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Abstract

Neurofeedback studies using real-time functional magnetic resonance imaging (rt-fMRI) have 

recently incorporated the multi-voxel pattern decoding approach, allowing for fMRI to serve as a 

tool to manipulate fine-grained neural activity embedded in voxel patterns. Because of its 

tremendous potential for clinical applications, certain questions regarding decoded neurofeedback 

(DecNef) must be addressed. Specifically, can the same participants learn to induce neural patterns 

in opposite directions in different sessions? If so, how does previous learning affect subsequent 

induction effectiveness? These questions are critical because neurofeedback effects can last for 

months, but the short- to mid-term dynamics of such effects are unknown. Here we employed a 

within-subjects design, where participants underwent two DecNef training sessions to induce 

behavioural changes of opposing directionality (up or down regulation of perceptual confidence in 

a visual discrimination task), with the order of training counterbalanced across participants. 

Behavioral results indicated that the manipulation was strongly influenced by the order and the 

directionality of neurofeedback training. We applied nonlinear mathematical modeling to 

parametrize four main consequences of DecNef: main effect of change in confidence, strength of 

down-regulation of confidence relative to up-regulation, maintenance of learning effects, and 

anterograde learning interference. Modeling results revealed that DecNef successfully induced 

bidirectional confidence changes in different sessions within single participants. Furthermore, the 

effect of up- compared to down-regulation was more prominent, and confidence changes 

(regardless of the direction) were largely preserved even after a week-long interval. Lastly, the 

effect of the second session was markedly diminished as compared to the effect of the first session, 

indicating strong anterograde learning interference. These results are interpreted in the framework 

of reinforcement learning and provide important implications for its application to basic 

neuroscience, to occupational and sports training, and to therapy.

Correspondence should be addressed to: Aurelio Cortese (cortese.aurelio@gmail.com), Hakwan Lau (hakwan@gmail.com), or Mitsuo 
Kawato (kawato@atr.jp). 

Competing Interests.
There is a potential financial conflict of interest; one of the authors is the inventor of patents related to the neurofeedback method used 
in this study, and the original assignee of the patents is ATR, with which M.K. is affiliated.

HHS Public Access
Author manuscript
Neuroimage. Author manuscript; available in PMC 2018 January 05.

Published in final edited form as:
Neuroimage. 2017 April 01; 149: 323–337. doi:10.1016/j.neuroimage.2017.01.069.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Keywords

fMRI neurofeedback; MVPA; nonlinear modeling; confidence

Introduction

Real-time functional magnetic resonance imaging (rt-fMRI) neurofeedback has enjoyed a 

considerable rise in interest in recent years, both as a tool for addressing basic 

neurobiological questions as well as for potential clinical applications (deCharms 2008; 

Sulzer et al. 2013; Kim & Birbaumer 2014; Sitaram et al. 2016). Whereas most previous 

studies have mainly focused on participants’ learning to self-regulate a univariate blood-

oxygen-dependent-level (BOLD) signal in specific brain areas (Weiskopf et al. 2003; 

deCharms et al. 2004; Birbaumer et al. 2013; Sulzer et al. 2013), recently rt-fMRI 

neurofeedback has incorporated connectivity-based approaches (Sulzer et al. 2013; Koush et 

al. 2013; Koush et al. 2015; Megumi et al. 2015) and multi-voxel pattern analysis (MVPA) 

[or decoding analysis, (Kamitani & Tong 2005)], opening a new range of possibilities 

(LaConte et al. 2007; LaConte 2011; Shibata et al. 2011; deBettencourt et al. 2015). Here we 

investigate some properties of the relatively new procedure called decoded neurofeedback 

(DecNef), specifically focusing on: bidirectional behavioral changes, the magnitude of each 

training direction, and the effects of order of training, such as the maintenance of training 

effects over time and interference between training sessions.

Previously, up-and-down regulation of univariate BOLD signal within a single participant in 

interleaved block designs of rt-fMRI neurofeedback has been shown to be possible 

(Weiskopf et al. 2004; deCharms 2008). Subsequently, functional connectivity between 

regions, as well as univariate activity within specific areas, was shown to be be increased or 

decreased upon training (Scheinost et al. 2013; Veit et al. 2012). Using a multivariate 

neurofeedback approach Shibata and colleagues (Shibata et al. 2016) similarly trained 

participants to activate or deactivate multi-voxel patterns associated with facial 

attractiveness. In a between-subjects design, different groups of participants learned to 

activate or deactivate the relevant neural representation, and these led to subsequent 

increases or decreases in facial-preference ratings (Shibata et al. 2016).

In many of these previous studies participants were given explicit strategies for neural 

induction (e.g., which neural loci to manipulate) through verbal instructions. In contrast, 

some other rt-fMRI neurofeedback studies succeeded in training subjects to activate or 

deactivate (patterns of) neural activity or connectivity covertly without explicit instruction 

about the target of induction or the purpose of the training (Bray et al. 2007; Megumi et al. 

2015; Shibata et al. 2016; Ramot et al. 2016). In these studies participants were simply told 

to focus somehow on their mental activity in each trial, after which a feedback signal was 

given that indicated the extent of the reward. Although both approaches have previously 

been used, there is currently an open debate in the field on which strategy - explicit vs. 

implicit instruction - is preferable and is most effective (Sulzer et al. 2013; Sitaram et al. 

2016).
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Nevertheless, since explicit instructions do not seem to be necessary, fMRI neurofeedback 

can be treated as a neural operant conditioning or reinforcement learning process 

(Birbaumer et al. 2013; Koralek et al. 2012). From this perspective it is worth noting that so 

far, to the best of our knowledge, no study has successfully demonstrated opposing 

behavioral changes for different neurofeedback manipulations within single participants. 

This open question is important for both practical as well as scientific reasons. Scientifically, 

as in optogenetics studies in rodents (Deisseroth 2010; Deisseroth 2015) and brain 

stimulation approaches in humans (Wagner et al. 2007), to rigorously prove the causal 

relationships between brain activity and behaviors it is desirable to be able to induce and 

suppress the same pattern of brain activities. Importantly, it is necessary to confirm that 

these indeed lead to opposite behavioral effects within the same participants. Practically, 

these considerations are also very important for future studies in basic neuroscience, for 

therapy and clinical applications of DecNef, as well as if this is to be used for occupational 

and sport training.

Considering neurofeedback from the perspective of reinforcement learning highlights why 

manipulating activity in both directions within the same participants may pose specific 

challenges. Interference of learning across training sessions is expected when we attempt 

opposite behavioral manipulations in succession. These effects of interference have been 

studied extensively in motor and visuomotor learning, with various elegant studies showing 

that previous learning can hinder or interfere with the subsequent practice of a second task 

(Brashers-Krug et al. 1996; Krakauer et al. 1999; Osu et al. 2004). Interference can be 

retrograde or anterograde depending on the direction in time of the learning/memory effects. 

In a classic A1BA2 paradigm, participants are instructed to sequentially learn Task A, Task 

B, and then Task A again. Retrograde effects reflect how learning of Task B affects the 

memory maintenance of Task A1, while anterograde effects reflect how the memory of Task 

A1 affects the learning of Task B (Sing & Smith 2010). Anterograde interference has 

received less attention in the literature (Sing & Smith 2010). Interference effects have also 

been shown to be present in perceptual learning (Seitz et al. 2005; Yotsumoto et al. 2009). 

Hence, anterograde interference of learning resulting from the bidirectional use of DecNef 

manipulations within participants may prove two aspects: (1) behavioral changes are the 

result of a true learning process and, (2) behavioral effects should be long lasting.

We therefore aimed to address the following three questions in this research. First, if some 

behavioral change is induced by a neurofeedback manipulation, is it possible to develop 

another neurofeedback manipulation to cancel out the first behavioral change? Second, how 

long is the behavioral change maintained after neurofeedback manipulation? Third, how 

much interference occurs when two different neurofeedback manipulations are conducted in 

single participants? The first question is important because it is desirable to have the ability 

to cancel out negative side effects, should these occur. The second question is related to the 

efficiency of neurofeedback as a therapeutic method. Megumi et al. showed that 4 days of 

functional connectivity neurofeedback (FCNef) changed resting-state functional 

connectivity, and these effects lasted more than two months (Megumi et al. 2015). Amano et 
al. showed that 3 days of DecNef induced associative learning between color and orientation 

lasting for 3 to 5 months (Amano et al. 2016). However, there is no quantitative study 

examining mid-term effects; for example, to what extent are neurofeedback effects 
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maintained one week after manipulation? The third point is ethically important in 

considering cross-over designs as candidate paradigms for randomized control trials to show 

statistical effectiveness of neurofeedback therapy. If two different neurofeedback 

manipulations interfere severely within single patients, a cross-over design is not a suitable 

option.

