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Interpretation of positive genotoxicity findings using the current in
vitro testing battery is a major challenge to industry and regulatory
agencies. These tests, especially mammalian cell assays, have high
sensitivity but suffer from low specificity, leading to high rates of
irrelevant positive findings (i.e., positive results in vitro that are not
relevant to human cancer hazard). We developed an in vitro
transcriptomic biomarker-based approach that provides biological
relevance to positive genotoxicity assay data, particularly for in
vitro chromosome damage assays, and propose its application for
assessing the relevance of the in vitro positive results to carcino-
genic hazard. The transcriptomic biomarker TGx-DDI (previously
known as TGx-28.65) readily distinguishes DNA damage-inducing
(DDI) agents from non-DDI agents. In this study, we demonstrated
the ability of the biomarker to classify 45 test agents across a broad
set of chemical classes as DDI or non-DDI. Furthermore, we assessed
the biomarker’s utility in derisking known irrelevant positive agents
and evaluated its performance across analytical platforms. We cor-
rectly classified 90% (9 of 10) of chemicals with irrelevant positive
findings in in vitro chromosome damage assays as negative. We
developed a standardized experimental and analytical protocol
for our transcriptomics biomarker, as well as an enhanced applica-
tion of TGx-DDI for high-throughput cell-based genotoxicity testing
using nCounter technology. This biomarker can be integrated in
genetic hazard assessment as a follow-up to positive chromosome
damage findings. In addition, we propose how it might be used in
chemical screening and assessment. This approach offers an oppor-
tunity to significantly improve risk assessment and reduce cost.
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genotoxicity | DNA damage response

There is a critical need for improved, accurate, and reliable
toxicity assays to expedite the health risk assessment of

chemical agents. Genotoxicity leads to genetic changes, such as
mutations, chromosome damage, and consequent genomic in-
stability, progressing to cancer. Thus, genotoxicity testing is a
crucial component of safety evaluation for drugs and chemicals
(1, 2). The genotoxicity testing battery includes standard in vitro
mutation and in vitro chromosomal damage (CD) assays. The
latter include assessments of various cytogenetic abnormalities
and/or micronucleus formation. A high incidence of chemicals
with positive findings on CD assays that are not reproducible in
vivo is of considerable concern to industry and regulatory
agencies (3). Many of these “positive” findings are not caused by
initial DNA damage, but rather arise as a result of cytotoxicity or
other nongenotoxic mechanisms (2–4). Despite the progress in
refinement of testing protocols for standard genotoxicity in vitro
chromosome damage assays, irrelevant positives remain major
challenges to industry and regulatory agencies (3, 5); additional
examples are listed in Table S1.

The differentiation of relevant from irrelevant in vitro results
is crucial for the interpretation of positive findings in the context
of risk to human health. Such irrelevant positive results typically
require expensive and time-consuming follow-up tests involving
animal testing. When cost is a consideration, or when animal
testing is not feasible (6, 7), potentially useful chemicals may be
excluded from further commercial development. As conceptually
depicted in the current Food and Drug Administration guidance
for industry for drug development, investigating genotoxic
mechanisms during lead optimization, candidate selection, and/
or Investigational New Drug (IND) application requires effective
experimental follow-up strategies. Since broad mechanism-based
assays are not available and currently used follow-up methods
are laborious and time-consuming, experimental approaches
enabling mechanism-based risk assessment are needed.

Significance

Standard in vitro assays to assess genotoxicity frequently
generate positive results that are subsequently found to be
irrelevant for in vivo carcinogenesis and human cancer risk
assessment. Currently used follow-up methods, such as animal
testing, are expensive and time-consuming, and the develop-
ment of approaches enabling more accurate mechanism-based
risk assessment is essential. We developed an in vitro tran-
scriptomic biomarker-based approach that provides a robust
biomarker reflecting stress-signaling responses. The biomarker
correctly identifies the vast majority of irrelevant genotoxicity
results from in vitro chromosome damage assays. TGx-DDI, a
multigene biomarker for DNA damage-inducing agents, is the
first biomarker that not only shows convincing interlaboratory
and intralaboratory reproducibility, but also performs accu-
rately in a system suitable for high-throughput screening.
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We previously developed an in vitro transcriptomic biomarker-
based approach that provides biological relevance based on stress
signaling responses for assessment of chemicals showing positive
results in the standard genotoxicity testing battery (8). Taking
advantage of a modern toxicogenomic approach, we constructed a
reference database containing global gene expression profiles of
28 model agents with a broad range of known toxic mechanisms.
A transcriptomic biomarker, TGx-DDI (designated TGx-28.65 in ref.
8), which discriminates DNA damage-inducing (DDI) agents from
other agents, was derived from this initial reference dataset. DDI
agents include DNA-reactive agents that are known to be directly
genotoxic, along with indirect-acting agents causing DNA damage
either by inhibition of topoisomerase action or blockage of DNA
synthesis. Three test agents consisting of a known genotoxicant, a
nongenotoxic stress agent, and a nongenotoxic agent with irrelevant
positive CD results were successfully categorized in that study as a
proof of application; however, before this method is added to the
standard in vitro genotoxicity battery, comprehensive performance
validation is required to assess its robustness and feasibility.
In the present study, a performance evaluation and validation

