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Abstract

Even though smoking rates have long been on the decline, nicotine addiction still affects 20% of 

the US population today. Moreover, nicotine dependence shows high comorbidity with many 

mental illnesses including, but are not limited to, attention deficit hyperactivity disorder, anxiety 

disorders, and depression. The reason for the high rates of smoking in patients with mental 

illnesses may relate to attempts to self-medicate with nicotine. While nicotine may alleviate the 

symptoms of mental disorders, nicotine abstinence has been shown to worsen the symptoms of 

these disorders. In this chapter, we review the studies from animal and human research examining 

the bidirectional relationship between nicotine and attention deficit hyperactivity disorder, anxiety 

disorders, and depression as well as studies examining the roles of specific subunits of nicotinic 

acetylcholine receptors (nAChRs) in the interaction between nicotine and these mental illnesses. 

The results of these studies suggest that activation, desensitization, and upregulation of nAChRs 

modulate the effects of nicotine on mental illnesses.

1. INTRODUCTION

Since 1965, tobacco use has declined in the United States from 42% to 20% in 2004 (CDC, 

2008; http://www.cdc.gov/tobacco/data_statistics/tables/trends/cig_smoking). However, use 

rates have remained relatively steady since 2004. While many reasons may contribute to 

absence of further decline in smoking, one possibility is that this population of smokers 

contains individuals that have increased vulnerability to nicotine addiction. Increasing 

evidence suggests individuals with mental illness and/or cognitive impairments may be at 

increased risk of smoking. In support, the rate of smoking in individuals that reported mental 

illness in the past month was 41% (Lasser et al., 2000). This is a doubling of what is 

reported by the CDC for the general population. In this chapter, we will examine the 

relationships between smoking/nicotine and psychiatric disorders of cognition and affect 

such as attention deficit hyperactivity disorder (ADHD), anxiety disorders, and depression. 

In addition, the nicotinic acetylcholinergic receptor (nAChR) subtypes associated with these 

relationships will be examined.

As discussed in other chapters of this book, nAChRs are pentameric, ionotropic receptors 

that gate Na+ and Ca++ and can be homomeric, consisting of all α subunits, or heteromeric, 

consisting of α and β subunits, in the central nervous system (Decker, Brioni, Bannon, & 

Arneric, 1995; Hogg, Raggenbass, & Bertrand, 2003; Jones, Sudweeks, & Yakel, 1999; 
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McGehee, 1999). The predominant nAChRs in the central nervous system are the α7 and the 

α4β2 nAChRs (Marks & Collins, 1982; Whiteaker et al., 1999). α7 nAChRs are 

functionally different showing decreased affinity for agonists and increased sensitivity to 

desensitization as opposed to the α4β2 nAChRs (Alkondon & Albuquerque, 2004; Gotti et 

al., 2009; Marks, Burch, & Collins, 1983; Mihailescu & Drucker-Colin, 2000; Olale, 

Gerzanich, Kuryatov, Wang, & Lindstrom, 1997; Picciotto, Caldarone, King, & Zachariou, 

2000; Schwartz & Kellar, 1983). Moreover, the addition of different types of β subunits or 

changes in stoichiometry of α4 and β2 subunits can change the functional properties of 

α4β2 nAChRs (Kuryatov, Luo, Cooper, & Lindstrom, 2005; Nelson, Kuryatov, Choi, Zhou, 

& Lindstrom, 2003; Salminen et al., 2007, 2004; Zwart & Vijverberg, 1998). Thus, 

understanding the contribution of different nAChR subtypes to the behavioral and 

neurochemical effects of nicotine in individuals with ADHD, anxiety disorders, and 

depression may provide insights into higher prevalence of tobacco smoking in people with 

these psychiatric conditions.

2. NICOTINE’S EFFECTS ON ADHD

ADHD may be one of the most common childhood disorders. The key symptoms of ADHD 

are inattention, hyperactivity, and impulsivity (Gehricke et al., 2007). It is estimated that 

ADHD affects approximately 6.5–8.4% of children (Barbaresi et al., 2002, 2004) and 

between 1.9% and 6% of adults (Kessler et al., 2006; Weiss & Murray, 2003). There are 

numerous risk factors and changes in brain function associated with ADHD. For instance, 

fMRI analysis suggests that ADHD may be associated with a decrease in connectivity 

between the dorsal anterior cingulate cortex and the posterior cingulate cortex and precuneus 

(Castellanos et al., 2008); brain regions associated with higher cognitive function including 

working memory (Hampson, Driesen, Skudlarski, Gore, & Constable, 2006). In addition to 

changes in brain regions involved in cognition, ADHD may also involve changes in 

neurotransmitter systems associated with cognition and attention such as acetylcholine (for 

review, see Beane & Marrocco, 2004). Furthermore, cognitive deficits associated with 

ADHD are similar to nicotine withdrawal-associated changes in cognition seen in smokers 

such as deficits in sustained attention, response inhibition, and working memory (Beane & 

Marrocco, 2004; Dovis, der Oord, Huizenga, Wiers, & Prins, 2014; Hughes, Keenan, & 

Yellin, 1989; Jacobsen et al., 2005; Mendrek et al., 2006; for review, see Ashare, Falcone, & 

Lerman, 2014).

The similarities between ADHD symptoms and nicotine withdrawal symptoms and the 

potential involvement of the cholinergic system in ADHD could suggest that individuals 

with ADHD may be an at-risk group for smoking; this is supported by data. Forty-two 

percent of males with ADHD were smokers and 38% of females with ADHD were smokers; 

this compares to 28.1% and 23.5% smokers for males and females without ADHD 

(Pomerleau, Downey, Stelson, & Pomerleau, 1995). Furthermore, the same study found that 

the quit ratio was substantially lower in individuals with ADHD compared to the rest of the 

non-mentally ill population, 29% versus 48.5%, respectively. These findings have been 

replicated by other scientists, for example, Lambert and Hartsough (1998) found lifetime 

tobacco dependence was 40% in individuals with ADHD compared to 19%. However, a 
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remaining important question is whether smoking is a result of ADHD or whether ADHD is 

a result of smoking.

2.1 Relationship Between Nicotine Exposure and ADHD in Humans

Evidence suggests a complex relationship exists between ADHD and smoking with ADHD 

contributing to smoking but smoking also contributing to the development of attention 

deficits. For example, ADHD predicted future smoking and the transition into associated 

nicotine addiction (Fuemmeler, Kollins, & McClernon, 2007) and adolescents with ADHD 

were more likely to experiment with cigarettes and become smokers (Tercyak, Lerman, & 

Audrain, 2002). Therefore, smoking may be an attempt to self-medicate for symptoms of 

ADHD. Acute nicotine administered via the patch improved attention in adults and young 

adults with ADHD (Levin et al., 1996; Potter & Newhouse, 2008). In addition, nicotine 

improved behavioral inhibition in highly impulsive people (Potter, Bucci, & Newhouse, 

2012). However, individuals with ADHD may also be more susceptible to the negative 

effects of smoking. In a study of twins, a greater increase in attention deficits across years 

was seen for smokers versus never-smoking twin cohorts (Treur et al., in press). This study 

suggests that smoking can worsen attention problems. In addition, in a study that specifically 

examined individuals with ADHD, inattention symptoms during childhood, but not 

hyperactivity, was associated with greater nicotine withdrawal symptoms during adulthood 

(Ameringer & Leventhal, 2012). This relationship between ADHD and greater nicotine 

withdrawal symptoms is supported by other studies. Female, but not male, smokers with 

ADHD had greater withdrawal symptoms (McClernon et al., 2011), and in other studies, 

smokers with ADHD showed great withdrawal symptoms and willingness to work harder for 

cigarette puffs (Kollins et al., 2013; Pomerleau et al., 2003). Furthermore, another study 

found that both male and female smokers with ADHD had a greater level of nicotine 

dependence than smokers without ADHD (Wilens et al., 2008). The emergence of increased 

ADHD symptoms during periods of abstinence was associated with increased risk of relapse 

(Rukstalis, Jepson, Patterson, & Lerman, 2005), which demonstrates that the increased 

withdrawal symptoms impact successful quit attempts and thus health.