To address these questions, here we used DecNef to manipulate a specific cognitive 

representation - perceptual confidence - bidirectionally, i.e., up (increase confidence), and 

down (decrease confidence).

Perceptual confidence can be best interpreted as the degree of certainty in one’s own 

perceptual decisions. Several studies have linked frontoparietal areas with the computation 

of perceptual confidence, in humans (Huettel et al. 2005; Fleming et al. 2010; Rounis et al. 

2010; Simons et al. 2010; De Martino et al. 2012; Zizlsperger et al. 2014; Rahnev et al. 

2016) as well as in primates (Kiani & Shadlen 2009; Fetsch et al. 2014) and rats (Kepecs et 

al. 2008; Lak et al. 2014). Specifically, dorsolateral prefrontal cortex (dlPFC) as well as 

inferior parietal cortex seem to play a crucial role. For example, gray matter thickness in the 

dlPFC correlated with metacognitive abilities of participants (Fleming et al. 2010), and 

transcranial magnetic stimulations (TMS) applied over loci within the dlPFC have been 

shown to selectively disrupt confidence judgements (Rounis et al. 2010). A recent study has 

highlighted the temporal structure of confidence processing in cortical areas, demonstrating 

that electrophysiological correlates of decision confidence can be detected in the left parietal 

cortex (Zizlsperger et al. 2014).

We first constructed a classifier for high versus low confidence by utilizing MVPA in four 

bilateral, anatomically defined regions of interest (ROIs): the inferior parietal lobule (IPL), 

and three subregions of the dlPFC - the inferior frontal sulcus (IFS), middle frontal sulcus 

(MFS) and middle frontal gyrus (MFG). Next, with a within-subjects design, participants 

learned to implicitly induce multi-voxel activation patterns reflecting high and low 

confidence (Up- and Down-DecNef, respectively) over two weeks. In both weeks, induction 

sessions took place across two consecutive days, and confidence changes were measured 

with a Pre- and Post-Test, immediately before and after the fMRI induction session. 

Participants were randomly assigned to one of two groups, defining the order of induction 

(Up- then Down-DecNef or vice versa). The second DecNef session was carried out one 

week after the first, in order to measure whether effects would survive after a one-week 

interval. To best capture the differential effects of DecNef on confidence judgements, we 

utilized nonlinear equation modeling.

Materials and methods

1. Participants and Experimental Design

All experiments and data analyses were conducted at the Advanced Telecommunications 

Research Institute International (ATR). The study was approved by the Institutional Review 

Board of ATR. All participants gave prior written informed consent. A companion paper 

(Cortese et al. 2016) was published elsewhere, which discussed implications of the results 

for neural mechanisms of metacognitive functions, especially perceptual confidence and 
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conscious awareness. The experimental data used here is exactly the same, but the research 

objectives of the two manuscripts are different.

The entire experiment was subdivided into 4 fMRI sessions, spanning over 6 scanning days. 

In the first session, participants took part in a retinotopy scan, followed by an MVPA 

session, on separate days (Fig. 1A, the retinotopy data was used to functionally define visual 

areas but was not used for any of the analyses pertaining to this manuscript, and thus not 

shown in the figure). During the MVPA session participants performed a 2-alternative forced 

choice discrimination task with confidence judgements while in the fMRI scanner. This 

allowed us to decode the activation patterns corresponding to certain levels of perceptual 

confidence, which were to be manipulated with DecNef. After MVPA, participants 

undergoing DecNef training were randomly assigned to one of two groups, with different 

orders of training: Down-Up group (aiming to induce Low confidence, then High 

confidence, D-U throughout the manuscript) or Up-Down group (aiming to induce High 

confidence, then Low confidence; U-D throughout the manuscript). The experimenter was 

not blinded to group assignment, while participant were unaware of the aims of training nor 

of group assignment. The confidence change between before vs. after DecNef, defined as 

changes in confidence in the psychophysical tasks, is our primary dependent variable of 

interest.

Eighteen participants (23.7 ± 2.5 years old; 4 female) with normal or corrected-to-normal 

vision were enrolled in the first part of the study (MVPA session). One participant was 

removed due to corrupted data. Participants were screened out either if they could not or 

declined to come back for the DecNef sessions, or due to low decoding accuracy (< 55% in 

more than two ROIs, based on previous work (Amano et al. 2016)). Ten participants 

performed the full DecNef experiments (24.2 ± 3.2 years old, 3 female). For transparency, 

Table 1 reports the decoding results of the 17 subjects for which the decoding analysis was 

run.

2. Stimuli, Behavioral Task and DecNef Designs

2.1 Behavioral task—The behavioral task was the same for both MVPA, and Pre-/Post-

Tests. In behavioral Pre- and Post-Tests, participants performed the task on a standard 

computer and gave responses with a standard keyboard outside of the fMRI scanner. In the 

MVPA session, participants gave their responses via a 4-buttons pad while in the scanner.

The behavioral task was a motion discrimination task with two-alternative forced choice of 

motion direction and confidence rating using random dot motion (RDM, Fig. 1B). 

Participants were instructed to indicate the perceived direction of motion (left or right) after 

a short delay following stimulus presentation, and rate the level of confidence about their 

perceptual decision (4-point scale). This kind of scale is commonly used in confidence 

studies as it allows greater sensitivity for participants’ trial-by-trial confidence judgements in 

ambiguous perceptual decisions compared with a simpler two-options rating (such as high or 

low) (Fleming et al. 2015). The majority of trials (62.5% of the total number) had threshold 

coherence of motion, that is, motion coherence that lead to the targeted psychological 

threshold, midway between floor and ceiling performance. The rest of the trials were divided 

between catch trials (no coherence, 25% of the total number of trials) and high coherence 
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trials (80% coherence, 12.5% of the total number of trials). The order was randomized 

within and across runs. This configuration of motion coherences was selected in order to 

prevent slow drifts in bias (individual criterion in responding) across runs. For all analyses 

(both behavioral and with fMRI data), only trials at threshold motion coherence were 

utilized. Thus, for these trials the motion direction was ambiguous, and performance - i.e., 

task accuracy - in judging the motion direction was not significantly different from the 

targeted psychological threshold level of 75% correct (76.6% ± 1.5%, t(16) = 1.475, P = 

0.16) during the MVPA scanning session.

2.2 Visual stimuli—All stimuli were created and presented with Matlab (Mathworks) 

using the Psychophysics Toolbox extensions Psychtoolbox 3 (Brainard 1997). Visual stimuli 

were presented on an LCD display (1024 × 768 resolution, 60Hz refresh rate) during 

titration and the Pre- and Post-Test stages, and via an LCD projector (800 × 600 resolution, 

60Hz refresh rate) during fMRI measurements in a dim room. Stimuli were shown on a 

black background and consisted of RDM. We used the Movshon-Newsome (MN) RDM 

algorithm (Shadlen & Newsome 2001). The stimulus was created in a square region of 

20×20 deg, but only the region within a circular annulus was visible (outer radius: 10 deg, 

inner radius: 0.85 deg). Dot density was 0.5 deg−2 (contrast 100%), with a speed of 9 

deg/sec and size of 0.12 deg. Signal dots all moved in the same direction (left or right, non-

cardinal directions of 20 deg and 200 deg) whereas noise dots were randomly replotted. Dots 

leaving the square region were replaced with a dot along one of the edges opposite to the 

direction of motion, and dots leaving the annulus were faded out to minimize edge effects.

2.3 fMRI scans for MVPA—The purpose of the fMRI scans in the MVPA session was to 

obtain the fMRI signals corresponding to high and low confidence levels. These confidence 

measures would then be used as labels to compute the parameters for the decoders used in 

the MVPA and DecNef sessions (Shibata et al. 2011).

During the MVPA session, participants performed a perceptual discrimination task with a 

confidence rating in the fMRI scanner (see above, subsection “Behavioral task” and Fig. 

1B). Throughout the fMRI runs, participants were asked to fixate on a white cross (size 0.5 

deg) presented at the center of the display. A brief break period was provided after each run 

upon participant’s request. Each fMRI run consisted of 16 task trials (1 trial = 18 secs; Fig. 

1B), with a 20 secs fixation period before the first trial (1 run = 308 secs). The entire session 

consisted of 12 runs. The fMRI data for the initial 20 secs of each run were discarded due to 

possible unsaturated T1 effects. During the response period, participants were instructed to 

use their dominant hand to press the button on a response pad. Concordance between 

responses and buttons was indicated on the screen and, importantly, randomly changed 

across trials to avoid motor preparation confounds (i.e., associating a given response with a 

specific button press).