exercise was undertaken to thoroughly evaluate the ability of this
biomarker approach to identify agents that cause DNA damage,
and to clearly identify any potential limitations of its use in ge-
netic safety risk assessment. In the first phase, intralaboratory
performance was assessed using a variety of DDI and non-DDI
agents. The ability of the biomarker to predict DDI/non-DDI
agents was also considered using published work from another
laboratory and publicly available data. Next, a panel of 45
chemicals with known mechanisms of action were analyzed to
explore the context of use, including 10 agents with irrelevant
findings in CD assays. This project included support by and ad-
vice from a large consortium of scientists from industry, gov-
ernment agencies, and academia organized by the Health and
Environmental Science Institute (HESI). Our experimental de-
sign for this phase consists of a concentration setting experiment
followed by a microarray analysis of global gene expression al-
terations. As explained previously (8), concentration-ranging is
essential to identify effective doses for triggering stress signaling,
and timing is critical to avoid later nonspecific effects. However,
we emphasize that application of this biomarker in compound
testing requires concentration–response experiments. In this
phase of the study, a standardized workflow for experiment and
data analysis is proposed for the TGx-DDI application in both
pharmaceutical and chemical testing.
The inventory of chemicals mandated by the Toxic Substances

Control Act contains 73,757 chemicals that have been reported
by manufacturers as being in commercial use as of February
2001, and this number is continually increasing. Thus, a thorough
assessment of the health effects of chemicals present in the en-
vironment and marketplace poses a serious challenge for regu-
latory agencies worldwide. In vitro high-throughput screening
(HTS) has been proposed as a first-tier screen in chemical as-
sessments (9). To adapt our transcriptomic biomarker (identified
and validated using microarray technology), we developed a
TGx-DDI high-throughput cell-based assay using the nCounter
system. Here we present our evaluation of the robustness of the
TGx-DDI nCounter assay in identifying DDI agents and its
concordance with the output of the microarray approach.

Results
Technical Performance Evaluation. To demonstrate the technical
robustness and reproducibility of the cell culture and exposure
conditions, the microarray method, and overall comparability
with the learning set data used for TGx-DDI identification, we
conducted four independent replicate transcriptomic experi-
ments in which TK6 cells were exposed to 80 μg/mL cisplatin
alongside concurrent 0.9% NaCl (vehicle) controls. As shown in
Table S2, the correlation coefficients across the replicates

were >0.95, indicating that this technical system is highly re-
producible. Four additional agents were selected from the orig-
inal training set to confirm the reproducibility of DDI prediction
using the TGx-DDI biomarker: a DNA alkylating agent [methyl
methanesulfonate (MMS)], a topoisomerase inhibitor (etopo-
side), an HDAC inhibitor (oxamflatin), and ionizing radiation
(IR) (4 Gy). Dose–response studies were conducted using a
qRT-PCR indicator gene panel comprising ATF3, CDKNIA, and
GADD45A to determine the specific concentration that trig-
gered a robust response (i.e., greatest overall increases in mRNA
levels for these test transcripts) for each chemical agent (as de-
scribed in ref. 8), and the selected concentrations for these
agents were identical to the previously determined ones (8). At
the selected concentrations, the microarray results of the three
agents and IR were used to classify these agents with the TGx-
DDI biomarker, and the expression profiles for each agent were
compared with the previously published dataset (Fig. S1A). The
microarray results derived for the TGx-DDI biomarker genes
compared favorably with our previous work. As anticipated, the
treatments clustered with their expected categories by two-
dimensional clustering (2DC) using the TGx-DDI biomarker
(Fig. S1A). Taken together, these experiments demonstrate that
this model system and technology generate robust and compa-
rable data in our laboratory that are highly reproducible.
Extensive interlaboratory validation of the biomarker is beyond

the scope of the present study; however, the performance of the
biomarker was explored at Health Canada. This analysis confirmed
the ability of the biomarker to correctly classify nine genotoxic and
four nongenotoxic chemicals in TK6 cells (10). Moreover, the
biomarker correctly classified five genotoxic and 10 nongenotoxic
agents using Affymetrix DNA microarrays from HepaRG cells
(publicly available data from another laboratory; ref. 11).

Selection of Validation Compounds. Based on feedback for our
toxicogenomic approach proposed in our earlier Voluntary Ex-
ploratory Data Submissions (VXDS) (4) and ongoing interac-
tions with the Food and Drug Administration, a strategy was
developed to evaluate the performance of the TGx-DDI bio-
marker with a set of chemicals that covered five mechanistic
classes spanning DDI and non-DDI mechanisms:

• Class 1: DDI agents that interact directly with DNA that should be
detected as positive in the in vitro CD assays. This group of agents
includes alkylating and cross-linking agents, and serves as a positive
control for detection of direct DNA-reactive mechanisms.