In order to improve treatment for both ADHD and nicotine dependence, an understanding of 

what factors underlie the increased risk of nicotine dependence in individuals with ADHD is 

necessary. While undoubtedly many factors contribute to this relationship, increasing 

evidence suggests that differences in attention processes and ADHD symptoms may be 

related to genetic variants in genes encoding nicotinic receptor subunits. Lee, Fuemmeler, 

McClernon, Ashley-Koch, and Kollins (2013) found a significant interaction between single 

nucleotide polymorphisms of CHRNB3 and ADHD where the AA variant and the ADHD 

symptom of inattention were associated with greater increase in the level of cigarette 

smoking across adolescence. The study also reported differences in cigarette smoking 

associated with variants of CHRNA6. Another study found that two alleles (rs578776 and 

rs3743078) in CHRNA3 were associated with an increased risk of smoking, but only among 

individuals with ADHD (Polina et al., 2014). Moreover, Viñals et al. (2012) showed that 

transgenic mice that overexpress α3/α5/β4 nAChRs exhibited less impulsive-like behavior 

than the wild-type controls. Also, Cohen et al. (2012) found that mutant mice with 

hypersensitive α6 nAChR subunits showed spontaneous hyperactivity in their home cages. 
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In addition, changes in other genes associated with cholinergic function may also contribute 

to ADHD as a study that examined polymorphisms in a gene encoding the high-affinity 

choline transporter (CHT; SLC5A7) found a two- to threefold increase in Val89 allele, 

which is associated with reduced choline transport function, in individuals with ADHD 

(English et al., 2009). These studies suggest that differences in nAChR function may 

contribute to increased vulnerability to nicotine addiction for individuals with ADHD and 

that genetics plays a role in this vulnerability.

The studies reviewed so far demonstrate a clear relationship between smoking and ADHD 

and suggest treating nicotine addiction in individuals with ADHD may be more challenging. 

Several studies, however, suggest that treating ADHD symptoms may reduce smoking. 

Methylphenidate is a stimulant commonly used to treat ADHD, and in adolescents, 

methylphenidate was also shown to reduce smoking (Hammerness et al., 2013; 

Schoenfelder, Faraone, & Kollins, 2014). In addition, another study found that osmotic 

controlled-release delivery of methylphenidate for 11 weeks to adult smokers with severe 

ADHD promoted abstinence to smoking in these individuals in part by improving ADHD 

symptoms (Nunes et al., 2013). In contrast, individuals with lower ADHD scores exhibited 

lower abstinence rates as opposed to the placebo-treated group. However, a study by 

Vansickel, Stoops, Glaser, Poole, and Rush (2011) reported that acutely administered 

methylphenidate increased smoking in adult ADHD subjects. It is possible that 

methylphenidate’s effectiveness in reducing smoking in ADHD subjects may depend upon 

the duration of treatment and symptom severity. Further research is required to delineate 

behavioral and neural mechanisms that underlie the observed relation between stimulant 

medications and smoking in ADHD subjects.

2.2 Effects of Nicotine on Animal Models of ADHD

Studies in rats and mice have led to advances in understanding the neural substrates of 

attention, the effects of nicotine on attention and cognitive control, and the development of 

models of ADHD that allow further examining of the effects of nicotine on ADHD. 

Cholinergic deafferentation produced by infusion of the cholinotoxin 192-IgG saporin into 

the basal forebrain produced robust attentional impairments in rats (McGaughy, Kaiser, & 

Sarter, 1996). Moreover, studies employing microdialysis and electrochemical recordings to 

measure ACh release from animals performing attentional tasks show performance-

associated increases in cortical cholinergic transmission (Arnold, Burk, Hodgson, Sarter, & 

Bruno, 2002; Howe et al., 2013; Parikh, Kozak, Martinez, & Sarter, 2007). Another study 

employing transgenic mice with a heterozygous deletion of the CHT gene reported 

attentional deficits in a signal detection task and reduced ability to sustain acetylcholine 

release (Parikh, Peters, Blakely, & Sarter, 2013). Together, these results provide support for 

the hypothesis that cholinergic function is required for normal attentional processes and that 

modulation of cholinergic signaling alters attention. As discussed earlier, polymorphism in 

the CHT gene was found in individuals exhibiting ADHD symptoms. Therefore, attentional 

impairments observed in ADHD subjects might occur as a consequence of disruption in 

cholinergic signaling.
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Multiple studies have shown that nicotine alters behavioral processes that impact cognitive 

and attentional control in rodents. In rats performing a perceptual attentional set-shifting 

task, acute nicotine administration in rats enhanced extradimensional set-shifting that 

requires switching between the two perceptual dimensions of a compound stimulus (Allison 

& Shoaib, 2013). The same study also reported that intradimensional set-shifting that entails 

switching within the same dimension was also facilitated by acute nicotine. However in a 

recent study conducted in our laboratory, chronic nicotine treatment for 4 weeks did not alter 

strategy set-shifting in an operant-based cognitive flexibility task in mice (Ortega, Tracy, 

Gould, & Parikh, 2013). Rather, it impaired reversal learning and these cognitive deficits 

were associated with increased perseverative responding to the previously rewarded stimulus 

indicating deficits in response inhibition. Similarly, a study that examined inhibitory control 

found that in male C57BL/6J mice, acute nicotine enhanced inhibitory control and reduced 

impulsivity but tolerance developed to these effects with chronic nicotine treatment (Leach, 

Cordero, & Gould, 2013). Together, these studies suggest that initially nicotine may have 

positive effects on cognitive/attentional control and response inhibition but with prolonged 

used, the positive effects disappear and cognitive functions may worsen in ADHD.

The 5-choice serial reaction time task (5CSRTT), developed to assess visual attentional 

processes in rodents (Bari, Dalley, & Robbins, 2008), is sensitive to the effects of nicotine. 

This paradigm requires animals to detect brief flashes of light presented in a pseudorandom 

order in one out of multiple (five or nine) spatial locations over a large number of trials. 

Visual cues are detected by responding in the appropriate aperture within a certain amount 

of time. A correct choice is rewarded with a food pellet. If the animals fail to respond, 

respond in the wrong aperture or at an inappropriate time, a short period of darkness (time-

out) is presented as punishment and no reward is delivered. A number of behavioral 

measures including correct responses, premature responses, perseverative responses, 

omissions, and response latencies are recorded to assess attentional control functions. Male 

hooded Lister rats administered nicotine prior to each 5CSRTT session initially had 

increased omissions but this effect dissipated between weeks 1 and 2 and thereafter 

increased correct responses and anticipatory response and decreased omissions were seen 

(Hahn & Stolerman, 2002). Half the rats received daily injections of nicotine but this did not 

alter the effects. Because the half-life of nicotine is 45 min in rats compared to 2 h in 

humans (Matta et al., 2007), it is difficult to determine whether this nicotine administration 

protocol reflects acute, subchronic, or chronic administration. However, given that nicotine 

initially enhanced attentional set-shifting and response inhibition but those cognitive effects 

disappeared with chronic administration in the aforementioned studies, the effects of 

nicotine on attentional measures observed on 5CSRTT task may reflect acute effects only.