2.4 fMRI scans preprocessing—The fMRI signals in native space were preprocessed 

using custom software (mrVista software package for MATLAB, freely available at http://

vistalab.stanford.edu/software/). The mrVista package uses functions and algorithms from 

the SPM suite (freely available at http://www.fil.ion.ucl.ac.uk/spm/). All functional images 

underwent 3D motion correction. Hemi-lateral ROIs were anatomically defined through 
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cortical reconstruction and volumetric segmentation using the Freesurfer image analysis 

suite, which is documented and freely available for download online (http://

surfer.nmr.mgh.harvard.edu/). We used the standard ‘Destrieux’ cortical atlas, based on a 

parcellation scheme that divides the cortex into gyral and sulcal regions (Destrieux et al. 

2010) in each hemisphere. Bilateral ROIs were then created by merging the corresponding 

single left and right hemi-lateral ROIs. Once the ROIs were identified (see Fig. 1C), time-

courses of BOLD signal intensities were extracted from each voxel in each ROI and shifted 

by 6 secs to account for the hemodynamic delay using the Matlab software. A linear trend 

was removed from the time-course, and the time-course was z-score normalized for each 

voxel in each run to minimize baseline differences across runs. The data samples for 

computing the MVPA were created by averaging the BOLD signal intensities of each voxel 

for 3 volumes, corresponding to the 6 secs from stimulus onset to response onset.

2.5 MVP Analyses

2.5.1 Algorithm: We used sparse logistic regression (SLR) (Yamashita et al. 2008), which 

automatically selects the relevant voxels in the ROIs for MVPA, to construct individual 

binary classifiers based on the main behavioral variable of interest: confidence (high vs. low, 

correct trials only to increase the S/N ratio). Although confidence was rated with a 4-point 

scale, we used SLR to classify confidence, as opposed to sparse linear regression (SLiR), 

because the aim was to investigate the bidirectionality of a neurofeedback manipulation 

within single participants. As such, it was desirable to have a binary classifier, leading to two 

experimental training sessions, such as induction of High- and Low-Confidence.

2.5.2 Datasets and cross-validation: For each participant’s MVPA we performed a k-fold 

cross-validation, where the entire data set is repeatedly subdivided into a “training set” and a 

“test set”. The two data sets can be seen as independent since they were used to fit the 

parameters of a model (decoder) and evaluate the predictive power of the trained (fitted) 

model, respectively. For each participant, the number of folds was automatically adjusted 

between k = 9 and k = 11 in order to approximately equate the number of samples between 

the data sets. Thus, the number of folds in each cross-validation procedure was ~10, a 

typical value for k-fold cross-validation procedures (Tong & Pratte 2012). Furthermore, the 

classification by SLR was optimized with an iterative approach (i-SLR of Hirose et al. 

2015). That is, in each fold of the cross-validation, the process was repeated 10 times. On 

each iteration, the selected features were removed from the pattern vectors, and only the 

features with unassigned weights were used for the next iteration. At the end of the k-fold 

cross-validation, the test accuracy was averaged for each iteration across folds, in order to 

evaluate the accuracy at each iteration. The optimal number of SLRs (number of iterations) 

was then chosen and used for the final computation of the decoder used in the 

neurofeedback training procedure (Supplementary Note 1). Because confidence was rated on 

a 4-point scale, we assigned the intermediate ratings (2, 3) to the low- and high-confidence 

classes, respectively, in order to collapse the 4 initial confidence levels to 2, and equate the 

number of trials in each class. For each participant, first we merged one intermediate level 

with the high- (level 4) or low-confidence (level 1) class depending on the total number of 

trials. Then, to equate the number of trials, we randomly sampled trials from the left-out 

intermediate confidence level to the class now having a lower total number of trials. This re-
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balancing was based on the confidence rating response distribution, and on the final number 

of trials, and was repeated n times (n = 10, due to the low number of resampled trials). In 

order to directly compare the information contained in multivoxel patterns pertaining to the 

confidence dimension across the four ROIs, the best sample set was voted by k-fold cross-

validation mean accuracy, given the a priori assumption that these areas are critical for 

generating confidence. Therefore, once a sample set was selected, the cross-validation mean 

accuracy for that particular set was used for each ROI, thus ensuring that exactly the same 

information was used. Importantly, the calculation of weights used for DecNef was done by 

using the entire data set of correct trials (without cross-validation) and the optimal number 

of iterations (as described above).

To evaluate the statistical significance of decoding accuracies we used permutation testing. 

For each subject and each ROI, we performed n = 1000 random permutations, where the 

labels of low vs. high confidence in the previously selected sample set were each time 

randomly shuffled. For each permutation the accuracy was averaged across CV runs and 

SLR iterations, and we thus obtained a distribution of n = 1000 accuracies. Statistical 

significance was computed as P = sum(Dperm > Dobs + 1)/(nperm + 1), or simply the sum of 

the permuted accuracies greater than the observed accuracy divided by the number of 

permutations.

2.5.3 ROIs and voxels for classification: We constructed four decoders in frontoparietal 

areas, corresponding to the following bilateral anatomical ROIs: inferior parietal lobule 

(IPL), and three subregions generally regarded as being part of the dorsolateral prefrontal 

cortex (dlPFC), namely the inferior frontal sulcus (IFS), middle frontal sulcus (MFS), and 

the middle frontal gyrus (MFG) (Fig. 1C). These areas have been previously linked to 

confidence judgements in perceptual decisions (Kiani & Shadlen 2009; Fleming et al. 2010; 

Rounis et al. 2010; Simons et al. 2010; Rahnev et al. 2016). Additionally, we also examined 

four ROIs in the visual processing stream (V12, V3A, hMT and the fusiform gyrus), because 

we were evaluating perceptual confidence with visual stimuli in a different study. As 

reported in Cortese et al. (Cortese et al. 2016), confidence classification was at chance for 

these ROIs in the visual areas. Thus, for the DecNef training, we selected only the four 

frontoparietal ROIs that showed higher decoding accuracy, and the decoding results of these 

four ROIs are presented in the Results section. Each binary decoder was trained to classify a 

pattern of BOLD signals into either low or high confidence, using data samples obtained 

from up to 120 trials collected in up to twelve fMRI runs. As a result, the inputs to the 

decoders were the participants’ moment-to-moment brain activations, while the outputs of 

the decoders represented the calculated likelihood of each confidence measure. The mean (± 

s.e.m) number of voxels for decoding was 1802 ± 63 for IPL, 490 ± 19 for IFS, 412 ± 16 for 

MFS, and 1350 ± 42 for MFG. The mean (± s.e.m) number of voxels selected by i-SLR for 

each ROI was 62 ± 9 for IPL, 66 ± 10 for IFS, 64 ± 8 for MFS, and 91 ± 13 for MFG. The 

selected voxels were then used for the DecNef training. We opted for four separate 

classifiers instead of one large ROI to account for possible individual differences in 

confidence representation loci at the regional level (Rahnev et al. 2016).
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2.6 DecNef training and testing—Once individual confidence classifiers were 

constructed, ten selected participants completed a two-day DecNef training in each session 

(aiming to up- or down-regulate confidence level), and each session was separated by at least 

one week (see Fig. 1A). Each participant went through both Up- and Down DecNef training, 

and the order was counterbalanced across participants (i.e., Up then Down vs. Down then 

Up). The neurofeedback task itself is illustrated in Fig. 1D: participants were asked to 

“manipulate, modulate or change their brain activity in order to make the feedback disc 

presented at the end of each trial as large as possible”. The experimenters provided no 

further instructions nor strategies. Importantly, the disc for feedback after the induction 

period was maximized both for inducing the activation patterns for high confidence and for 

low confidence, in the up- and down- regulation sessions, respectively. Participants received 

monetary reward proportional to their induction success (ability to induce the selected 

activation pattern). Only the experimenter knew which session took place on a certain day, 

while participants were unaware. After each training day, participants were asked to describe 

their strategies in making the disc size larger. Answers varied from “I was counting” to “I 

was focusing on the disc itself” to “I was thinking about food”. When participants were 

asked to report which group they thought they were assigned to at the end of the experiments 

(n = 5, 2 months later, and n = 4, 5 months later - 1 participant could not be reached), their 

answers were at chance at the group level (57% correct, Chi-square test, χ2 = 0.225, P = 

0.64).

On each day of a given DecNef session, participants were trained in up to 11 fMRI runs. The 

mean (± s.e.m) number of runs per day was 10 ± 0.1 across days and participants. Each 

fMRI run consisted of 16 trials (1 trial = 20 secs) preceded by a 30-secs fixation period (1 

run = 350 secs). The fMRI data for the initial 10 secs were discarded to avoid unsaturated T1 

effects.

