from
PPIA (also known as Cyclophilin-A). We then determined whether
any of the other peptides from PPIA among those in the 318-pep-
tide set could be added to the classifier without decreasing speci-
ficity and found that a second peptide from PP1A (FEDENFILK)
could be added in this way (Fig. 3C). Using peptide abundance
levels resulting in 100% specificity among 36 normal samples, we
found that VSFELFADK and FEDENFILK yielded 75.0% and

78.6% sensitivities, respectively. The Pearson correlation co-
efficient for the two PPIA peptides was 0.83 (95% CI, 0.78–0.87).
At least one of the two peptides was elevated in 23 (82.1%) of
the 28 samples.

Phase 3: Validation. The dataset used to form the classifier was
large: 1,990 transitions from 318 peptides tested in each of 98
samples. It is well known that overfitting is possible in such ex-
periments and that independent validations of any classifier are
mandatory. We therefore evaluated a separate cohort of 73
cases, consisting of plasma from 35 ovarian cancer cases and
38 samples from healthy individuals or patients with other cancer
types (Dataset S7). In these 73 cases, SAFE-SRM was performed,
but the only transitions analyzed were those corresponding to the two
peptides from PPIA plus a peptide from Fibronectin, which we found
to be expressed at similar levels in all samples and was thereby used
for normalization. The relative abundances required for a positive
score were predetermined from the results in phase 2b described
above. Examples of the SAFE-SRM profiles for these peptides in
ovarian cancer patients and normal individuals are shown in Fig. S3.
Twenty (57.1%; 95% CI, 40–73%) of the 35 plasma samples from
ovarian cancer cases scored positive for VSFELFADK from PPIA,
while none of the 14 samples from normal individuals scored positive
(specificity of 100%; 95% CI, 89–100%). For the second peptide
FEDENFILK from PPIA, 14 (40.0%; 95% CI, 24–58%) of the
35 plasma samples from ovarian cancer cases were scored as positive,
and, as for the first PPIA peptide, none of the 14 samples from
healthy individuals scored positive. All of the plasma samples
scoring positive for the FEDENFILK peptide also scored positive

Fig. 2. Peptide detectability by SAFE-SRM in complex samples. Six heavy-
isotope–labeled peptides (peptide 1: IQLVEEELDR*; peptide 2: VILHLK*;
peptide 3: IILLFDAHK*; peptide 4: TLAESALQLLYTAK*; peptide 5: LLGHLVK*;
peptide 6: GLVGEIIK*, where * indicates C13 and N15 heavy-isotope–labeled
amino acids) were synthesized and used to evaluate the sensitivity of SAFE-SRM
in detecting low amount of peptides in complex samples. One femtomole of
each peptide was detected by conventional SRM (A). However, when 1 fmol of
these peptides was added to trypsin-digested plasma samples, they were much
more difficult to detect (B). bRPLC fractionation was able to increase the sensi-
tivity of standard SRM, but with a large variance between runs (C). SAFE-SRM
with optimized dwell and cycling time allowed detection of all six peptides, at
intensities averaging 70% of the intensities of the free peptides (D).

Fig. 3. Ovarian cancer prediction by peptide biomarkers. (A) Mean square er-
rors (MSEs) of ovarian cancer prediction of all 318 peptides are plotted with the
peptides ranked by MSE from the best predictors to the worst predictors. (B) The
10 best peptide biomarkers are shown; the peptide VSFELFADK from peptidyl-
prolyl cis–trans isomerase A was the best predictor. (C) The ovarian cancer
prediction performance of PPIA peptide VSFELFADK was further improved by
combining with another peptide, FEDENFILK, from the same protein.
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for the VSFELFADK from the same protein. Twenty-four pa-
tients with pancreatic cancer were tested in this assay, and only one
of them (4.2%; 95% CI, 0.2–23.1%) scored positive for peptide
VSFELFADK, and none for peptide FEDENFILK (Dataset S7).
It was notable that 11 of 17 (64.7%) of the plasmas from pa-

tients with early-stage ovarian cancers scored positive for PPIA
peptides, while 32 of 46 (69.6%) of the plasmas from patients
with more advanced cancers scored positive (combining phase 2b
and phase 3; Dataset S7). For comparison, CA125 levels were
measured in a subset of the same cohort. CA125 was elevated in
20 of 63 ovarian cancer patients and in none of 50 healthy
controls. The elevations in CA125 and PPIA did not completely
overlap, so that the sensitivity for detection of either CA125 or
PPIA levels was 74.6% (95% CI, 62.1–84.7%), higher than either
alone (see Venn diagram in Fig. S4).