• Class 2: DDI agents that interact indirectly with DNA. Topoiso-
merase inhibitors and intercalators are highly potent indirect
genotoxicants. Antimetabolites, such as nucleoside analogs, cause
CD in vitro. We note that some antimetabolites may show effects
only after longer exposures than provided in our 4-h assay, and
inclusion of these agents tests the limits of the experimental design.

• Class 3: agents that interact indirectly with DNA via effects on
the cell cycle, regulation of apoptosis, and interaction with the
mitotic apparatus. This class includes aneugens that are mi-
crotubule inhibitors, which are non-DDI because they cause
aneugenicity through spindle interference, and in vitro CD-
positive kinase inhibitors that are not relevant genotoxicants
in vivo because they are typically positive only at doses that
are not physiologically relevant.

• Class 4: non-DDI compounds with a “clean” genotoxicity pro-
file, including negativity in vitro CD assays. This class serves as
negative controls for testing the transcriptomic biomarker.

• Class 5: compounds known to have irrelevant positive results
in in vitro genotoxicity assays. This class includes such agents
as caffeine, nongenotoxic carcinogens, apoptosis inducers, and
other chemicals that have been reported as positive in in vitro
CD assays but for which the genotoxicity findings are under-
stood as irrelevant.
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Based on the foregoing, we selected 45 chemicals (Table 1 and
Table S3) from the literature and used expert knowledge to populate
each class (5).

Concentration Optimization.As discussed in more detail previously
(8, 10–14), a sufficient concentration of the test agent is required
to trigger a measurable transcriptional response; such concen-
trations may differ from other toxicologic endpoints. Therefore,
to determine an appropriate concentration for transcriptomic
profiling, we performed a dose-range finder experiment for all
test compounds as described by Li et al. (8). Six concentrations
of each agent were used to assess mRNA changes in three in-
dicator genes (ATF3, CDKNIA, and GADD45A) by qRT-PCR.
The concentration for each agent showing the strongest in-
duction of the indicator genes was then selected. In addition,
concordance of responses in the indicator genes was confirmed
before samples were pooled for microarray analysis. If none of
the indicator genes was induced in concentration setting exper-
iments, then the IC50 value was selected for the microarray
analysis. The IC50 value was determined through a standard
MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bro-
mide] assay at 24 h using 10 concentrations and three replicates.
Based on this cytotoxicity assay, the selected concentrations for
microarray analysis were not overtly cytotoxic for any test agent
(Fig. S2). If there was neither cytotoxicity nor induction of ex-
pression changes in the gene panel, a concentration of 1 mM was
used for microarray analysis, in accordance with the revised In-
ternational Conference on Harmonisation of Technical Re-
quirements for Registration of Pharmaceuticals for Human Use
guidance on genotoxicity testing of pharmaceuticals (15).
We note that selection of a single concentration and pooling

of replicate samples for microarray analysis (described below)
are specific to biomarker development and validation, where
multiple compounds were used in each class. Future application
in substance testing should be undertaken using a dose–response
design with samples in triplicate, as has been described in a case
study on the TGx-DDI biomarker in chemical testing (16).
The concentration determination results of all five classes are

presented in Fig. S3. As an example, responses for the indicator
genes at the selected concentrations for chemicals in classes
1 and 5 are shown in Fig. 1 A and B, respectively. All chemicals in
class 1 except busulfan induced robust responses in at least one
gene at the selected concentration. Only GADD45A was induced
by at least twofold in cells treated with busulfan at the selected
concentration. Higher concentrations of busulfan did not cause
greater induction of these indicator genes (Fig. S3F), suggesting

transcriptional inhibition at high concentrations. The treatment
of all but one compound, bleomycin, at the selected concentra-
tions resulted in a minimum 30% reduction in cell viability at
24 h (Fig. S2); however, cells treated with bleomycin showed an
80% decline in viability at 24 h. The concentration setting was
based on qRT-PCR results for all class 5 compounds except
rotigotin, which did not induce any of the indicator genes at the
concentrations tested, including cytotoxic doses. Therefore, the
IC50 for cell viability was selected for the microarray experiment.
In contrast, the other class 5 compounds induced at least one of
the three indicator genes at the selected concentrations. Aside
from exemastan, rabeprazpole, and rotigotin, these class 5 com-
pounds were not cytotoxic, with ≥80% viability (Fig. S2).