Each trial started with a visual cue (three concentric disks, white, gray and green) signaling 

the induction period (Fig. 1D). The induction period lasted for 6 secs, and was followed by a 

6 secs rest period. The rest period was followed by the neurofeedback disk (a white ring) 

presented on the gray screen for up to 2 secs. Finally, a trial ended with a 6 secs intertrial 

interval (ITI). Either during the induction period, or at the beginning of the rest period 

(pseudo-random onsets: 2, 4, 6, or 8 secs from trial start) a 2 secs noise RDM was also 

presented. Pseudo-random onsets were designed in order to minimize potential interference 

of the RDM onset on the induction of brain activity.

During the rest period, participants were asked to simply fixate on the central point and rest. 

This period was inserted between the induction and the feedback periods to account for the 

hemodynamic delay, assumed to last 6 secs. The size of the disc represented how much the 

BOLD signal patterns obtained from the induction period corresponded to activation patterns 

of the target confidence level (high or low). The white disc was always enclosed in a larger 

white concentric circle (5 deg radius), which indicated the disc’s maximum possible size.

The size of the disc presented during the feedback period was computed at the end of the 

rest period according to the following steps. First, measured functional images during the 

induction period underwent 3D motion correction using Turbo BrainVoyager (Brain 
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Innovation). The subsequent steps were performed using the Matlab software. Second, time-

courses of BOLD signal intensities were extracted from each of the voxels identified in the 

MVPA session, for each of the four frontoparietal ROIs used (IPL, IFS, MFS, and MFG), 

and were shifted by 6 secs to account for the hemodynamic delay. Third, a linear trend was 

removed from the time-course, and the BOLD signal time-course was z-score normalized 

for each voxel using BOLD signal intensities measured for 20 secs starting from 10 secs 

after the onset of each fMRI run. Fourth, the data sample to calculate the size of the disc was 

created by averaging the BOLD signal intensities of each voxel for 6 secs in the induction 

period. Finally, the likelihood of each confidence state was calculated from the data sample 

using the confidence decoder computed in the MVPA session. The size of the disc was 

proportional to the averaged likelihood from the four different frontoparietal ROIs (ranging 

from 0 to 100%) of the target confidence assigned to each participant on a given DecNef 

block. Importantly, participants were unaware of the relationship between their activation 

patterns induction and the size of the disk itself. The target confidence was the same 

throughout a DecNef block. In addition to a fixed compensation for participation in the 

experiment, a bonus of up to 3000 JPY was paid to the participants based on the mean size 

of the disc on each day.

3. Mathematical modeling and model comparison

3.1 Nonlinear global model—We constructed a mathematical model to objectively 

examine the effects of Up and Down DecNef, a decay of learning (of DecNef effect) due to 

one-weak lapse, and an anterograde interference of learning from the first to second week. 

The model was fit to 4 confidence measurements at the 4 time points for each participant 

and possesses 4 model parameters.  are the experimentally measured confidence values, 

while  are the estimated confidence values for each participant (with i = 1:10) (i.e., 

confidence outcome of DecNef effects), at each time point (with j = 1:4; we derived n = 30:3 

points of measurement at n = 10 subjects, as the first time point was assumed to be fixed for 

the global model). The main 4-parameter nonlinear model to describe DecNef effects is 

formally outlined as follows.

(1)

for i = 1:5, group D-U

(2)

(3)
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(4)

for i = 6:10, group U-D

(5)

(6)

(7)

(8)

Where B is the initial baseline on the first day of the DecNef procedure in the first week (0 - 

after realignment to a common level for each group). Δ, the confidence change by Up-

DecNef in the first week which putatively is the only true result. A Δ value of 0 would 

indicate no DecNef effects on confidence, while a Δ value of 1 would indicate a 100% 

confidence increase. ε, the ratio of Down-DecNef effect normalized by Up-DecNef effect, 

explained as the fact that Down-DecNef effect is of reduced magnitude compared to Up-

DecNef in both instances - week 1 for group D-U and week 2 for group U-D. A ε value of 0 

would indicate no down effects, while a ε value of -1 would indicate maximum effects 

(identical magnitude to Up-DecNef effects). γ, the anterograde learning interference 

resulting in a reduced second week DecNef effect, namely the fact that in the second week 

there is only limited DecNef effect. A γ value of 0 would indicate that there was full 

anterograde learning interference thus there existed no learning effect in the second week, 

while a γ value of 1 would indicate absence of anterograde learning interference. Last, α, 

the learning persistence (1 − [decay of learning]) across the one-week interval, the 

remarkable result that the confidence level attained at the end of the first week is preserved 

at least until the beginning of the next session. An α value of 0 would indicate no learning 

persistence, while an α value of 1 would indicate perfect memory maintenance, i.e. no 

memory loss.

3.2 Submodels and alternative simpler models—Submodels are defined by setting 

different parameters to zero or one, one at a time or concomitantly, following the rationale of 

prioritizing against model complexity. This gives rise to a hierarchical group of models, 

from simpler to most complex (capturing single or increasingly more aspects of DecNef 
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effects on the confidence measure). The first model is the simplest and only estimates Δ, 

with the other parameters setting as ε = 0, γ = 1, α = 1. The second model, by complexity 

order, assumes Up and Down-DecNef effects, estimates Δ and ε, while γ = 1, α = 1. The 

third model estimates Δ, ε and γ, with α = 1. Further DecNef-based models estimate Δ, ε 
and α, with γ = 1; or estimate Δ, ε and α, with γ = 0; or estimate Δ, ε and γ, with α = 0; or 

finally, estimate Δ, γ, and α, with ε = 0.

We considered alternative models that do not take into account DecNef direction 

assumptions or a priori conceptions. These are a 1-parameter constant confidence model (the 

confidence measure does not change, is constant throughout the experiment), with two 

versions: , or . Other free models are a within-week constant 

confidence, and within-week fit by first and second degree polynomial.

3.3 Model comparison—For model comparison, we used the second-order or corrected 

Akaike Information Criterion (AICc) (Burnham & Anderson 2002), which is a corrected 

version of the Akaike Information Criterion (AIC) (Akaike 1974).

Raw AIC is computed according to the following equation:

(9)

where , n is the sample size and k the number of parameters in the 

model. In our set of global models, n = 30, and k varied from 1 to 4. In the modeling 

reported for small sample sizes (i.e., n/k ≲ 40), the second-order or corrected Akaike 

Information Criterion (AICc) should be used instead. Although the AICc formula assumes a 

fixed-effects linear model with normal errors and constant residual variances, while our 

model is nonlinear, the standard AICc formulation is recommended unless a more exact 

small-sample correction to AIC is known (Burnham & Anderson 2002):

(10)

For model comparison, two useful metrics are ΔAICc and Akaike weights (wi).  is a 

measure of the distance of each model relative to the best model (the model with the most 

negative, or lowest, AIC value), and is calculated as:

(11)

As indicated in Burnham and Anderson (Burnham & Anderson 2002),  suggests 

substantial evidence for the ith model, while  indicates that the model is very 

unlikely (implausible).
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Akaike weights (wi) provide a second measure of the strength of evidence for each model, is 

directly related to , and is computed as:

(12)

AICc, ΔAICc, and wi are reported in Table 2.

3.4 Model averaging and cross-validation—In cases such as ours, where a high 

degree of model selection uncertainty exists (the best AIC model is not strongly weighted), a 

formal solution is to compute parameter estimates through model-averaging. For this 

approach, two procedures may be used, depending on the results. The first approach makes 

use of only a limited subset of models that are closest to the current best model (ΔAICc < 2), 

while the second approach will consider all models (in fact, this accounts to consider all 

models with wi ≠ 0). We adopted the first approach, selecting only models with high 

likelihood to keep the parameter estimates within the same scale as the original single 

models. Parameters are estimated according to the equation:

(13)

Where βî is the estimate for the predictor in a given model i, and wi is the Akaike weight of 

that model.

Unconditional error, necessary to compute the unconditional confidence interval for a 

model-averaged estimate, can be calculated according to the following equation:

(14)

Where  is the variance of the parameter estimate in model i, and β̂i and  are as 

defined above. The confidence interval is then simply given by the end points:

(15)

For a 95% confidence interval (CI), z1−α/2= 1.96.

Note that the unconditional variance comprises two terms, the first one local (internal 

variance of model i), while the second one global, in that it represents the variance between 

the common estimated parameter and the true value in model i.

In order to assess the internal variance of the models, as well as the generalizability and to 

prevent overfitting, we run a leave-two-out (one for each group, D-U and U-D) cross-
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validation (CV) model averaging procedure. The procedure was repeated for each CV test-

pair: with 10 participants, divided into 2 groups, we thus obtained 25 CV runs (all possible 

combinations of test pairs). For each CV run, the left-out participant data acted as test set, 

while the training data set was hence composed of the remaining participants (four in each 

group). In each CV run, the three best models previously selected by AICc (indicated in bold 

in Table 2) were fitted on the training data, Akaike weights were calculated, and finally 

model averaging was performed. After model-averaging, as a measure of the goodness of fit, 

the predicted confidences were correlated with the observed confidences from the current 

CV test run. In the main text we report the mean ± std value of correlation values. 