Discussion
There are some important differences between the approach
described here and most of those used in the past to identify
protein biomarkers for cancer. Most studies start with the anal-
ysis of tumors, searching for proteins that are expressed at higher
levels than in the corresponding normal tissues. It is then de-
termined whether the identified proteins are elevated in the circu-
lation of cancer patients. Although there are advantages to this
approach, proteins that are expressed at high levels in a tumor are
not necessarily released into the plasma. Moreover, such proteins
can sometimes be expressed in normal tissues other than those
initially used for comparison. In contrast, we initiated our efforts
with a search for peptides that were found at higher levels in the
plasma of cancer patients than in the plasma of normal individuals.
The advantage of this approach is that, should such peptides be
identified, they immediately become candidate biomarkers. This
approach eliminates the step at which so many other biomarkers
fail, that is, in the experiments necessary to show that proteins
expressed at higher levels in tumors can actually be found in the
plasma at high levels.
On the other hand, our approach is limited by the low abun-

dance of tumor-specific peptides compared with other peptides
found in the plasma. Although we depleted a variety of abundant
proteins at the start of our discovery process (Materials and
Methods), these proteins cannot be totally removed and peptides
derived from them are still at much higher levels than any tumor-
specific peptide and can confound analysis. It is possible that
many tumor-specific peptides in the plasma escape detection,
either because they are masked by more abundant proteins as a
result of ion suppression or because they are not at high enough
levels to be detected by the Orbitrap mass spectrometer used in
the discovery phase of our process.
A second distinguishing feature of our approach is that the

analytes are peptides rather than proteins. Several studies have
used state-of-the-art proteomics methods to discover new pro-
teins, and then validated them by SRM (15, 16). However, these
studies were focusing on developing protein biomarkers through
peptides, rather than directly using peptides as biomarkers. One
advantage of using peptides is that they are relatively resistant to
degradation by proteases; even if the parent protein is degraded
by proteases in the extracellular space surrounding the tumor or
in the circulation, small peptides may survive. This may be re-
sponsible for the observations on α1-antitrypsin that we made
during the current study. Fourteen peptides from this protein were
confirmed to be detectable in phase 2 of our study (Dataset S6).
They did not pass the requirements for a potentially useful
biomarker in the subsequent validation phases, but we were
able to compare their relative abundances in plasma to those
of circulating α1-antitrypsin protein levels previously reported
by others. Tountas et al. (17) reported an average increase in
α1-antitrypsin protein levels of 1.12-fold (486 ± 18 mg/100 mL
vs. 434 ± 13 mg/100 mL) in pancreatic cancer patients over that

observed in normal individuals. Pérez-Holanda et al. (18) re-
ported an average increase in α1-antitrypsin protein levels of
1.4-fold in colorectal cancer patients over that observed in
normal individuals. In contrast, we found a much larger in-
crease in peptides from the α1-antitrypsin protein: averages of
20-fold, 36-fold, and 59-fold increases in patients with pan-
creatic cancer, colorectal cancer, and ovarian cancer, re-
spectively, over that observed in normal individuals (Dataset
S6). Similarly, we found a 13.3-fold increase of the peptides
from another protein, DJ-1, in pancreatic cancer patients,
while an ELISA revealed only a 2.9-fold increase in the protein
level in a previous study (19). The reason for these dramatic
differences are not clear, although we speculate that it could
be related to the following factors: binding of the target protein
to other proteins or macromolecules in the circulation, thereby
masking the antibody-binding site in antibody-based assays;
cancer-specific posttranslational modifications of the target pro-
teins, similarly masking its binding to antibodies; or degradation
of the released protein in the tumor cells or their environment,
destroying the antibody binding site. The differences we noted in
the apparent abundances of proteins and their derived peptides in
the circulation are not unprecedented. Yassine et al. (20) also
reported a discrepancy between antibody-based tests and SRM-
based tests for α1-antitrypsin. An ELISA for this protein showed
a 1.5-fold increase in α1-antitrypsin proteins in plasma samples
from patients with diabetes over that in normal individuals, while
an SRM assay on the same samples revealed a 10-fold increase.
PPIA catalyzes the cis–trans isomerization of peptide bonds

preceding proline (21). The protein is predominantly located in
the cytosol but also can be secreted extracellularly, perhaps ac-
counting for our ability to detect peptides derived from it in
plasma. Although there are no prior reports of the use of PPIA as
a biomarker, there are many published connections between this
protein and cancer. PPIA has been reported to regulate cell
proliferation, prevent apoptosis, and defend against oxidative
stress (22–24). Microarray analysis showed down-regulation of
focal adhesion signaling in response to PPIA knockdown in hu-
man endometrial cancer cells (25) and in cholangiocarcinoma cell
lines (26). Whether PPIA expression is causally related to the
neoplastic process is not essential to its potential use as a bio-
marker. For example, widely used cancer biomarkers, such as
CA19-9 and CA125, are not known to play an etiologic role in the
cancer types in which they are used.
In sum, we present a generalizable method for discovering

disease-specific peptides in the circulation and present data sug-
gesting that peptides from PPIA may prove to be useful diagnostic
markers for ovarian cancer. The next stage of this work will involve
development of high-throughput methods to measure PPIA pep-
tides in a large cohort of individuals with ovarian cancers. For this
purpose, we are currently attempting to develop antibodies reactive
with the two PPIA peptides that might be used for ELISA.