In a similar study, nicotine administered prior to testing in the 5CSRTT improved accuracy 

while reducing omissions and reaction time in male hooded Lister rats (Hahn, Shoaib, & 

Stolerman, 2002). In addition, nicotine was able to reverse attentional deficits induced by the 

addition of auditory distractor cues. Another study, however, suggests that the effects of 

nicotine on 5CSRTT may be mediated by additional factors. Mirza and Bright (2001) found 

that nicotine administered prior to testing dose-dependently increased correct responses in 

male Sprague–Dawley rats but had no effect in male Lister hooded rats. Since similar doses 

of nicotine were used in the Mirza and Bright (2001) and Hahn et al. (2002) studies, which 
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use Lister hooded rats, unidentified environmental factors must have contributed to the 

difference in the effects of nicotine on the 5CSRTT in the Lister hooded rats.

Just as seen in human studies, nicotine withdrawal disrupts attention in rodent models. Lister 

Hooded rats withdrawn from chronic nicotine treatment had deficits in 5CSRTT that were 

related to increased omissions (Shoaib & Bizarro, 2005). Also, the α4β2 nAChR antagonist 

dihydro-β-erythroidine (DhβE) precipitated similar withdrawal deficits in rats treated with 

chronic nicotine but the α7 nAChR antagonist methyllycaconitine (MLA) produced no 

deficits. Similar to the Shoaib and Bizarro (2005) study, Semenova, Stolerman, and Markou 

(2007) found that nicotine withdrawal increased omissions and decreased correct response in 

Wistar rats. This study also found that acute nicotine increased correct responses and 

decreased omissions, while chronic nicotine increased premature response but also increased 

correct responses.

As found in the Shoaib and Bizarro (2005) study, multiple studies suggest that cholinergic 

signaling via α4β2 nAChRs is critically involved in the effects of nicotine on attention. For 

example, nicotine and the α4β2 nAChR agonist SIB 1765F increased correct responding and 

decreased response latency for the 5CSRTT in male Lister hooded rats but also increased 

premature responding. The α7 nAChR agonist AR-R 17779 was without effect, though only 

one dose was tested (Grottick & Higgins, 2000). In an operant sustained attention task, 

neither nicotine nor an α4β2 nAChR agonist, S38232, was effective but when a distractor 

cue was added, S38232 enhanced attention (Howe et al., 2010). Interestingly, if nicotine was 

paired with the α7 nAChR antagonist MLA, enhancement of attention under distracting 

conditions was seen; this suggests agonism of α4β2 nAChR has pro-attention effects but 

antagonism of α7 nAChRs improves attention. Similar effect was seen in C57BL/6N mice; 

nicotine and an α4β2 nAChR agonist, ABT-418, enhanced attention assessed in 5-choice 

continuous performance tests, whereas an α7 nAChR agonist, PNU 282987, was without 

effect (Young, Meves, & Geyer, 2013).

A series of experiments further demonstrated a role of α4β2 nAChRs in attention. 

Dizocilpine-induced deficits in a signal detection task in female Sprague–Dawley rats were 

ameliorated with an α4β2 nAChR agonist, AZD3480; donepezil, an acetylcholinesterase 

inhibitor; and sazetidine-A, which has high affinity for α4β2 nAChRs and after brief 

activation produces a long-lasting desensitization of the receptors (Rezvani, Cauley, 

Johnson, Gatto, & Levin, 2012; Rezvani et al., 2011; Rezvani, Cauley, Xiao, Kellar, & 

Levin, 2013). In addition, spontaneously hypertensive rats have been used as a model of 

ADHD and these rats have been shown to have lower levels of brain α4β2 nAChR binding 

but no changes in α7 nAChR binding (Wigestrand et al., 2011).

While overwhelming evidence suggests α4β2 nAChRs are involved in attention, other 

nAChR subunits may also be involved. In a study with α5 KO mice, the α5 KO decreased 

nicotinic currents in layer VI pyramidal neurons in prefrontal cortex and increased accuracy 

in the 5-CSRTT when task parameters were made more difficult (Bailey, De Biasi, Fletcher, 

& Lambe, 2010). This suggests that α4α5β2 nAChRs may also play a key role in attentional 

processes. Finally, while the pharmacology studies suggest α7 nAChRs are not critically 

involved in attention, gene knockout studies suggest complete absence of α7 nAChR may 
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alter attention. Young et al. (2004) found that α7 KO mice had increased omissions in the 

5CSRTT. Similarly, Hoyle, Genn, Fernandes, and Stolerman (2006) reported that α7 KO 

mice have decreased correct responses but increased anticipatory responses. Thus, even 

though α7 agonists were without effect on attention (Grottick & Higgins, 2000; Young et al., 

2013), the complete absence of α7 nAChRs could alter attention, possibly through changes 

during development or other compensatory changes that affect attention in adulthood. 

Clearly, this issue requires further examination.

2.3 Developmental Nicotine Exposure and Its Effects on ADHD

While genetic factors such as differences in nAChR expression and function could 

contribute to ADHD, environmental factors such as developmental exposure are also critical 

factors in ADHD. Individuals prenatally exposed to constituents of cigarette smoke have 

higher rates of ADHD but it is difficult to determine if this is directly related to nicotine or if 

other factors contribute to this relationship. For example, individuals with ADHD may 

smoke in an attempt to self-medicate (Gehricke et al., 2007), and thus, mothers that smoke 

during pregnancy may be smoking in an attempt to self-medicate ADHD or subclinical 

ADHD symptoms. Therefore, the offspring of these mothers could express ADHD because 

of an inherited risk factor. Studies of laboratory animals can address these issues.

In a study of prenatal cigarette smoke, male B6C3F1 mice, but not female mice, had 

increased hyperactivity, decreased striatal and cortical dopamine and serotonin, and reduced 

BDNF mRNA and protein (Yochum et al., 2014). These effects may be due to the nicotine in 

the cigarette smoke as Zhu et al. (2012) found that prenatal nicotine exposure increased 

hyperactivity and reduced cingulate cortical volume and dopamine turnover in male and 

female young adult C57BL/6J mice. Treatment with methylphenidate decreased 

hyperactivity in the mice, as in patients with ADHD, and increased dopamine turnover, 

suggesting that this model has strong external validity. Similarly, adult male and female 

Lister hooded rats prenatally exposed to nicotine had decreased correct responding, 

increased omission and increased anticipatory responses in the 5CSRTT, and increased 

expression of the D5 dopamine gene in the striatum (Schneider et al., 2011).

Prenatal nicotine exposure may also alter nAChR function. Adult mice prenatally exposed to 

nicotine had increased dendritic branching of medial prefrontal layer VI pyramidal neurons 

but also decreased nAChR signaling indicated by reduced nAChR responses to 1 mM 

acetylcholine (Bailey, Tian, Kang, O’Reilly, & Lambe, 2014). These effects were mediated 

by α5 nAChR subunits as they were reversed in α5 KO mice. In another study, prenatal 

nicotine exposure increased α4β2 nAChRs in the frontal cortex, hippocampus, caudate, and 

brainstem and increased both α4β2 and α7 nAChRs in the occipital cortex of rhesus 

monkeys (Slotkin et al., 2005). Changes in cholinergic signaling in frontal cortex and 

hippocampus could impact ADHD symptoms such as inattention and impulsivity.