Furthermore, we also run a correlation of estimated vs. observed confidence changes by 

pooling all test sets together, to assess significance at the group level. To do so, for each 

participant we averaged the estimated values from the CV runs (5) in which that specific 

participant acted as test data. Lastly, the final parameter estimates were computed as follows. 

First, for each parameter we took the average across the 25 CV runs. As mentioned above, 

the unconditional error is composed of two terms. The variance of the parameter estimate in 

model i was taken as the variance in the 25 CV runs model estimation processes. The global 

variance is computed between the mean final estimate and the mean estimate in each single 

model. Given the two sources of variance we then evaluated the 95% CI. See Supplementary 

Fig. 1 for a graphical account of the entire process.

3.5 Nonlinear mixed (global - local) model—In the second part of the modeling 

approach, we consider all data points, and model population’s individual fits with nonlinear 

equations with global and local parameters (we thus fit the model to all n = 40:4 points of 

measurement at n = 10 subjects, as all time points were considered for the mixture model). 

The equations determining the model are thus very similar to those given above:

(16)

for i = 1:5, group D-U

(17)

(18)

(19)

for i = 6:10, group U-D
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(20)

(21)

(22)

(23)

Compared with the global-parameter model (Eq. 1–8), in this individualized model B (the 

initial starting point) is now optimized individually, as well as Δ, the confidence change 

induced by DecNef. For this model, n = 40 (data points), and k = 23 (parameters).

To avoid overfitting and evaluate the internal variance of the model, this final model was 

estimated with a leave-two-out CV, with a similar approach as for the global model. For each 

CV run, the model parameters were estimated with the training set, and then evaluated on 

the left-out test set by correlating observed confidences (two participants’ data in the test 

data) and predicted confidences. The final parameter estimates are reported as the cross-

validated mean ± 95% CI. Results at the group level are reported by correlating all observed 

confidences with individual predicted confidences. Importantly, because each participant on 

a given group was tested in 5 different CV runs (due to it being paired once with all other 

participants in the opposing group), its final estimated change was computed as the mean of 

the 5 CV runs. See Supplementary fig. 2 for a graphical account of the process.

4. Analysis, statistics and model-solving routines

All analyses were performed with Matlab (Mathworks) versions 2011b and 2014a with 

custom made scripts. Additional statistical analysis such as ANOVA were performed with 

SPSS 22 (IBM statistics). We employed Matlab optimization routines to solve the systems of 

nonlinear equations with a nonlinear programming solver, under least-square minimization. 

The Matlab solver was fmincon, with the following optimization options. A sequential 

quadratic problem (SQP) method was used; specifically, the ‘SQP’ algorithm. This 

algorithm is a medium-scale method, which internally creates full matrices and uses dense 

linear algebra, thus allowing additional constraint types and better performance for the 

nonlinear problems outlined in the previous section. As compared with the default fmincon 
‘interior-point’ algorithm, the ‘SQP’ algorithm also has the advantage of taking every 

iterative step in the region constrained by bounds, which are not strict (a step can exist 

exactly on a boundary). Furthermore, the ‘SQP’ algorithm can attempt to take steps that fail, 

in which case it will take a smaller step in the next iteration, allowing greater flexibility. We 
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set bounded constraints to allow only certain values in the parameter space to be taken by 

the estimates, reflecting the biological dimension they were explaining. As such, boundaries 

were set as: Δ ∈ [0 1], ε ∈ [−1 0], γ ∈ [0 1], and α ∈ [0 1], and for the mixed model B ∈ [1 

4]. The function tolerance was set at 10−20, the maximum number of iterations at 106 and the 

maximum number of function evaluations at 105.

Statistical results involving multiple comparisons are reported in both the corrected and 

uncorrected forms. The rationale behind this decision is that these comparisons can be 

interpreted as multiple comparisons of one hypothesis across different mediums, or simply 

as different hypothesis, in which case no multiple comparisons should be considered. For 

multiple comparisons, we used the Holm-Bonferroni procedure, where the P-values of 

interest are ranked from the smallest to the largest, and the significance level α is 

sequentially adjusted based on the formula  for the ith smallest P-values.

5. MRI Parameters

The participants were scanned in a 3T MR scanner (Siemens, Trio) with a head coil in the 

ATR Brain Activation Imaging Center. Functional MR images for retinotopy, the MVPA 

session, and DecNef stages were acquired using gradient EPI sequences for measurement of 

BOLD signals. In all fMRI experiments, 33 contiguous slices (TR = 2 sec, TE = 26 ms, flip 

angle = 80 deg, voxel size = 3×3×3.5 mm3, 0 mm slice gap) oriented parallel to the AC-PC 

plane were acquired, covering the entire brain. For an inflated format of the cortex used for 

retinotopic mapping and an automated parcellation method (Freesurfer), T1-weighted MR 

images (MP-RAGE; 256 slices, TR = 2 s, TE = 26 ms, flip angle = 80 deg, voxel size = 

1×1×1 mm3, 0 mm slice gap) were also acquired during the fMRI scans for the MVPA.

Results

MVPA for confidence was performed with the data from all initial 17 subjects, as reported in 

Table 1. Significance was assessed through permutation testing (randomly shuffling the 

labels of high and low confidence). Results were consistent with our a priori hypothesis and 

previous work that confidence representations are found in frontoparietal cortices (Kiani & 

Shadlen 2009; Fleming et al. 2010; Rounis et al. 2010; Simons et al. 2010; Rahnev et al. 

2016). Furthermore, as reported here, individual differences in confidence decodability were 

also apparent. Indeed, for many participants one ROI (different across participants) had 

much lower decoding ability. This outcome illustrates our rationale for using 4 separate 

ROIs for the DecNef training, instead of selecting a single best one (which would have been 

different across participants) or a single large unified one.

DecNef can be essentially assumed as a neural operant conditioning and/or reinforcement 

learning paradigm, with which a multi-voxel pattern corresponding to a specific piece of 

brain information can be induced without explicit knowledge from the participants. 

Throughout the manuscript we refer to Up-DecNef for High-Confidence DecNef and Down-

DecNef for Low-Confidence DecNef. Since there were two groups (for DecNef order 

counterbalancing), we will often refer to these as D-U (first session is Down-DecNef while 

the second is Up-DecNef) and U-D (the reverse, Up-DecNef first, Down-DecNef then) 

throughout the results section.
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The ROIs selected for this study, aside from being important for metacognition, are also part 

of large-scale functional brain networks associated, for example, with attention and 

especially top-down modulation of visual attention (Fox et al. 2005; Bressler & Menon 

2010; Rosenberg et al. 2016). Previous work showed that rTMS to the DLPFC resulted in 

lower levels of visibility for stimuli which was pronounced for correct trials (Rounis et al. 

2010). We have addressed these crucial concerns in a companion manuscript, which aimed 

at elucidating the relationship between confidence and perceptual evidence (Cortese et al. 

2016). We reported that DecNef effects on confidence were specific and unlikely to result 

from criterion shifts, mood changes or an attentional modulation (Cortese et al. 2016), thus 

supporting the view that confidence alone was manipulated. Indeed, task accuracy did not 

change between Pre- and Post-Tests: two-way repeated measures ANOVA, factors of 

neurofeedback (Down - Up) and time (Pre - Post), showed non-significant interaction (F1,9 = 

0.030, P = 0.867) as well as non-significant main effects of time (F1,9 = 0, P = 0.994) and 

neurofeedback (F1,9 = 1.854, P = 0.206). Furthermore, similarly as in Scharnowski et al. 
(2015), any unspecific effects that are related to task demands should only allow to either 

increase or decrease the confidence level, but it would be difficult to allow bidirectional 

control (Scharnowski et al. 2015). The current paper aims at exploring and explaining the 

dynamics of DecNef neurofeedback training on confidence, therefore we will focus on these 

dynamical aspects.

Before exploring the DecNef effects on confidence, it is also important to analyze the ability 

of participants to induce the target activation patterns in the selected brain regions. The 

overall induction performance, measured as the ratio of successful trials (trials with 

induction likelihood > .5 over total trials), for all ROIs averaged did not show a marked 

learning curve over runs or days of training (Fig. 2A, C). During the DecNef training itself, 

the feedback signal was also given as the average across all four ROIs. Given the 

complicated nature of such induction, it is perhaps unsurprising that, overall, there was a 

mixed success rate in the induction likelihood at the group level (although individual 

variability seemed to be sizeable). Nevertheless, when looking at the best performing ROI 

(that is, the single best performing ROI in each trial, that also had induction likelihood > .5), 

all subjects showed very high success rates (Fig. 2B, D). This in turn indicates that on any 

given trial, at least one ROI was successfully inducing the target pattern. Although the 

monetary signal fed back to participants was based on the average of the four ROIs, because 

the underlying pattern activation was very successful in at least one of the ROIs, probably 

this had a much larger effect in the learning and therefore on the final measurable confidence 

changes.