Materials and Methods
Plasma Samples. Plasma samples from a total of 266 individuals were
obtained, comprising 96 healthy individuals, 81 patients with ovarian cancer,
51 with pancreatic cancer, and 38 with colorectal cancer. The plasma samples
and clinical data were obtained from The Ontario Tumor Bank, Indivumed,
Innovative Research, and The Johns Hopkins Hospital. This study was ap-
proved by the Institutional Review Boards for Human Research at each
participating institution, and complied with Health Insurance Portability and
Accountability Act. Informed consent was obtained from all patients. Se-
lected clinical features of the 266 patients and histopathologic characteris-
tics of their tumors are listed in Dataset S1.

Quantitative Proteomics Assays for Normal and Cancer Plasma Samples. Plasma
samples were prepared for iTRAQ analysis as described in SI Materials
and Methods. iTRAQ labeling-dependent quantitative proteomics assays
were performed to evaluate the proteomic difference between normal
plasma and cancer plasma samples. The pipeline included plasma depletion,
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denaturation, reduction, alkylation, enrichment for glycoproteins, trypsin
digestion, desalting, iTRAQ labeling, strong cation exchange (SCX) cleaning,
and bRPLC fractionation followed by Orbitrap MS analysis and quantitative
proteomics data analysis using in-house–developed R scripts. Detailed pro-
cedures are provided in SI Materials and Methods.

Selection of 641 Peptides as Potential Cancer Biomarkers for Further Validation.A
total of 204 proteins was shared by at least two out of three whole-plasma
iTRAQ proteomics datasets. Eighty-seven of these proteins were selected as
potential cancer biomarkers for further SRM-based validation based on their
abundance test score in the empirical modified eBayes t test (see details in SI
Materials and Methods). A total of 461 proteotypic peptides from these pro-
teins was selected as SRM quantifying targets (approximately five target
peptides per protein). Of these 461 peptides, 208 were directly observed in our
experiments and an additional 253 peptides were added from querying sev-
eral databases, including PeptideAtlas, PRIDE, etc. (27–29). We also identified
180 peptides in our iTRAQ datasets that did not meet our rigorous criteria for
initial selection but which we considered reasonable candidate biomarkers on
the basis of their biologic properties. Altogether, we selected 641 SRM target
peptides from phase 1 of our study that were carried forward to the validation
phase (Dataset S4).

Development of SAFE-SRM Assays. A total of 4,384 transitions targeting the
641 target peptides in our study was optimized by using synthetic peptides. For
each synthetic peptide, a set of optimized collision energies and dwell times was
obtained (Dataset S5). An HPLC fractionation was performed to separate the
641 synthetic peptides into 96 fractions based on each peptide’s hydrophobicity
in a weak basic environment (pH 8.2). A total of 96 peptide fractions was then
organized into 32 groups comprising three sequential fractions each, according
to the scheme shown in Fig. S2. Each of these groups was subjected to frac-
tionation through a C18-based HPLC coupled to the Agilent 6490 triple-quad-
rupole mass spectrometer. SRM assays covering all 4,384 transitions were
performed in each of the groups to determine the optimum parameters for
detecting each peptide. After identifying the SAFE-SRM fraction group ID for
each peptide, a unique SAFE-SRM method was constructed for each fraction
group, and the SRM transitions in sequential groups that eluted just before or
just after the target group were also incorporated into the method (Fig. S2). The
SAFE-SRM group ID for each peptide is listed in Dataset S5, where each ID refers
to the bRPLC fractionation plate shown on Fig. S2. After initial method-building
steps using standard peptides, we were able to pare the number of groups that
needed to be analyzed in the final HPLC-MS step from 32 to 20. A total of 318 of
the 641 peptides was reproducibly observed in at least one of these 20 groups,
yielding 1,990 detectable transitions (average of 6.3 transitions per peptide).