The effects of prenatal nicotine on development of ADHD are greatly concerning but the 

effects of prenatal exposure may have an even greater effect on mental health and health care 

than original expected. Prenatal nicotine exposure may produce epigenetic changes that 

result in trans-generational inheritance of ADHD symptoms (Zhu, Lee, Spencer, Biederman, 

& Bhide, 2014). C57BL/6J female mice received nicotine in the drinking water starting 3 
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weeks prior to mating and continued throughout pregnancy. Locomotor activity was 

significantly increased in F2 and F3 generation male and female mice, even though the mice 

were not exposed to nicotine; however, inheritance occurred only through the maternal line. 

These results suggest that prenatal exposure to nicotine produces a transgenerational 

inheritance of the ADHD symptom of hyperactivity along the maternal line. Further work is 

needed but these findings could have potentially dramatic impact of public policy and 

health-care practices related to nicotine exposure.

The developmental effects of nicotine exposure may not be limited to prenatal exposure as 

adolescent nicotine exposure, but not adult nicotine exposure, produced long-lasting deficits 

in visuospatial divided and sustained attention, affecting accuracy and premature responses 

in rats (Counotte et al., 2011). In addition, mGluR2 protein levels and function on 

presynaptic prefrontal cortical terminals of glutamate synapses were reduced. However, they 

found local infusion of a group II mGluR agonist into the medial prefrontal cortex reversed 

deficits in attention. Collectively, these studies suggest that prenatal and adolescent nicotine 

exposure contribute to the development of ADHD, and thus, limiting nicotine exposure 

during development is of critical importance.

Likewise, considerable evidence from human studies indicates that developmental exposure 

to nicotine and/or smoking may increase the odds of developing ADHD. In a study 

examining males 6–17 years old, the odds ratio for ADHD when mothers smoked during 

pregnancy was 2.7 (Milberger, Biederman, Faraone, Chen, & Jones, 1996). The study also 

found that the odds ratio for ADHD when the mother had ADHD was 2.2 and was 1.8 when 

the father had ADHD, suggesting maternal ADHD and smoking have similar genetic 

contributions to offspring ADHD. In a follow-up study that contained both males and 

females (though heavily skewed toward male) with an average age of 13, the odds ratios for 

ADHD were even higher: 4.4 for ADHD when mothers smoked during pregnancy and 5.4 

for when mothers had ADHD, but were lower for when the father had ADHD: 1.2 

(Milberger, Biederman, Faraone, & Jones, 1998). Similarly, in a study conducted in male 

and female teenagers with an average age of 14 years, teachers, mothers, and fathers 

reported significantly higher scores for ADHD symptoms in offspring whose mothers 

smoked during pregnancy (Indredavik, Brubakk, Romundstad, & Vik, 2007). Finally, in a 

study of children aged 6–12 and diagnosed with ADHD, children exposed prenatally to 

maternal cigarette smoke had more severe ADHD symptoms and neurocognitive deficits as 

compared to unexposed children (Thakur et al., 2013). These studies strongly suggest that 

developmental exposure to constituents of cigarette smoke can exacerbate ADHD symptoms 

and may even contribute to the development of ADHD. Important unresolved issues include 

the underlying neurobiological substrates and whether nicotine is sufficient to increase 

susceptibility to ADHD. The latter issue is of increasing importance as pregnant women may 

be prescribed nicotine replacement therapy and the emergence of e-cigarettes as a nicotine 

free-base delivery system. Laboratory animal models provide a means to address these 

issues.

In summary, the relationship between nicotine and ADHD is complex. Individuals with 

ADHD may smoke in an attempt to self-medicate, but over time positive effects may 

dissipate and worsening of symptoms may develop. In addition, smoking and nicotine 
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exposure may facilitate the development of ADHD; nowhere may this be more critical than 

in developmental exposure to nicotine. Both prenatal and adolescent nicotine exposure were 

associated with increased expression of ADHD symptoms. Furthermore, prenatal nicotine 

exposure may produce epigenetic changes that increase ADHD symptoms in future 

generations that are not exposed to nicotine. The relationship between ADHD and nicotine/

smoking may involve multiple mechanisms including signaling via α4β2 nAChRs and other 

nAChR subtypes. Further work is needed to fully understand the relationship between 

ADHD and nicotine and the underlying substrates in order to improve health care.

3. INVOLVEMENT OF nAChRs IN ANXIETY AND ANXIETY DISORDERS

Anxiety disorders including but not limited to panic disorders, phobias, generalized anxiety 

disorder, and posttraumatic stress disorder (PTSD) are a cluster of disorders that affects 

approximately 40 million Americans (18.1%; Kessler, 1997; Kessler, Chiu, Demler, & 

Walters, 2005) and costs more than $42 billion a year, almost one-third of the United States 

$148 billion total mental health costs (Greenberg et al., 1999). Disorders under the anxiety 

disorder category usually develop after a highly stressful traumatic event (Mineka & 

Zinbarg, 2006) and they are among the most frequently diagnosed psychological disorders 

(Breslau, Novak, & Kessler, 2004). In the following sections, we will review the literature on 

the relationship between anxiety disorders and nicotine dependence in humans. In addition, 

we will examine the effects of acute, chronic, and withdrawal from chronic nicotine and the 

involvement of specific nAChR subtypes on the animal models of fear and anxiety.

3.1 Relationship Between Nicotine Exposure and Anxiety Disorders in Humans

Numerous studies have identified a bidirectional link between nicotine dependence and 

anxiety disorders (Breslau, Davis, & Schultz, 2003; Breslau et al., 2004; Feldner, Babson, & 

Zvolensky, 2007; Fu et al., 2007; Koenen et al., 2005). Specifically, smoking rates have been 

shown to be significantly higher in the population with anxiety disorders than it is in the 

nonclinical population, 45.3% and 22.5%, respectively (Lasser et al., 2000; Ziedonis et al., 

2008). On the other hand, anxiety disorders have also been shown to be significantly more 

prevalent in the people diagnosed with nicotine dependence (22%) than in the nondependent 

population (11.1%; Grant, Hasin, Chou, Stinson, & Dawson, 2004; Grant, Stinson, et al., 

2004). Consistent with the high rates of nicotine dependence in patients with anxiety 

disorders, prior smoking has been found to be associated with increased susceptibility to 

develop PTSD in the event of a trauma (Koenen et al., 2005), an increased risk of panic 

attacks and development of panic disorders (Goodwin, Lewinsohn, & Seeley, 2005). In 

addition, following trauma, smoking initiation and daily smoking rates also increased 

(Breslau et al., 2003, 2004). PTSD patients also showed lower rates of quitting (Hapke et al., 

2005; Lasser et al., 2000), suffered from worse nicotine withdrawal symptoms (Dedert et al., 

2011), and as a result showed shorter times to first smoking lapse (Beckham, Calhoun, 

Dennis, Wilson, & Dedert, 2012) than non-PTSD population. Similarly, patients with social 

phobia have also demonstrated increased rates of smoking initiation (Sonntag, Wittchen, 

Höfler, Kessler, & Stein, 2000). Furthermore, several studies have shown that the presence 

of PTSD symptoms, such as hyperarousal and emotional numbing, is a predictor for nicotine 

dependence and these symptoms are reduced by nicotine intake (Beckham et al., 2005; 
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Feldner et al., 2007; Greenberg et al., 2012; Thorndike, Wernicke, Pearlman, & Haaga, 

2006). Therefore, it is possible that while nicotine dependence increases one’s vulnerability 

to anxiety disorders, smoking may serve as a mean to alleviate symptoms associated with 

anxiety disorders, which, in turn, increases nicotine dependence among patients with anxiety 

disorders.