TGx-DDI Transcriptomic Biomarker Evaluation. Following the con-
centration determination, a microarray analysis was performed
for each test compound. RNAs from three replicates in the
concentration setting experiment were pooled together and used
for microarray analysis. Cisplatin or IR was used in parallel
during each batch of experiments as a positive control and to
assess batch variation (Fig. S1B). The TGx-DDI transcriptomic
biomarker panel was used to classify each chemical as DDI or
non-DDI using 2DC, principal component analysis (PCA), and
probability analysis (PA). Hierarchical clustering and PCA were
used as an initial unsupervised method to explore the data. As
shown in Fig. S4, category assignment was first determined by the
position of the test chemical in the tree structure of the dendro-
gram generated by 2DC, or in the PCA plot. Finally, TGx-DDI–
based prediction was conducted by applying the shrunken cen-
troids approach for posterior probability analysis (17). This was
done by determining the extent of gene expression changes for
each of the biomarker genes from the DDI and non-DDI cen-
troids. A DDI call was based on P > 0.9 of the compound being in
that class, and vice versa for a non-DDI call. A chemical was
considered unclassified if it did not meet these criteria.
Fig. 1C shows the TGx-DDI heatmap for chemicals in all five

classes. PA, PCA, and 2DC results using the TGx-DDI bio-
marker for validation chemicals are shown by colored boxes
above each heatmap, along with the published CD and Ames
assay results. Yellow and blue represent positive and negative
results, respectively. To decrease the probability of false nega-
tives, we used a three-pronged approach for overall final classi-
fication. A chemical was classified as DDI if it gave a positive call
in any one of the TGx-DDI biomarker analyses described above
(2DC, PCA, or PA prediction), and was classified as non-DDI if
it did not meet any of these criteria.

Table 1. Classes of test compounds

Class Definition CD Validation set Previously tested*

1 Genotoxins that interact directly with DNA Positive 8 3
2 Genotoxins that interact indirectly with DNA Positive

Topo inhibitors, including DNA intercalators 5 2
Antimetabolites 5 3

3 Genotoxins that interact indirectly with DNA Positive
Effect on cell cycle and mitotic apparatus
Antimitotic agents 3 4
Kinase inhibitors (in vitro positive) 3 None
Heavy metals None 3

4 Non–DNA-reactive chemicals, in vitro negative Negative
Kinase inhibitors (in vitro negative) 2 None
Nongenotoxic carcinogens 3 None
General pathways 2 None
Others 3 None

5 Irrelevant positives Positive 11 1

*The number of compounds in the previous study (8).
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Overall, application of our three-pronged analytical approach
yielded the expected classifications, with a few exceptions. Spe-
cifically, all agents in class 1 were classified as DDI, all but one
agent (methyl carbamate) in class 4 were classified as non-DDI,
and all but one agent (exemastan) in class 5 were classified as
non-DDI. Class 3 agents were classified as non-DDI with two
exceptions; both dasatanib and diethylstilbestrol gave DDI calls.
More than one-half of the class 2 agents gave DDI calls.

Development of the TGx-DDI nCounter Assay.To meet the need for a
multiplex detection system suitable for HTS, we developed a TGx-
DDI assay applying nCounter, a direct digital counting technology.
First, we assessed the robustness of TGx-DDI nCounter assay by
comparing the results of the training set agents in TK6 cells to
those using microarrays (Fig. S5A). The TGx-DDI code set in-
cludes an optimized TGx-DDI gene set and eight housekeeping
genes. The housekeeping genes were selected based on stability
and detectable expression levels. A high correlation was observed
between nCounter assay and microarray results for TGx-DDI
(Fig. S5B).
To validate the sensitivity and specificity of DDI prediction of

the TGx-DDI nCounter assay, 45 test compounds were evalu-
ated using nCounter technology. nCounter assays were per-
formed on 100 ng of total RNA using the same RNA samples

from the microarray analysis. Applying our three-pronged ana-
lytical approach for classification, we classified compounds as
DDI or non-DDI based on the nCounter assay data (Fig. 2). In
addition to the 45 compounds in five classes, we validated four
additional chemicals requiring metabolic activation that were
used in a previous study (11) in which this approach was adapted
to DDI agents requiring metabolic activation. Fig. 2A shows the
heatmap of the training set agents using the TGx-DDI nCounter
assay, and Fig. 2B shows the heatmap for compounds in different
classes and compounds requiring metabolic activation. The
overall classification results for all test compounds are shown as
colored boxes immediately above the heatmap labeled “overall.”
Classification of the majority of the compounds was consistent
with the microarray results (Fig. 1); however, responses to sev-
eral weak DDI compounds were stronger and more robustly
measured by nCounter. For example, both busulfan and hydro-
quinone were predicted as non-DDI by PA, while 2DC and PCA
indicated that these are DDI agents in the microarray analysis.
The analysis of the nCounter data for these two agents showed
consistency across the three classification methods, suggesting
that the nCounter system is more sensitive for detecting weak
responses to DDI agents. Moreover, all class 4 agents were
classified by the nCounter system as non-DDI, which is 100%
consistent with CD assay results. This is in contrast to microarray