SAFE-SRM Assays. The 200-μL plasma samples from each individual were pro-
cessed using the procedures described in SI Materials andMethods. Lyophilized
plasma peptide samples were reconstituted in 2 mL of 10 mM triethylammo-
nium bicarbonate (pH 8.2) with 3% acetonitrile. Peptide fractionation was
performed on an Agilent 1260 HPLC system with a C18 column at pH 8.2. The
two HPLC mobile phase solvents were 10 mM triethylammonium bicarbonate
(solvent A), and 10 mM triethylammonium bicarbonate with 90% acetonitrile
(solvent B). A 120-min HPLC gradient method was applied with a flushing step
for the first 20 min to remove salt, and this was followed by a 96-min gradient
with solvent B increasing from 0 to 100%. The 96 fractions from a plasma
peptide sample were collected in a Protein LoBind plate (Eppendorf), and the
peptides eluted during each 1-min window were collected in each well. Pep-
tide fractions were combined according to the scheme shown in Fig. S2A and
vacuum dried. Dried peptides were then reconstituted using 40 μL of SRM
solvent A and spiked with 3 fmol of heavy isotope-labeled K-Ras wild-type
(WT) peptides (LVVVGAGGVGK*) before another online fractionation on an
Agilent 1290 UHPLC system at pH 3. Fractionated samples were continuously
injected into the Jet Stream ESI source of an Agilent 6490 triple-quadrupole
mass spectrometer operated in SRM positive-ion mode.

Analysis of SAFE-SRM Assays. A set of assays composed of 20 different SRM
methods for all groups were performed to quantify the abundance of each of
the 318 peptides. Twenty datasets were generated by the mass spectrometer
using the 20 SAFE-SRM methods for each plasma sample and were imported

into Skyline 3.6 for data analysis (30). We improved the labeled reference
peptide (LRP) method (31) through a dual-control approach to adjust for the
variance of sample preparation efficiency and fluctuations of mass spectrom-
eter sensitivity. The first control was a heavy-isotope–labeled mutant KRAS
protein spiked into the plasma sample before sample preparation. The second
control was a heavy-isotope–labeled WT KRAS peptide spiked into each group
before running on the final HPLC-MS (28). The abundance of a target peptide
was represented by the total area under the curve (AUC) of all its transitions
normalized to the total AUC of all transitions from the 3-fmol heavy-isotope
(heavy-lysine residue)–labeled K-Ras WT peptides (LVVVGAGGVGK). Variations
in sample preparation were adjusted by normalizing the abundance of each
peptide from a given sample to the abundance of the peptides derived from
the heavy-isotope–labeled K-Ras mutant (G12D) protein purchased from Ori-
gene. We selected six peptides derived from this heavy-isotope amino acid
(heavy-lysine and heavy-arginine)–labeled protein for this adjustment. Peptide
sequences and optimized transition parameters are listed in Dataset S5.

A SAFE-SRMabundance score (S) was calculated for each of the 318 peptides
in every sample. Assume that Pi,j,k is the integrated intensity of a peptide i in
sample j fraction k, Nj,k is the integrated intensity of the K-Ras WT heavy
control peptide in sample j, fraction k, andMj is the integrated intensity of the
median abundance K-RAS protein peptide in sample j. Let Si,j be the abun-
dance score of peptide i in sample j; therefore, Si,j can be calculated as follows:

Si,j =
Pi,j,k

Nj,k *Mj
,

where for Mj:

Mj =median
�
P1,j,k
Nj,k

,
P2,j,k
Nj,k

, . . . ,
P6,j,k
Nj,k

�
.

In this study, 71 out of 318 peptides were repeatedly detected across two
adjacent SAFE-SRM groups. The abundance of such peptides in each sample
was calculated by summing the normalized abundance scores in adjacent
SAFE-SRM runs where the peptides were detected.

Reproducibility of the SAFE-SRM pipeline was measured by calculating the
reproducibility ratio (RR) for sample j as follows:

RRj =median
�
Nj,k

Mj

�
.

RR value for each sample processed through SAFE-SRM pipeline was listed in
Dataset S7.

Cancer Proteomic Biomarker Identification. To identify the best peptide clas-
sifiers, stepwise forward selection logistic regressionwas employed inMATLAB.
First, a logistic regression model was fit to the training set of 50 samples, in-
cluding 27 known healthy samples and 7, 7, and 9 known colorectal, ovarian,
and pancreatic cancer plasma samples using the 318 peptide abundance scores.
Leave-one-out cross-validation was used to estimate predictive performance of
each model. The peptide yielding the lowest cross-validated misclassification
rate on the training setwas selected for inclusion in themodel. Ifmore thanone
peptide achieved the lowestmisclassification rate, ties were broken by selecting
the peptide that produced the greatest model likelihood. This process of
selecting a peptide biomarker to be added to the model was repeated until no
further decrease in cross-validated misclassification rate could be achieved by
addition of a peptide. To find a subset of peptides from the same protein that
could achieve perfect classification, the same stepwise forward selection pro-
cedure was applied for each potential biomarker protein. After identifying the
best classifiers, predictive performance of models fit to different combinations
of the peptide biomarkers was compared on an additional 48 samples in a blind
manner. The predictive models constructed by combinations of best peptide
classifiers and by each individual best peptide classifier were evaluated on an
additional cohort of 73 samples in a blind manner.
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