Investigating the direct relationship between nAChRs and PTSD by using the radiotracer 

[123I]5-IA-85380 ([123I]5-IA) and single-photon emission computed tomography, Czermak 

et al. (2008) found that PTSD patients who never smoked showed significantly higher β2 

nAChR density in the mesiotemporal cortex including the amygdala and hippocampus 

compared to healthy individuals who never smoked. Furthermore, the same study found a 

significant correlation between β2 nAChR binding in the thalamus and the reexperiencing 

symptom among the PTSD patients. Both thalamus and mesiotemporal cortex dysfunction 

have been functionally linked to the pathogenesis of PTSD (Lanius et al., 2001; Shin, Rauch, 

& Pitman, 2006). These results suggest that β2-containing nAChRs may play an important 

role in the epidemiology of PTSD. As discussed earlier, nicotine binds and modulates a 

variety of nAChR subunits. Therefore, it is possible that the modulation of β2-containing 

nAChRs by nicotine intake may also directly modulate PTSD symptomatology.

3.2 Effects of Nicotine on Animal Models of Anxiety Disorders

Fear conditioning, a behavioral paradigm in which the subject learns an association between 

a neutral stimulus and an aversive unconditioned stimulus akin to the associations formed 

during trauma, has been widely utilized as a transitional animal model to study the traumatic 

experience common for all anxiety disorders (Briscione, Jovanovic, & Norrholm, 2014). 

Previous studies have identified two types of fear memories: (1) hippocampus dependent 

(contextual and trace fear conditioning) and (2) hippocampus independent (cued fear 

conditioning; Clark & Squire, 1998; Logue, Paylor, & Wehner, 1997; McEchron, 

Bouwmeester, Tseng, Weiss, & Disterhoft, 1998; Phillips & LeDoux, 1992; Solomon, 

Vander Schaaf, Thompson, & Weisz, 1986). The effects of nicotine and other nAChR 

agonists/antagonists on fear conditioning have been extensively studied (see Gould & Leach, 

2014 for a review). For example, there is ample evidence suggesting that acute nicotine 

enhances hippocampus-dependent contextual (Davis, Porter, & Gould, 2006; Gould, 2003; 

Gould, Feiro, & Moore, 2004; Gould & Higgins, 2003; Gould & Wehner, 1999; Wehner et 

al., 2004) and trace (Davis & Gould, 2007; Gould et al., 2004) fear conditioning, whereas it 

has no effect on hippocampus-independent cued fear conditioning (e.g., Gould & Higgins, 

2003; Gould & Wehner, 1999). Furthermore, there is evidence suggesting that systemic 

administration of a high-affinity nAChR antagonist, DhβE, reverses the effects of nicotine, 

while a low-affinity α7 nAChR antagonist, MLA, has no effect (Davis, Kenney, & Gould, 

2007). Similarly, several studies using knockout (KO) mice have shown that animals lacking 

β2 nAChRs did not show enhancement of contextual (Davis & Gould, 2007) or trace fear 

conditioning (Davis & Gould, 2007; Lotfipour et al., 2013) by nicotine. These results 

suggest that nicotine enhances hippocampal-dependent fear memories through activation of 

β2-containing nAChRs.

Kutlu et al. Page 10

Int Rev Neurobiol. Author manuscript; available in PMC 2018 January 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



While the enhancing effects of acute nicotine are well documented, several studies have 

shown that while chronic nicotine has no effect on fear conditioning, withdrawal from 

chronic nicotine impairs contextual and trace fear conditioning (André, Gulick, Portugal, & 

Gould, 2008; Davis, James, Siegel, & Gould, 2005; Portugal & Gould, 2009; Portugal, 

Wilkinson, Kenney, Sullivan, & Gould, 2012; Raybuck & Gould, 2009). There is also 

evidence suggesting that during chronic nicotine administration, hippocampal nAChRs 

desensitize and upregulate and the resulting hypersensitive cholinergic system may be 

responsible for the effects of nicotine withdrawal on hippocampus-dependent learning (Dani 

& Heinemann, 1996; Gould et al., 2012; Marks, Grady, & Collins, 1993; Wilkinson & 

Gould, 2013). In support, Gould et al. (2012) found that chronic nicotine increased nAChR 

binding in the hippocampus and the duration of nAChR upregulation paralleled the duration 

of withdrawal deficits in hippocampus-dependent learning. Also supporting the role of 

hypersensitive nAChRs in the withdrawal effects, Wilkinson and Gould (2013) found that 

reintroducing acute nicotine into the system during nicotine withdrawal lead to an even 

greater enhancement of the contextual fear conditioning compared to the effects of acute 

nicotine in previously nicotine naïve mice. However, while upregulation seems to be 

necessary for the behavioral effects of nicotine withdrawal, there is evidence showing that 

nicotine withdrawal and tolerance are dissociable processes as tolerance was shown to occur 

before withdrawal and in the absence of nAChR upregulation (Gould, Wilkinson, Yildirim, 

Blendy, & Adoff, 2014). Therefore, this suggests that the rapidly developing nAChR 

desensitization may be responsible for the tolerance effects, whereas upregulation of 

nAChRs, which requires a longer period of time to develop, is necessary for the withdrawal 

effects.

Similar to the KO studies suggesting a central role of the β2 nAChRs in the acute effects of 

nicotine on hippocampal fear learning, Portugal, Kenney, and Gould (2008) found that β2 

nAChR KO animals also did not show withdrawal deficits in contextual fear learning. In 

addition, infusions of the high-affinity nAChR antagonist DhβE into the dorsal hippocampus 

precipitated withdrawal deficits in both contextual (Davis & Gould, 2009) and trace fear 

learning (Raybuck & Gould, 2009). Overall, in line with the human studies linking 

hippocampal β2 nAChRs with PTSD (Czermak et al., 2008), results from the studies using 

acute, chronic, and withdrawal from chronic nicotine suggest that the effects of nicotine on 

hippocampus-dependent fear memories require the activation and upregulation of the high-

affinity β2-containing nAChRs.