A

B

C

Fig. 1. Prediction of the probability that the test agents are DDI or non-DDI using the TGx-DDI transcriptomic biomarker. (A and B) Representative tran-
scriptional responses for concentration-optimization indicator genes ATF3, CDKN1A, and GADD45A, measured by qRT-PCR. The ratio designates the relative
change in gene expression compared with vehicle-treated control cells. Results are shown for the concentrations selected for subsequent microarray ex-
periments. (C) Forty-five chemicals were grouped based on mechanistic properties (Table 1); 2DC heatmaps are shown for each class of agents, and prediction
results are listed above. Three methods were used to predict DDI-positive (yellow), and the overall prediction (Bottom) is based on positive results with any of
these three methods. (Top and Middle) Published results from the CD and Ames assays. Yellow and blue indicate positive and negative findings, respectively;
white boxes indicate indeterminate classification.
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results, in which only 9 out of 10 agents were classified as non-
DDI (Table 2). The results of 2DC and PCA analyses for the
TGx-DDI nCounter assay are shown in Fig. S4 for each class.
The classification of agents in the presence of S9 metabolic ac-
tivation was also consistent with expectations, demonstrating
that the method can be used accurately with S9 (Fig. S6).
To develop an HTS TGx-DDI nCounter assay, we tested

crude cell lysates in addition to isolated RNA with this tech-
nology, using solvent- or bleomycin-treated TK6 cells as samples.
This method omits RNA extraction steps, allowing it to be
coupled to nCounter measurement for a highly automated HTS
system. As shown in Fig. 3, nCounter results of cell lysates at
various cell concentrations showed comparable results to those
for purified RNA from the original bleomycin and solvent con-

trol experiments, and yielded correlation coefficients of 0.90–
0.96 in fold changes for the TGx-DDI biomarker genes from
pure RNA extracts vs. cell lysates.

Discussion
The first objective of the present study was to provide validation
data to support the capability of the TGx-DDI biomarker to
assess genotoxic hazard and derisking compounds with irrelevant
in vitro positive chromosome damage findings. We first showed
that the TGx-DDI biomarker performs robustly in predicting
DDI and non-DDI agents in our laboratory, and that accurate
calls have been made using different cell culture models and
platforms in other laboratories (10, 11). We then demonstrated
that our integrated TGx-DDI bioinformatic approach has high

A B

Fig. 2. Performance of TGx-DDI with the nCounter analysis system. (A) Heatmap of NanoString expression analysis using previously tested chemicals. All
chemicals were classified as DDI or non-DDI using the same approach used in the DNA microarray analysis. (B) Thirty-eight chemicals were grouped based on
mechanistic properties (Table 1). Four chemicals that require metabolic activation were evaluated at different concentrations. Heatmaps are shown for
nCounter results for each class and prediction results are displayed above. Three methods were used to predict DDI positivity (yellow), and the overall
prediction (Bottom) is based on positive results with any of these three methods. (Top andMiddle) Published results from the CD and Ames assays. Yellow and
blue indicate positive and negative findings, respectively.

Table 2. Consistency of TGx-DDI prediction (by microarray and nCounter methods) with CD
assay results for selected test classes

Technology Class 1

Class 2

Class 4 Class 5Topo inhibitor Antimetabolites

Microarray 100% (8/8) 80% (4/5) 40% (2/5) 90% (9/10) 9% (1/11)
nCounter 100% (8/8) 80% (4/5) 60% (3/5) 100% (10/10) 9% (1/11)
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accuracy for classification of DDI agents and non-DDI agents,
and is highly effective in differentiating relevant from irrelevant
chromosome damage assay findings.
Based on the results of our studies, we developed workflows

for application of the TGx-DDI biomarker in genetic toxicology
risk assessment (Fig. 4). We propose that the TGx-DDI tran-
scriptomic biomarker can be applied during assessment of
pharmaceuticals (Fig. 4A) and environmental/industrial chem-
icals (Fig. 4B). In pharmaceutical assessments with positive re-
sults from in vitro mammalian cell chromosome damage assays,
the biomarker provides insight into the relevance of these posi-
tive findings for agents that are otherwise negative in Ames and
in vivo tests (Fig. 4A). This is important, because the human
relevance of a positive in vitro CD finding still necessitates
multiple in vivo follow-up studies despite a negative in vivo
genotoxicity test (15). Thus, the risk assessment of these positive
in vitro findings poses a challenge to industry and regulatory
agencies. Our study demonstrates that application of the TGx-
DDI transcriptomic biomarker will add significant value to the
current genotoxicity testing battery for pharmaceuticals by re-
ducing the need for complicated follow-up in vitro and in vivo
tests and streamlining the animal tests that are required.