Behavioral data from the Pre- and Post-Tests show that confidence was differentially 

manipulated by DecNef (Fig. 3). Importantly, the resulting changes in confidence could not 

be attributed to a simple week order effect (two-way ANOVA with repeated measures, non-

significant effects of neurofeedback, F1,9 = 0.370, P = 0.558, and time, F1,9 = 2.834, P = 

0.127, and non-significant interaction, F1,9 = 0.844, P = 0.382, Fig. 4A bottom part - week 

average).

As displayed in Fig. 3A, the confidence change was larger for Up-DecNef than Down-

DecNef, but importantly, the level attained at the end of the first week was almost entirely 
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preserved until the beginning of the second week, in the second session. Lastly, the second 

week effect seemed present but reduced as compared to the first week effect. Thus, order of 

DecNef (Up then Down, or Down then Up) had a large influence on how confidence was 

manipulated. A mixed-effects ANOVA with repeated measures, with within-subjects factor 

time, and between-subjects factors neurofeedback and order, clarified this finding, as it 

resulted in a significant interaction between the three factors (F1,16 = 4.769, P = 0.044). 

Furthermore, the factor time (F1,16 = 4.623, P = 0.047) and the interaction between time and 

neurofeedback (F1,16 = 18.050, P = 0.001) both had significant effect on the dependent 

variable, confidence.

The results at the group level (Fig. 3A) were mirrored at the individual level (Fig. 3B, C). 

Fig. 3B shows that the initial confidence level (t1) varied across participants, but also that 

the group average was the same for both D-U and U-D groups (group D-U, confidence at t1: 

C̄ = 2.011 ± 0.132; group U-D, confidence at t1: C̄ = 2.006 ± 0.130; paired t-test t4 = 0.023, 

P = 0.98). Moreover, changes had a clear common trend across participants. Thus, in Fig. 

3C, data were realigned to the same starting point, centered on zero. In more detail, Fig. 3C 

suggests that 7/10 cases in the Down-DecNef and 9/10 cases in the Up-DecNef showed 

confidence changes in the expected directions. Supposing, as a null hypothesis, that the 

direction of each confidence change occurs at random, the associated probability is then 1/2. 

Assuming that each DecNef session is independent, the cumulative binomial probability to 

obtain 16/20 matches is P(X≥16) = 0.0059. The null hypothesis that increase or decrease in 

confidence after DecNef training occurred at random is thus statistically implausible; 

confidence increased in Up-DecNef weeks, and decreased in Down-DecNef weeks. A 

mixed-effects ANOVA with repeated measures (between-subjects factor of group [D-U and 

U-D] and within-subjects factor of timing [Fig. 3B, t1, t2, t3, and t4]) resulted in a strongly 

significant interaction, F3,24 = 8.650, P < 0.001 (univariate effect). Main effects of factors 

timing, F3,24 = 2.555, P = 0.079, and group, F1,8 = 3.674, P = 0.092, were close to 

significance.

A concept that has been extensively studied in motor learning and, to a lesser extent, in 

perceptual learning, is learning interference. In a classic motor learning interference 

paradigm, Krakauer et al. (Krakauer et al. 1999) showed that learning of another kinematic 

or dynamic model with conflicting sensorimotor mappings interfered with the consolidation 

of previously learned models of the same type. Similarly, in this study, we propose that 

DecNef training also induced an anterograde interference effect, where learning of task B is 

partly prevented by the previous learning of task A. This effect will be more rigorously 

examined later.

To effectively analyze the confidence changes, the two DecNef sessions for the two groups, 

D-U1, D-U2, and U-D1, U-D2, respectively, are presented as differences (Δconfidence, Fig. 

4A). For clarity, D-U1 and D-U2 are the same group (resp. U-D1 and U-D2), and the 

number indicates if the session was D or U (first or second session). As expected, average 

changes were positive for Up- and negative for Down-DecNef: U-D1 data was significantly 

different from zero (one-tailed t-test, t4 = 4.253, P = 0.0067 uncorrected; P = 0.026 corrected 

for multiple comparisons), as well as D-U2 (before multiple comparisons correction, see 

Supplementary Note 1). Both D-U1 and U-D2 were not statistically different from zero (see 
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Supplementary Note 1). The contrast between D-U1 and U-D1 yielded a statistically 

significant difference (one-tailed t-test, t4 = −3.822, P = 0.0094 uncorrected; P = 0.0468 

corrected). This result is of great importance, because in the two instances only the 

neurofeedback sign was different, while all other behavioral schemes were the same, and yet 

different results were obtained. Thus, DecNef purely induced bidirectional confidence 

changes, and these changes were not caused by general effects of monetary rewards or 

repeated exposure to random dot stimuli, which are common experimental components of 

both up and down DecNef. Furthermore, mean differences between U-D1 and U-D2 (one-

tailed t-test, t4 = 4.228, P = 0.0067 uncorrected; P = 0.0402 corrected), D-U2 and U-D1 

(one-tailed t-test, t4 = −3.661, P = 0.0108 uncorrected; P = 0.0431 corrected) yielded 

statistically significant results before and after multiple comparisons correction. It should be 

noted that, although they did not survive a multiple comparisons correction, even the 

differences between D-U1 and D-U2, and D-U2 and U-D2 were initially significant (see 

Supplementary Note 1). Since one could argue that the conditions between each comparison 

are different, because they entail different DecNef directions and therefore assumptions, it is 

noteworthy to see that most of the confidence differences were significantly distinct.

Fig. 4B plots the ratios of the above differences U-D2/D-U1, D-U2/U-D1 and the average of 

the two. Because these values are positive and less than 1, the second week effect was in the 

same direction but smaller in magnitude than the first week effect, an outcome that is likely 

due to anterograde learning interference. The first two values being relatively similar, the 

interference effect did not seem to be dependent upon Up-Down or Down-Up sequence.

Therefore, considering that differences in the first and second week of DecNef are 

quantifiable and can be ascribed to a specific hypothesis, the true Up and Down effects can 

be computed by applying a simple correction. Reduced Up and Down-DecNef effects in the 

second week can be corrected for the first week effect by dividing them by the average ratio 

(Fig. 4C). Both Up and Down effects were statistically significantly different from zero 

(one-tailed t-test, Up-DecNef t9 = 4.390, P = 0.0009; Down-DecNef t9 = −1.876, P = 

0.0467), and they were different from each other (one-tailed t-test, t9 = 4.315, P = 0.001), 

suggesting a specific DecNef effect to neurofeedback signs.

In order to best capture the different components of DecNef effects while accounting for 

both Up- and Down neurofeedback, we fitted a system of nonlinear parametric equations 

with four global parameters (explained in greater detail in the mathematical modeling part of 

the Materials and methods section). The four global parameters were selected in light of the 

summary statistics results displayed in Fig. 5. Global parameters hence were the initial (first 

week) absolute confidence change by Up-DecNef effect (Δ), the ratio of the weaker Down-

DecNef effect compared with that of stronger Up-DecNef effect (ε), anterograde learning 

interference (γ), and the learning persistence between DecNef sessions (α). Importantly, we 

fitted various alternative models, where some of the parameters had fixed values (such as = 1 

or = 0) to account for full effects, or the lack of effects, in order to compare and infer which 

aspects of DecNef were likely to play a significant role in determining the resulting 

confidence changes. Simpler models, that did not assume directionality in confidence 

changes, or other interpretations, included a constant-confidence model, constant-within-

week model, and first-grade polynomial models. In order to compare the various models, we 
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used the corrected (second-order) Akaike Information Criterion (AICc), which allocates 

more importance to the principle of parsimony, and gives higher penalty to more complex 

models (i.e., with larger number of parameters). Indeed, since the dataset is finite, and the 

ratio n/k (number of samples/number of parameters) < 40, AICc is strongly recommended to 

avoid model selection bias (Burnham & Anderson 2002)).