In addition to the effects of nicotine on acquisition of fear conditioning, several studies have 

also investigated the effects of nicotine on fear extinction, a form of inhibitory learning that 

occurs when the conditioned stimulus is repeatedly presented in the absence of the aversive 

unconditioned stimulus. Fear extinction has been widely utilized as a translational animal 

model for the exposure therapies used for anxiety disorders (Briscione et al., 2014; Myers & 

Davis, 2006; Quirk & Mueller, 2007). In humans, several studies have demonstrated that 

PTSD patients show impaired fear extinction (Blechert, Michael, Vriends, Margraf, & 

Wilhelm, 2007; Michael, Blechert, Vriends, Margraf, & Wilhelm, 2007; Milad et al., 2009) 

as well as difficulty learning safety discrimination, another form of inhibitory learning where 

the subjects are trained to differentiate between a safe versus dangerous cue or context 

(Jovanovic, Kazama, Bachevalier, & Davis, 2012; Jovanovic et al., 2010, 2009; Lissek et al., 

Kutlu et al. Page 11

Int Rev Neurobiol. Author manuscript; available in PMC 2018 January 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



2005; for a review, see Christianson et al., 2012). Therefore, according to some accounts, 

PTSD may be attributed to impaired safety learning (Davis, Falls, & Gewirtz, 2000; Lissek 

et al., 2005). The effects of nicotine exposure on safety learning and extinction have been 

investigated using the animal models of fear extinction and contextual safety discrimination 

(Elias, Gulick, Wilkinson, & Gould, 2010; Kutlu & Gould, 2014; Kutlu, Oliver, & Gould, 

2014; Tian et al., 2008). For example, Elias et al. (2010) found that acute nicotine enhanced 

extinction and impaired renewal of cued fear memories when administered during the 

extinction phase, whereas nicotine administration during both training and extinction phases 

impaired extinction and enhanced renewal of cued fear. This suggests that acute nicotine 

may enhance recovery and extinction of cued fear conditioning by potentially strengthening 

encoding and facilitating new inhibitory learning during acquisition and extinction, 

respectively. On the other hand, Kutlu and Gould (2014) showed that acute nicotine 

impaired contextual fear extinction, which, unlike cued extinction, requires direct 

involvement of the hippocampus (Tronson et al., 2009). Also recently, Kutlu et al. (2014) 

examined the role of nicotine on contextual safety discrimination and found that acute 

nicotine impaired this form of safety learning. As mentioned above, safety learning is 

already compromised in the patients with PTSD, and therefore, these results suggest that 

nicotine may make treatment of PTSD even harder by further impairing this type of learning. 

Finally, Tian and colleagues (2008) tested the effects of prior chronic nicotine exposure on 

subsequent extinction and showed that prior nicotine impaired cued extinction while having 

no effect of contextual fear. In summary, these studies suggest that nicotine may cause 

further disruption of the already impaired safety learning in PTSD patients.

Overall, numerous studies that have investigated the relationship between nicotine and fear 

learning suggest that acute nicotine enhances acquisition and impairs extinction of 

hippocampus-dependent fear memories. In addition, multiple studies have also shown that 

withdrawal from chronic nicotine results in impaired hippocampus-dependent fear learning. 

Interestingly, as described above, acute nicotine administration during nicotine withdrawal 

results in even greater enhancement of fear learning than acute administration alone. This 

suggests that during withdrawal from chronic nicotine administration, the cholinergic system 

becomes hypersensitive to the enhancing effects of acute nicotine. Therefore, these results 

indicate that abstinence from nicotine may worsen the conditions of the PTSD patients. This 

is because while PTSD symptoms are reduced during nicotine intake (Beckham et al., 2005; 

Feldner et al., 2007; Greenberg et al., 2012; Thorndike et al., 2006), they resurface during 

abstinence (Dedert et al., 2011). Therefore, most PTSD patients reinitiate smoking to 

alleviate their symptoms (Beckham et al., 2012). However, while reinitiating smoking may 

help patients reduce their symptoms, Wilkinson and Gould’s (2013) results showing 

increased sensitivity to the effects of reintroduction of nicotine during nicotine withdrawal 

suggest that it may also enhance fear memories associated with new trauma and could 

prolong the course of the disorder.

Animal models of anxiety have been widely utilized for the neurobiological and 

pharmacological investigation of the anxiety disorders (Rodgers, 1997). These behavioral 

paradigms take advantage of the innate explanatory behaviors of rodents and natural fears; 

these tasks include the open field (OF; decreased time spent in the central part of the OF 

arena), elevated plus maze (EPM; decreased time spent in open arms), and marble burying 
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test (increased duration of burying an object, e.g., glass marbles) as well as the social 

anxiety test (decreased time spent by pairs of male rats in social interaction; Lister, 1990). 

The effects of nicotine and nicotinic agents on anxiety-related paradigms are somewhat 

contradicting (Table 1). For example, Irvine et al. (2001) found that subcutaneous injections 

of acute nicotine (0.1 mg/kg) increased anxiety-like behavior in the EPM 30 min after 

injection. Similarly, Ouagazzal et al. (1999) showed that higher doses of acute nicotine (0.5 

and 1 mg/kg) administered intraperitoneally (i.p.) also produced increased anxiety in the 

EPM. However, Irvine et al. (2001) also found that injections 5 min before the EPM test had 

an anxiolytic effect after 7 days of repeated administration. Finally, rats tested 24 h after the 

last nicotine injection showed increased anxiety during withdrawal and this effect was 

reversed by dorsal hippocampal infusions of nicotine (Irvine et al., 2001). The anxiogenic 

effects of nicotine withdrawal have also been shown to be reversed by acute nicotine 

challenge (Ericson et al., 2000). In contrast to the results of the Irvine et al. (2001) study on 

anxiety in the EPM, Irvine et al. (1999) previously found an opposite pattern for the effects 

of nicotine injection timing on anxiety-like behavior in a social interaction test. Specifically, 

Irvine et al. (1999) found that nicotine injections 5 min before the behavioral test decreased 

social interaction, an anxiogenic effect, while injections 30 min before the task increased 

social interaction, an anxiolytic effect. This shows that acute nicotine may have differential 

effects on different anxiety paradigms. Also in contrast to the studies reporting the 

anxiogenic effects of acute nicotine, O’Neill and Brioni (1994) found that i. p. injections of 

nicotine decreased anxiety as measured in the EPM paradigm. Moreover, Ericson et al. 

(2000) found that subcutaneous acute nicotine administration (0.35 mg/kg) significantly 

increased open arm duration in rats. Finally, File, Kenny, and Ouagazzal (1998) found that 

lower doses of acute nicotine (0.01 and 0.1 mg/kg) also had anxiolytic effects, while higher 

doses (0.5 and 1.0 mg/kg) had anxiogenic effects in a social interaction test. The 

contradicting effects of nicotine reported by different studies may also be explained by the 

different species and strains used in these experiments. For example, both Irvine et al. (1999, 

2001) and Ouagazzal et al. (1999) studies, which found that nicotine has an anxiogenic 

effect, used male hooded Lister rats, whereas other studies showing anxiolytic effects of 

nicotine (Ericson et al., 2000; O’Neill & Brioni, 1994) used male Wistar rats or CD1 mice.

Several nAChR subtypes have been identified to play modulatory roles in the anxiety-like 

behavior. As in the effects of nicotine on fear conditioning, there is evidence that β2-

containing nAChRs mediate nicotine’s effects on anxiety. For example, an α4β2 nAChR 

agonist, ABT-418, was found to increase open arm time in the EPM and both ABT-418 and 

an α4β2 nAChR partial agonist, ABT-089, reversed the anxiogenic effects of nicotine 

withdrawal (Brioni et al., 1994; Decker et al., 1994; Yohn, Turner, & Blendy, 2014). Brioni 

et al. (1994) also showed that the anxiolytic effects of ABT-418 were reversed by the 

nAChR antagonist mecamylamine, which suggests that sustained nAChR activity is required 

for the anxiolytic effect of ABT-418. Similarly, McGranahan, Patzlaff, Grady, Heinemann, 

and Booker (2011) found that selective elimination of α4β2 nAChRs located on 

dopaminergic neurons reversed the anxiolytic effects of nicotine. There is also evidence that 

while genetically modified mice that lack β2 subtype of nAChRs showed normal levels of 

anxiety in the EPM (Picciotto et al., 1998), α4 KO mice showed increased anxiety in the 

same paradigm (Labarca et al., 2001; Ross et al., 2000). Also, Paylor et al. (1998) showed 
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that α7 nAChR-lacking KO mice show decreased levels of anxiety in the EPM paradigm, 

while an α7-selective agonist, PNU-282987, was shown to increase anxiety in the OF 

paradigm (Pandya & Yakel, 2013). Similarly, desensitization of α7 nAChRs by using an α7 

partial agonist, ABT-107, was found to reverse the anxiogenic effects of nicotine withdrawal 