For industrial and environmental chemicals, the TGx-DDI
provides a feasible high-throughput approach for detecting and
characterizing genotoxicity hazard (Fig. 4B). Specifically, the
biomarker could be used in HTS for identifying and prioritizing
the agents that may cause DNA damage when large chemical
sets require assessment. In addition, as in the pharmaceutical
application, the biomarker can be used in parallel with conven-
tional in vitro genotoxicity tests to provide weight of evidence in
genotoxicity hazard assessment (16), to aid the differentiation of
DDI from non-DDI (i.e., aneugenicity) modes of genotoxic ac-
tion, and to provide insight into potentially irrelevant positives.
Finally, as shown in our published case on use of the TGx-DDI
biomarker in chemical assessment, the response of the bio-
marker genes is useful for determining a chemical’s genotoxic
potency when run in parallel with prototype agents (16).
Overall, this transcriptomic biomarker approach has the po-

tential to complement and/or eventually replace standard gen-
otoxicity assays by providing information about biological
responses to genotoxic stress that cannot be obtained using
current methods. While the standard current in vitro genotoxicity
assays, particularly CD and the mouse lymphoma assay (MLA),
give phenotypic readouts, the TGx-DDI provides insight into

A B

Fig. 3. Elimination of the RNA preparation step. (A) Comparison of nCounter results using cell lysate and total RNA methods from cells treated with
bleomycin. The number of cells directly analyzed is shown at the right for each row; results with 100 ng of purified RNA are shown above. (B) Representative
log2 fold change correlation of genes in TGx-DDI in total RNA and cell lysates. The correlation between results using total RNA and cell lysates was analyzed;
the R2 value calculated based on linear regression ranged from 0.90 to 0.96 for each cell concentration. Shown is the comparison of total RNA and cell lysate
with a concentration of 2,000 cells/μL.

Fig. 4. Proposed workflow for applying the TGx-DDI biomarker for genotoxicity assessment of candidates for pharmaceutical drug development (A) or
industrial and environmental chemicals (B).
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molecular responses by a toxicant. Specifically, a positive re-
sponse using the TGx-DDI biomarker indicates that sufficient
DNA damage was incurred and recognized by the cell to initiate
a transcriptional DNA damage response driven by DNA damage
response signaling, including p53. Moreover, as described by
Clewell and Andersen (18), the pattern of transcription in-
duction by p53 differs among genotoxic agents, and these profiles
may be useful in classifying mechanisms of action.
This validation study comprised an assessment of 45 test

chemicals across five recommended mechanistic classes using a
transcriptomics profiling approach. Fig. 1C summarizes the re-
sults of the TGx-DDI toxicogenomic assay and the data from
standard genotoxicity testing assays for these 45 test chemicals.
The TGx-DDI biomarker data were interpreted using three
statistical approaches: 2DC, PCA, and PA. The individual results
of each statistical method, as well as the overall call given
(positive in any method is a positive overall call) were obtained.
The three statistical methods were used for TGx-DDI in-
terpretation to ensure robust data analysis that limited false
negatives. The results of the 2DC, PCA, and PA analyses were
generally consistent: in 90% of the test cases, the results agreed
with one other, with only 5 of the 45 agents showing differing re-
sults. Three agents—busulfan, hydroquinone, and diethylstilbestrol—
were identified as non-DDI by PA but as DDI by 2DC and/or
PCA. These three agents are exceptions, because they induce
weaker gene expression responses overall compared with the other
positive agents based on visual inspection of the heatmap (Fig.
1C), and are positioned very close to the cutoff line in the PCA
plot (Fig. S4 A and C). Two agents, cirprofloxacin and methyl
carbamate, were categorized as indeterminate (Fig. 1C). Together
with the negative PA result, these data suggest that these agents
cause relatively weak genotoxic effects under our test conditions.
Thus, to ensure as few false-negative findings as possible in com-
pound screening/assessment and thereby maintain high sensitivity,
agents that induced weak TGx-DDI responses were also reported
as DDI if at least one analysis was positive. Nevertheless, our
approach reduced the irrelevant positives by 90% without in-
creasing false negatives.
As shown in Fig. 1C, the TGx-DDI biomarker classifies all

agents in class 1 as DDI, consistent with results for these com-
pounds using in vitro CD and Ames assays. In addition, all of the
non-DDI agents in class 4 except methyl carbamate are classified
as non-DDI when applying the TGx-DDI transcriptomic bio-
marker analytical approach, again consistent with the findings of
in vitro CD and Ames assays. Norfloxacin, an antibiotic with
topoisomerase inhibitory activity, was predicted to be non-DDI
by the TGx-DDI biomarker, while the in vitro CD and Ames
assay results were positive and negative, respectively. It is known
that the fluoroquinolone antimicrobials target bacterial DNA
gyrase and topoisomerase IV, and that the effect on eukaryotic
topoisomerase is weak and the relevance of genotoxicity depends
on the difference in affinity between the bacterial gyrase and
mammalian topoisomerase (19, 20). Overall, the mammalian
topoisomerase inhibitors were identified by the biomarker.
Three out of five antimetabolites—6-mercaptopurine (6-MP),

azidothymidine (AZT), and 5-azacytidine (5AzaC)—were clas-
sified as non-DDI using the microarray method, while the other
two anti-metabolites, 5-FU and 6-TG, are predicted to be DDI
by TGx-DDI. This difference may reflect the different mecha-
nisms of action. Unlike 5-FU and 6-TG, both of which can in-
corporate into DNA (21) and block DNA synthesis (i.e., a signal
adequately detected by TGx-DDI), AZT and 5AzaC interfere
with reverse transcriptase and DNA methylation, respectively. 6-
MP affects purine nucleotide synthesis by inhibiting phosphor-
ibosyl pyrophosphate amidotransferase, a rate-limiting enzyme
for purine synthesis, which leads to genotoxicity, but the effects
may not be evident until later time points. Thus, the biomarker
may have some limitations in the assessment of antimetabolites.