When using AIC (and, by extension, AICc), the best model has the most negative (or lowest) 

score. Absolute values of AICs are not really informative per se, and to effectively compare 

models we use the distance from the best model (ΔAICc), and the likelihood of each model 

being the best model, computed as Akaike weights. Normally, a  means the ith 

model cannot be ruled out and has a conspicuous likelihood of being the best model with a 

different dataset. Accordingly, we computed AICc scores, , and wi (reported in Table 

2). As shown in the table, there are three models that can be considered essentially as good 

as the best model, since the distance between two of them and the most negative AICc is < 

2. Furthermore, three more models had ΔAICc < 6, indicating these had a very low 

likelihood, but nevertheless marginal validity. All other models had distances greater than 10 

from the best model, and importantly, among them simpler models such as constant-

confidence, within-week constant confidence, and first-grade polynomial models all 

performed very poorly in fitting the data. These models with ΔAICc > 10 are sufficiently 

poorer than the best AIC model as to be considered implausible (Burnham & Anderson 

2002).

Since model selection uncertainty exists, with very similar AICc values (ΔAICc < 2 

compared to the most negative AICc), a formal solution is to apply model-averaging, where 

each parameter present in the selected models is estimated according to a weighted average 

based on their corresponding Akaike weights. For model averaging, we used all models for 

which ΔAICc < 2, keeping the estimated parameters in the same initial scale and focusing the 

averaging process on the subset of highly likely models.

Fig. 5A reports individual data, as well as fits of the three best models (ΔAICc < 2, full model 

with 4 global parameters - α, ε, γ, Δ; submodel with γ=0, submodel with α=1), and the 

simplest model, where confidence does not change and is akin to a 1−k model, with the only 

parameter being the confidence group average. As can be deduced from the figure, each 

model provides a good fit, and therefore a high likelihood of being the best one at describing 

the empirical data. Conversely, a simpler model, where confidence is assumed to be 

constant, provides a very poor fit to the data, showing that DecNef was indeed successful in 

inducing confidence changes, and that the no-change model is implausible.

Model-averaged estimates of the 4 parameters, obtained through a cross-validation 

procedure, suggest that all of them are different from zero or one (Fig. 5B), and thus impact 

the effects of DecNef. The delta parameter was 0.37 ([0.25 0.48], 95% confidence interval 

[CI]); thus Up-DecNef on the first week increased confidence by 0.37, or a ~20% absolute 

change in confidence. Because the standard deviation of confidence ratings in the first day of 

DecNef (day 1, Pre-Test) was 0.89, a change in confidence of 0.37 would mean a change of 

~40% in relative terms. Epsilon was −0.36 ([−0.63 −0.08], 95% CI), thus the Down-DecNef 
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effect was opposite in its sign and close to 40% of the magnitude of Up-DecNef. 

Furthermore, it is important to note that the CI for ε did not include 0 and that all three best 

models allowed non-zero ε, meaning that nonlinear modeling formally proved the existence 

of non-zero down effects. Alpha was 0.83 ([0.53 1.13], 95% CI), hence on average less than 

20% of the first week effect was lost during the one-week interval due to memory decay. 

More importantly, CI for α did not include 0 but included 1, indicating that the preservation 

of effects was almost perfect after a one-week delay. Gamma was 0.19 ([−0.16 0.54], 95% 

CI), and thus, due to anterograde learning interference, the second week effect was only 

~20% of that of the first week. CI for γ did not include 1, meaning degraded effects were 

present in the second week, but included 0, indicating the possibility that due to very strong 

learning interference, no learning occurred in the second week. Our nonlinear modeling 

robustly indicates that there exist both Up- and Down-DecNef effects, almost perfect 

preservation of learning effects between sessions one-week apart, and strong anterograde 

learning interference. This was further supported by plotting observed confidence changes 

and model-based estimated changes (Fig. 5C). The two data sets were obtained by 

computing the confidence changes between time points (t2 - t1, t3 - t2, t4 - t3), for each 

participant (10 participants with 3 confidence changes each, 30 data points in total). The 

estimated changes were computed with a leave-two-out cross-validation process (one 

participant per group). The observed and estimated confidence measures indeed correlated 

well (n = 30, Pearson’s r = 0.646, P < 10−3, [0.372 0.816] 95% CI), which supports the 

validity of the parameter estimates. The cross-validated average of the correlation 

coefficients (Rho) ± std in the test runs was 0.705 ± 0.172.

In the second part of the modeling analysis, we considered all data points, and modeled 

individual fits with nonlinear equations with global and local parameters (mixture model). 

This approach is warranted by the results from the global model-averaging, where all four 

parameters have high likelihood of being different from zero or one. This aspect, albeit not 

entirely backed by the confidence intervals (CIs for γ include 0 and CI for α included 1), is 

nevertheless supported by the internal variance of the models: these variances are low, 

indicating high stability within a model’s parameter space. Furthermore, if the models are 

robust and explain the same phenomena in DecNef, parameter estimates should converge to 

similar solutions.

In the mixture model, global parameters were the weaker Down-DecNef effect (ε), the 

learning persistence between DecNef sessions (α), and anterograde learning interference 

(γ), while local parameters were the individual initial absolute confidence change for Up-

DecNef effect (Δi), and the individual initial point of confidence (bi). The model was 

estimated through a cross-validated approach, where each test run was evaluated separately. 

Final estimates are cross-validation averages. Fig. 6A shows the 23 parameter model fit to 

the raw data, and provides further support for Fig. 4 conclusions. Parameter estimate values 

(Fig. 6B) are in good agreement in both modeling instances (Fig. 5B and 6B), underscoring 

the presence and generality of the effects they represent, as well as supporting the robustness 

of the model analyses. As expected, the linear relationship between observed and estimated 

confidence changes was also significant (Fig. 6C, same approach as in Fig. 4C; n = 30, 

Pearson’s r = 0.629, P < 10−3, [0.347 0.806] 95% CI). The average correlation value (Rho) ± 

std across all cross-validation test runs was 0.595 ± 0.388. It is important to notice that both 
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modeling approaches yielded almost identical correlation coefficients. This result 

corroborates the idea that DecNef had bidirectional effects, and that the mixed-modelling 

(global - local parameters) approach could also well describe the various DecNef dynamic 

effects, building upon the results introduced in the previous figure related to the global 

parameters model.

To conclude on the behavioral effects, we present the net DecNef effects, computed by 

averaging, for each manipulation Up- and Down-DecNef separately, the overall mean 

change in confidence as measured in Pre- and Post-test in week-1 and week-2. By utilizing 

the gamma parameter, representing anterograde learning interference, and computed with 

increasingly stringent methods (ratio of week-2/week-1, global model parameter, and mixed 

model parameter estimate), we show that DecNef was effective in both directions (Fig. 7). 

That is, simply discounting the weaker second week effect by correcting (dividing) the 

individual pre- post- confidence change from the second week by the gamma parameter 

indeed leads to a significance level that is statistically relevant for both increase and decrease 

of confidence. Furthermore, the direct relationship between raw data, the method used to 

estimate gamma, and the final estimate of the net DecNef effects can be directly appreciated 

in Fig. 7.

Discussion

We hypothesized that DecNef could be successfully used to induce changes in a meta-

cognitive state (confidence) for two opposing directions and within the same participants. 

Furthermore, if DecNef were based on a learning process in the behavioral dimension 

probed, we expected anterograde learning interference. To directly examine these 

hypotheses, we constructed individual decoders based on multi-voxel pattern activity 

associated with confidence judgements in a visual discrimination task, and participants then 

induced via neurofeedback such multi-voxel activation patterns in two DecNef sessions, i.e., 

one for High Confidence and one for Low Confidence induction. Importantly, each session 

was separated by at least one week, which maximized our chance to capture possible 

learning-maintenance effects relevant for the time-scale in the context of studies about this 

type of training.

Our analyses and modeling results support the idea that confidence changed due to DecNef 

according to the following specific pattern. (1) DecNef was successful bidirectionally, and 

the Up-DecNef effect was more pronounced than Down-DecNef, (2) the acquired 

confidence level at the end of the first week was subjected to only small degradation, (3) 

there existed a strong anterograde interference onto the second week DecNef session by the 

first week DecNef. The consequence was a stronger effect of neurofeedback in the first week 

as compared to the second week.

The anterograde interference in learning that emerges when training participants to induce 

activation patterns that correspond to different (opposite) behavioral variables sequentially is 

important. This effect is remarkable, because it implies that any manipulation through 

DecNef is likely relying on long term changes akin to sensorimotor learning or perceptual 

learning, thus providing additional support to previously reported empirical findings in rt-
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fMRI (Shibata et al. 2011; Megumi et al. 2015; Amano et al. 2016). Specifically, these 

behavioral changes may be deeply ingrained due to the neural operant conditioning that is 

subtending such learning processes.