(Yohn et al., 2014). Overall, these results suggest that in animals, nicotine has differential 

effects on anxiety in different strains/species and anxiety-related animal models. Results 

from the studies using genetically modified mice and pharmacological nAChR agonist/

antagonists also showed that while elimination of β2-containing nAChRs can prevent the 

anxiolytic effects of nicotine, activation of these receptors can reverse the anxiogenic effects 

of nicotine withdrawal. Conversely, while activation of α7 nAChRs has an anxiogenic effect, 

inactivation of these receptors via using a partial antagonist α7 reverses the anxiogenic 

effects of nicotine withdrawal. Additionally, there is also evidence showing that other 

nAChR subtypes may play a role in modulating anxiety as well. For example, Gangitano, 

Salas, Teng, Perez, and De Biasi (2009) demonstrated that α5 KO animals showed altered 

hypothalamus–pituitary–adrenal axis function as they were shown to have lower basal 

corticosterone levels. In addition, while α5 KO animals showed no behavioral changes in the 

OF and light–dark box paradigms, female KO mice, but not male mice, showed reduced 

anxiety-like behavior in the EPM. Another nAChR subtype that might be important for 

anxiety modulation is β4 nAChR. Salas, Pieri, Fung, Dani, and De Biasi (2003) showed that 

β4 KO mice showed reduced anxiety in the EPM compared to WT littermates as well as 

reduced heart rate in this paradigm. However, β4 KO animals showed higher heart rate in 

another anxiety paradigm, social isolation. These studies suggest that in addition to the 

involvement of the major nAChR subtypes such as β2 and α7, anxiety phenotypes are 

controlled by a variety of different nAChRs.

In summary, the studies cited above reveal a strong bidirectional relationship between 

nicotine, anxiety, and fear learning. While human studies suggest that smoking may alleviate 

the symptoms associated with anxiety disorders (Beckham et al., 2005; Feldner et al., 2007; 

Greenberg et al., 2012; Thorndike et al., 2006), nicotine abstinence worsens those symptoms 

(Dedert et al., 2011) and results in higher rates of reinitiation of smoking (Beckham et al., 

2012; Hapke et al., 2005; Lasser et al., 2000). In line with these results, the animal studies 

using fear conditioning suggest that initial acute nicotine results in enhancement of 

hippocampus-dependent fear learning and impairment of fear extinction, whereas acute 

nicotine during nicotine withdrawal further enhances hippocampus-dependent fear 

memories, which may prolong the course of the disorder. Evidence from the animal studies 

also suggests that the effects of nicotine on hippocampus-dependent fear memories require 

the activation and upregulation of the high-affinity β2-containing nAChRs (Davis & Gould, 

2006, 2007, 2009; Davis et al., 2007; Kenney, Raybuck, & Gould, 2012; Portugal et al., 

2008; Raybuck & Gould, 2009). However, the results from the studies using animal models 

of anxiety are less conclusive as the effects of nicotine on anxiety-related behavior in 

animals vary based on the strains/species and the task used in the study. This suggests that 

anxiety measured in different animal models may actually have different underlying 

neurobiological and genetic mechanisms. Nevertheless, results from these studies converge 

on the importance of α7/α4-containing nAChRs in the effects of nicotine on anxiety. Further 

investigation of the relationship between nicotine, specific nAChR subtypes, and anxiety as 
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measured in animal models is still required to understand the underlying mechanisms of 

nicotine’s effects on anxiety.

4. EFFECTS OF NICOTINE DEPENDENCE, WITHDRAWAL, AND nAChR 

REGULATION ON DEPRESSION

Depression is a common mental disorder that manifests itself with symptoms such as 

depressed mood, lowered interest in pleasure, fatigue, and psychomotor agitation or 

retardation (American Psychiatric Association, 2013). It has a lifetime prevalence of 10–

25% in women and 6–10% in men (Moore & Bona, 2001), and affects approximately 20 

million adults in the United States (CDC, 2010). Depression is especially common among 

the individuals with chronic health problems such as obesity, alcoholism, and smoking 

(Strine et al., 2008). In this section, we will review results suggesting a bidirectional 

relationship between depression and nicotine.

4.1 The Relationship Between Nicotine Dependence and Depression in Humans

An in-depth review of the relationship between depression and nicotine dependence in 

humans is provided in another chapter of this book. Similar to the link between anxiety 

disorders and smoking, depression and nicotine dependence have also a reciprocal 

relationship (Ischaki & Gratziou, 2009; John, Meyer, Rumpf, & Hapke, 2004). Previous 

studies have shown that depression symptoms are important determinants of smoking 

initiation, maintenance, and cessation, whereas nicotine dependence is associated with 

vulnerability for depression (Breslau, Kilbey, & Andreski, 1991; Fergusson, Goodwin, & 

Horwood, 2003; Glassman et al., 1990; Hall, Muñoz, Reus, & Sees, 1993; Morrell & Cohen, 

2006; Paperwalla, Levin, Weiner, & Saravay, 2004). For example, nicotine dependence, as 

defined in Diagnostic and Statistical Manual of Mental Disorders, Revised Third Edition, 

predicted a threefold risk of developing major depression (Breslau & Johnson, 2000), and 

this relationship was maintained across different age groups such as adolescents (Killen et 

al., 2004), adults (Fergusson et al., 2003), and adults over age 60 (Glassman, Covey, Stetner, 

& Rivelli, 2001). There is also evidence suggesting that smoking during adolescence results 

in a fourfold increase in the likelihood of developing depressive symptoms later in life 

(Brook, Schuster, & Zhang, 2004; Choi, Patten, Gillin, Kaplan, & Pierce, 1997; Goodman & 

Capitman, 2000; Wu & Anthony, 1999). Another study found that the risk of developing 

depression was four times higher in heavy smokers than nonsmokers and increased time of 

smoking dependency was correlated with increased risk of depression (Klungsøyr, Nygård, 

Sørensen, & Sandanger, 2006), which suggests that the vulnerability for depression 

increases with higher rates of smoking.

Just as smokers show higher rates of depression, patients with major depression have been 

shown to have higher levels of smoking than the nonclinical population (Covey, Glassman, 

& Stetner, 1997, 1998; Fergusson et al., 2003). According to the self-medication hypothesis 

of nicotine dependence (Carmody, 1992; Markou, Kosten, & Koob, 1998; Pomerleau & 

Pomerleau, 1985), this might be because nicotine reduces negative affect and works as an 

antidepressant. In support, patients with major depression increased smoking when they 

experienced depressive symptoms (Schleicher, Harris, Catley, & Nazir, 2009). In line with 
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the self-medication hypothesis, there are also several studies showing that a majority of 

smokers enrolled in smoking cessation programs have a history of depressive episodes 

(Dalack, Glassman, Rivelli, Covey, & Stetner, 1995; Glassman et al., 1988; Lerman et al., 

1996), and those with a history of depression failed to quit smoking twice as often as 

smokers without a prior depressive episode (Glassman et al., 1990). Similarly, it has also 

been indicated that smoking cessation increases the severity of depression symptoms (Covey 

et al., 1997; Swan, Ward, & Jack, 1996; West, Hajek, & Belcher, 1989). Furthermore, 

smokers with a history of depression have been shown to be more likely to experience 

another depressive episode 6 months after smoking cessation (Glassman et al., 2001). 