However, in most cases the antimetabolite properties of compounds
can be easily predicted based on chemical structure. In the case of
two non-DDI kinase inhibitors, imatinib and sorafenib, the bio-
marker could be triggered by alteration of signaling pathways, which
is irrelevant to genotoxic risk. Importantly, as described above, these
agents cause genotoxicity only at concentrations that are not phys-
iologically relevant. Finally, the assessment of class 5 responses
clearly demonstrates that the classifier is effective in differentiating
relevant and irrelevant findings. Indeed, >90% (10 of 11) of the
irrelevant CD responses were identified as such in this analysis.
Overall, our results indicate that application of the biomarker in
genotoxicity testing could significantly increase the efficiency of
derisking irrelevant positives in chromosome damage assays.
In the present study, concentration selection was one of the

key processes required to ensure robust TGx-DDI assay results,
because only one concentration was tested per agent. Indeed, the
xenobiotic-induced transcriptional responses can be blunted at
very high concentrations, at which transcriptional machinery or
cell integrity is compromised (e.g., busulfan in the present study).
Moreover, marginal responses at low concentrations can com-
promise the prediction of toxicity. As shown in Fig. S2, the cy-
totoxicity varied substantially at the concentrations we selected for
these 45 chemicals even within the same class. Thus, we developed
a concentration optimization procedure to provide a standardized
condition for test agent concentration selection and to decrease the
likelihood of false negatives. Our qRT-PCR concentration opti-
mization approach monitors a panel of three well-characterized
stress genes—ATF3, CDKN1A, and GADD45A—which serve as
indicators for effective transcriptional response to the treatments.
While TGx-DDI is a robust biomarker, and accurate genotoxicity
prediction can be achieved at a range of different concentrations
based on a concentration–response study using TGx-DDI (11), we
recommend concentration optimization by qRT-PCR as a standard
procedure for this toxicogenomic application to ensure robust re-
sponse at the test concentrations selected.
Since the TGx-DDI biomarker comprises only 64 genes, it is

feasible to use this biomarker in an HTS application, which
would make it amenable to routine concentration–response ex-
periments. Table S4 compares systems capable of measuring
multiple gene expression. The advantage of global profiling (i.e.,
microarray or RNAseq) is that it can assess thousands of genes
and provide valuable insight into pathways and networks that are
activated by specific modes of action. Downsides of this ap-
proach are its high cost and low throughput, which limit its use in
screening applications. nCounter is a multiplex technology de-
veloped to accurately and simultaneously quantify the abun-
dance of up to 800 transcripts. Unlike other multiplex gene
expression measurement methods, such as qRT-PCR, nCounter
is based on direct multiplexed measurement of gene expression
that does not involve reverse transcription or other enzymes or
require amplification. Therefore, nCounter achieves high levels
of precision, linearity, reproducibility, and sensitivity (<1 copy
per cell). These unique characteristics of nCounter make it a
well-suited technology platform for developing transcriptomic
biomarker-based toxicity screening assay.
The results of the TGx-DDI nCounter assay show that this is an

excellent platform for TGx-DDI. First, nCounter is equivalent to
microarrays in terms of derisking the agents with irrelevant posi-
tive CD results (Table 2). Second, the output of nCounter is more
sensitive to small expression changes than that of DNA micro-
arrays. The responses of several weak DDI compounds were
greater when measured by nCounter, without compromising
specificity. Third, the high-throughput capability of the nCounter
system allows the development of a highly automated workflow
requiring minimal hands-on time for large-scale multicondition
screening. Overall, in contrast to microarray approaches, an HTS
approach with the direct use of cell lysates also allows for cost-
efficient analyses at multiple doses and conditions.
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While important in some cases, extensive standard cross-
laboratory validation of specific detection platforms is not nec-
essarily the most appropriate approach for this application, given
the many different methods of measuring gene expression
changes. Performance evaluation should instead focus on re-
sponses measured in the gene set when adopting a new tech-
nology. Overall, technologies in this area are constantly evolving,
and for new applications it will be critical to confirm that the
signature works regardless of the platform. Indeed, we note that
this assay is not limited to the specific array platform or tech-
nology used in our study, as data collected using other array
platforms (22) can also be analyzed using the TGx-DDI bio-
marker (8, 11). Our consortium has also demonstrated the ability
of the TGx-DDI classifier to predict DNA damage in the pres-
ence of rat liver S9 in human TK6 cells (10, 11). Interestingly, the
TGx-DDI biomarker was able to predict DDI agents (11) using
published Affymetrix array data (22) in HepaRG cells, a meta-
bolically competent human liver hepatocyte cell line. Thus, along
with confirming the utility of the TGx-DDI biomarker in the
presence of S9 and in a different cell line, our findings also
provide further validation of the TGx-DDI classifier overall by
demonstrating its efficacy in an independent dataset produced in
two separate laboratories using different technologies. As the
biomarker is enriched in p53-responsive genes (8), the use of
p53-competent cells for this assay is mandatory.
TGx-DDI is the first genotoxicity biomarker shown to perform