Consequently, these results suggest that the increased severity of depression and withdrawal 

symptoms upon smoking cessation might contribute to the lower levels of successful 

smoking cessation in people with depression.

4.2 Effects of Nicotine on Animal Models of Depression

Depression is a multifaceted mental disease with a distinct symptomatology, some of which 

can be captured in several different animal models (Matthews, Christmas, Swan, & Sorrell, 

2005). Animal models of depression can be categorized as acute depression models (e.g., the 

forced swim test and tail-suspension test) and chronic depression models (e.g., learned 

helplessness and prolonged subordination stress; Stone & Lin, 2011). Consistent with the 

reports from human studies suggesting that nicotine decreases depressive symptoms, 

numerous studies have linked nicotine and nAChR agents with the modulation of 

depression-like behaviors in animals (see Mineur & Picciotto, 2010 for a review). In line 

with the above-described self-medication hypothesis of nicotine in depression, previous 

studies have shown that nicotine had an antidepressant effect in the forced swim test 

(Andreasen & Redrobe, 2009; Suemaru et al., 2006; Tizabi, Getachew, Rezvani, Hauser, & 

Overstreet, 2009, Tizabi et al., 1999; Vázquez-Palacios, Bonilla-Jaime, & Velázquez-

Moctezuma, 2005), the chronic mild stress sucrose test (Andreasen, Henningsen, Bate, 

Christiansen, & Wiborg, 2011), and learned helplessness (Semba, Mataki, Yamada, Nankai, 

& Toru, 1998). Multiple studies have suggested that β2-containing nAChRs may play an 

important role in modulation of depression-like behavior. For example, KO mice that lack 

the β2 subunit of nAChRs show decreased amount of baseline immobility in both the FST 

and tail-suspension test, indication of reduced depression-like phenotype, compared to wild-

type animals (Caldarone et al., 2004). Furthermore, it has also been shown that 

mecamylamine, a nonselective nAChR antagonist, has similar antidepressant-like effects in 

the FST and tail-suspension test in wild-type but not in β2 KO animals (Andreasen, Nielsen, 

& Redrobe, 2009; Caldarone et al., 2004; Rabenstein, Caldarone, & Picciotto, 2006). Also 

consistent with the modulatory role of β2-containing high-affinity nAChRs in the 

depression-like behavior, an α4β2 selective high-affinity nAChR antagonist, DHβE, has 

been found to decrease immobility in the FST and tail-suspension test (Andreasen, Olsen, 

Wiborg, & Redrobe, 2009; Rabenstein et al., 2006). Apart from the β2-containing nAChRs, 

there is also evidence showing that α7 subtype of nAChRs may also play a modulatory role 

in the depression-like behavior in animals. For example, Andreasen, Olsen, et al. (2009) 

found that MLA (α7-nAChR selective antagonist) also reduced immobility in the FST, while 

another study found that mecamylamine had antidepressant effects in the FST for wild-type 

but not on α7-nAChR KO mice. In addition to the β2 and α7 nAChRs, α5 may also be 
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involved in the modulation of depressive-like behavior. For example, using a tail-suspension 

test and α5 nAChR-null mice, Gangitano et al. (2009) found that female but not male α5 

KO mice showed reduced depressive-like behavioral phenotype. These studies suggest that 

inactivation of β2-containing nAChRs along with α7 nAChR activation results in reduction 

of depression-like behavior in the animal models of depression. Nevertheless, other nAChR 

subtypes, such as α5, may also be involved in the depression-related behavioral phenotype.

Interestingly, like nAChR antagonists mecamylamine, DhβE, and MLA, varenicline, a 

partial agonist of the α4β2 nAChRs and a full α7 agonist developed to aid smoking 

cessation in humans (Mihalak, Carroll, & Luetje, 2006), has also been found to have 

antidepressant effects in the FST (Rollema et al., 2009). Being a partial agonist of the α4β2 

nAChRs, varenicline increases nAChR activity and maintains it at a submaximal level, and 

therefore, it prevents binding of the endogenous acetylcholine and effectively desensitizes 

nAChRs (Mineur & Picciotto, 2010; Papke & Heinemann, 1994). Similarly, other nicotinic 

partial agonists such as sazetidine-A and ispronicline (TC-1734 or AZD3480) also have 

antidepressant effects (Gatto et al., 2004; Xiao et al., 2006). However, Turner, Castellano, 

and Blendy (2010) reported that sazetidine-A, but not varenicline, decreased immobility in 

the FST and tail-suspension test measures of depression. The discrepancy between Rollema 

et al. (2009) and Turner et al. (2010) results is likely to be due to the different mouse strains 

used by these two studies, C57BL/6J mice and 129SvJ-C57BL/6J F1 hybrid mice, 

respectively. In support, previous research showed that the parental lines of the 129SvJ-

C57BL/6J F1 hybrid mice show differences in motor function, anxiety-related behavior, and 

sensorimotor responsivity, which may contribute to the differential effects of partial nAChR 

agonists on depression-like behavior (Tarantino, Gould, Druhan, & Bucan, 2000). Overall, 

the results from the studies using partial nAChR agonist and direct nAChR antagonists 

converge on the importance of the nAChR desensitization in the antidepressant effects of 

nicotine.

In summary, studies indicate that depression is strongly affected by nicotine exposure. The 

human studies cited suggest that initially smoking may alleviate symptoms of depression 

and works as a mean to self-medicate, whereas smoking cessation results in the exacerbation 

of the depressive symptoms. In line with the human studies, the studies utilizing animal 

models of depression also showed that nicotine reduced depressive-like behavior in animals 

in several different models of depression (e.g., FST, chronic mild stress sucrose test, and 

learned helplessness). Evidence from the pharmacological inactivation studies and studies 

using global KO animals suggest that nicotine’s antidepressant effect seems to be modulated 

by the β2-containing and α7 nAChRs. Interestingly, partial agonists of the α4β2 nAChRs 

such as sazetidine-A, and varenicline, which was developed for smoking cessation, seem to 

also help with the alleviation of the depressive-like behavior. Future studies that clarify the 

role of nAChR subtypes in depression will help develop better nAChR-based 

pharmacological agents for depression treatment.

5. CONCLUSION

The significantly higher rates of smoking are seen in the population with mental disorders 

such as ADHD, anxiety disorders, and depression, in comparison to the nonpatient 
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population, suggesting a strong relationship between nicotine and symptomatology of these 

disorders. The studies reviewed in this chapter show that often acute nicotine produces 

effects that result in the short-term reduction of the symptoms associated with the mental 

illness. Consequently, patients with these disorders usually transition into chronic use of 

nicotine for the self-medication purposes. Nevertheless, there is also strong evidence 

suggesting that patients with mental disorders usually have difficulty quitting smoking. This 

is because the symptoms of the disorders usually worsen during the period of withdrawal, 

which results in shorter period of abstinence and eventually reinitiation of smoking. Several 

subunits of nAChRs, such as α4, β2, and α7, have been shown to directly modulate the 

severity of the symptoms of mental disorders and the effects of nicotine on these symptoms. 

Therefore, future studies examining the roles of specific nAChR subunits in mental illness 

may help to develop better treatments for mental disorders.
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