robustly and consistently on different assay platforms. The goal is
to continue to develop and use this biomarker in a simple, in-
expensive, and rapid method that can be easily integrated into the
safety evaluation of compounds and chemical series to identify
genotoxic effects in vitro that are relevant to in vivo genotoxicity.
Cancer can arise through various modes of action. Genotoxicity is
one major risk factor; however, we emphasize that this biomarker
cannot be used to argue against the relevance of nongenotoxic
modes of action in carcinogenesis. The incorporation of the ge-
nomic biomarker in genotoxicity risk assessment would reduce
animal testing. Considering that many chemical agents cannot be
assessed by animal testing due to either cost or recent legislation
(6, 7), the TGx-DDI approach addresses an important need.
Furthermore, the strategies and protocols that were used in TGx-
DDI identification and its validation can serve as a prototype for
the development of genomic biomarkers for other toxicities.

Materials and Methods
Detailed descriptions of the materials and methods used in this study are
provided in SI Materials and Methods.

Cell Culture and Treatment. TK6 cells, a spontaneously transformed human
lymphoblastoid cell line, were grown and treated with chemical agents as
described previously (8). In brief, exponentially growing cells were treated
with the indicated chemical agent for 4 h over a broad dosage range, cells
were harvested, and total RNA was isolated. qRT-PCR was carried out with
representative indicator genes known to be induced by a broad range of
stress agents. For agents requiring metabolic activation, treatment of TK6 cells
included S9 rat liver extract as described previously (11). For the cell viability
assay, after 4 h of treatment, medium was removed from cells, and cells were
washed and recovered in fresh medium for 20 h. Cell viability was measured
at the end of recovery period using an MTT Assay Kit (Cayman Chemical).

Microarray Procedures. RNA samples from the concentration setting experi-
ments of each compound at their selected concentrations were pooled to-
gether and analyzed using humanwhole genome expression long-nucleotide
probe microarrays (60 nt long; Agilent Technologies) (8). To ensure consis-
tency with previous results (8), two-color microarrays were used, but com-
parable results have been obtained with single-color microarrays. Each
experiment was run on two arrays, and on each array both treated and
reference (vehicle control) samples were hybridized in a dye-swap design.
Specifically, the reference and treatment samples were labeled with two
different fluorescence dyes, Cy3 and Cy5, and then both samples were hy-
bridized onto one array. To reduce the effects associated with different la-
beling efficiencies, we used a two-color dye-swapping configuration (23).
The results from these two arrays were combined for statistical analysis.

Bioinformatics Analyses. Gene expression data were exported from Gene-
Spring based on Entrez Gene identifiers. Posterior PA for test samples was
performed given the classifier as described by Tibshirani et al. (17) and
implemented in the pamr package for R. 2DC was performed using Euclid-
ean distances with average linkage by Genesis (Genesis@genome.tugraz.at).
The DDI and non-DDI agents from the original training set were separated in
two main clusters. A chemical clustering with the DDI branch was called DDI,
and vice versa for non-DDI agents. PCA was performed using the prcomp
function (24) in R Bioconductor. We note that a new tool has been recently
introduced that has a user-friendly interface allowing the analysis of new
test agents using our two-pronged approach (25).

TGx-DDI nCounter Assay. The nCounter assay was performedwith 100 ng of RNA
that had previously been pooled and used in the microarray analysis. Method-
ological details of the nCounter experiments have been published previously (26).
In brief, optimized sequences for genes in the TGx-DDI panel were custom-
designed and manufactured by NanoString. The CodeSet included the TGx-DDI
gene set and eight housekeeping genes—G6PD, GUSB, HPRT1, LDHA, NONO,
PGK1, PPIH, and TFRC—selected based on stability and detectable expression
levels. The protocol followed standard nCounter instructions (26). Barcodes were
counted for each target, and the data were exported. The counts of each target
were analyzed using nSolver Analysis version 3.0 for quality control and nor-
malization. Normalized data were subjected to further analysis.

To develop the HTS assay, 5 × 104 cells per well were seeded in a 96-well
plate on the day before the treatment. Cells were treated with bleomycin
and its corresponding vehicle control (H2O) for 4 h, rinsed to remove the drug,
and then either lysed in RNA lysis buffer (products from Qiagen, Ambion, and
Promega were tested and performed comparably) at different concentrations
or pelleted for RNA isolation. This treatment was performed in triplicate, after
which bioinformatics analyses were conducted as described above.
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