In sensorimotor and visuomotor learning, a conspicuous literature has explored the effect of 

opposing tasks on the dynamics and modalities of the learning processes (Brashers-Krug et 

al. 1996; Krakauer et al. 1999; Tong et al. 2002; Osu et al. 2004). Both retrograde and 

anterograde mechanisms have been suggested to mediate interference in visuomotor learning 

(Tong et al. 2002; Miall et al. 2004; Krakauer et al. 2005). The vast majority of previous 

studies have addressed interference in learning within short delays (typically, between a few 

minutes and up to 24h–48h), but consistent with our results several studies have reported 

interference effects even after 1 week (Caithness et al. 2004; Krakauer et al. 2005). 

Furthermore, anterograde interference is thought to have substantially larger effects as 

compared to retrograde interference (Sing & Smith 2010). It is therefore not surprising that 

the interference found in this study resulted in a second week effect of only ~20% of the size 

of the first week, a very significant decrease.

An important point to be considered regards how implicit vs. explicit strategies allow 

participants to modulate activation patterns in a specific brain region and in specific 

directions. To the layman, it would seem crucial that knowledge of the manipulation by the 

participant is necessary. Yet, this does not seem to be the case, as reported by recent relevant 

rt-fMRI neurofeedback studies (Shibata et al. 2011; Yoo et al. 2012; Ramot et al. 2016). 

Indeed, because successful induction would always lead to monetary reward, implicit 

strategies may be building upon simpler but deeper mechanisms of reinforcement learning, 

akin to subliminal instrumental conditioning for which awareness does not seem to be 

necessary (Pessiglione et al. 2008) (see also discussion in (Bray et al. 2007)). In a recent 

study, Scharnowski and colleagues (Scharnowski et al. 2015) showed that learned voluntary 

control over brain activation levels in two distinct areas caused characteristic behavioral 

effects that were related to the specific function of each brain region. Although bidirectional 

brain activation manipulation was performed, behavioral changes were reported only in one 

dimension, rather than the bidirectional change reported here. Furthermore, strategies were 

explicitly suggested while successful changes in activation were not rewarded. Thus, these 

aspects indicate that the mechanism in place may be substantially different. It may be 

possible that explicit strategies initially facilitate learning but only lead to behavioral effects 

with a shorter life-time; conversely, reinforcement learning type of approaches, such as ours, 

may be initially more difficult - perhaps due to less resources being allocated. However, as a 

result of the conditioning and available neural resources this type of approach may prove 

more ingrained in the long term memory circuitry and thus show long-term effects (with 

long-term effects in the scale of months reported in (Megumi et al. 2015; Amano et al. 

2016)).

Lastly, the possibility that the effects reported, analyzed and discussed may be accounted for 

by alternative explanations may never be fully discounted. Given the initial generally low 

decoding accuracy, the ability of the reward signal to accurately reflect the likelihood of 

inducing a given activation pattern may be partly impaired. This, together with overlapping 

functions in the selected ROIs (confidence, but also attention, memory), means that the 
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results could be simply interpreted as, for example, a result of increased attention. However, 

this explanation does not seem compatible with the behavioral results that nothing except 

confidence changed. Furthermore, it can be partly refuted by the results of a recent study 

that showed that increased attention counterintuitively led to more conservative biases of 

confidence judgements in visual perception (Rahnev et al. 2011). If attention were 

responsible for the effects on confidence, the pattern of changes would have likely been 

opposite: larger decrease than increase in confidence following Up-DecNef training.

Because it is now known that neurofeedback training goes beyond the simple ROI level and 

affects the connectivity between distant regions (Scheinost et al. 2013; Scharnowski et al. 

2014; Yuan et al. 2014; Ramot et al. 2016), in the future we plan to run further analyses of 

the current dataset. For example, it would be of great interest to investigate the temporal 

changes in connectivity between various brain regions including those involved in the 

training as well as visual areas and reward centers. Considering the confidence dimension, 

exploring what was driving the multivoxel patterns or what was different in terms of 

connectivity and information transmission across areas between Up- and Down-DecNef 

could advance our understanding of these brain processes.

To conclude, we established the causal nature of DecNef. Because bidirectional brain 

manipulation led to bidirectional behavioral change, our results showed that DecNef was 

effective in both increasing and decreasing perceptual confidence. Up and down modulations 

were asymmetrical, suggesting some differential basic neural mechanisms for confidence 

encoding. Once acquired, cancelling out DecNef effects was difficult (only 20% 

cancellation); this possibly requires more days of induction. With such strong anterograde 

interference in the behavioral results, the effects of DecNef may be best understood in terms 

of reinforcement learning, likely akin to sensorimotor learning and perceptual learning. 

These considerations may be particularly relevant from a translational viewpoint and 

indicate that DecNef has great potential for clinical applications, considering only two days 

of training were sufficient for more than 80% of the learned change to be maintained after a 

delay of one week.
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Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Experiment timeline and design. (a) The entire experiment consisted of 6 fMRI scanning 

days grouped into 4 ‘sessions’. The first two days were identical for all participants: a 

retinotopy session to functionally define visual areas, followed by an MVPA session, during 

which participants of both groups performed in a 2-forced choice discrimination task with 

confidence rating. Participants were then randomly assigned to either group D-U or group 

U-D. For the subsequent DecNef sessions (day 3–4 and 5–6), group U-D first underwent 

High Confidence followed by Low Confidence DecNef, while group D-U did the reverse 
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sequence. In order to examine the change in confidence due to DecNef, each DecNef session 

was preceded and followed by a Pre- and Post-test (on the same days), a psychophysical 

assessment using the same behavioral task employed in the MVPA session. (b) In the MVPA 

session, and in Pre- and Post-Tests, each trial started with a fixation cross, followed by a 

noise random dot motion (RDM). The stimulus was then presented, consisting of a coherent 

RDM with either rightward or leftward motion. After a 4 secs delay, participants were 

required to report the direction of motion (left or right) and their confidence in their decision 

of direction during a fixed time window. A trial ended with a 6 secs ITI. Three TRs, starting 

at stimulus presentation onset, were averaged and used for the actual MVPA. (c) Bilateral 

frontoparietal ROIs used for MVPA and DecNef, from a representative participant. Each 

ROI is depicted on an inflated cortical surface for both the right and left hemispheres. IPL: 

inferior parietal lobule, IFS: inferior frontal sulcus, MFS: middle frontal sulcus, MFG: 

middle frontal gyrus. (d) A neurofeedback trial commenced with a visual cue indicating the 

induction period, during which participants were asked to “manipulate, change their brain 

activity in order to maximize the size of the feedback disc and the reward.” Importantly, the 

disc for feedback after the induction period equally needed to be maximized both for up- and 

down- regulation. Induction was followed by a rest period, then the feedback disc was 

presented for 2 secs and a trial ended with a 6 secs ITI. Group D-U: Down- then Up-

DecNef, group U-D: Up- then Down-DecNef; ITI: intertrial interval.
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Fig. 2. 
Individual participant’s success rates for each DecNef session (total, 4). (a–b) Success rate 

for Down-DecNef, with (a) representing the overall induction performance (all 4 ROIs 

averaged), as in the experimental session, while (b) is selective for the best ROI (single ROI 

with highest induction likelihood on a given trial). (c–d) Success rate for Up-DecNef, 

description same as above for Down-DecNef. Individual colors represent single participants. 

Dots represent the ratio of successful trials/total trials in each run.
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Fig. 3. 
Confidence ratings in psychophysical Pre- and Post-Tests. (a) Each group induced both High 

and Low Confidence, in two separate sessions: group D-U with the order Low- then High-

Confidence (Down then Up), and group U-D High- then Low Confidence. Results are color-

coded: purple for single group results of group D-U and green for group U-D. Average 

across groups, representing mere order effect, is depicted in gray, at the bottom, while the 

grand average per condition (High and Low Confidence), is in black, on the right side. It is 

apparent that the confidence changes in the first week strongly influence the confidence level 

in the second week. The Pre- level in the second week remains indeed very close to the 

previous Post- level attained in the first week. Furthermore, neurofeedback in the first week 

seems to have a stronger impact than in the second week, and this holds when comparing 

both High with Low Confidence DecNef. For each bar, n = 5. Error bars represent s.e.m. (b–

c) participants’ individual confidence data with the four measurement timings, organized in 

groups (D-U and U-D), both raw (b) and 0-aligned (c) confidence. In (b) the large black dots 

represent the group mean confidence level at t1. The horizontal dotted line the confidence 

level of 2.0. It is apparent that the two independent groups have almost equal starting points. 

Timings 1 and 2 correspond to Pre- and Post-Test in the first week, respectively; while 

timings 3 and 4 to Pre- and Post-Test in the second week DecNef. The dotted line represents 

the week-long interval between the two sessions (DecNef in week 1 and DecNef in week 2). 

Each colored line represents day-averaged data from one participant (total, n = 10).
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Fig. 4. 
Summary statistics for DecNef effects on confidence. (a) Δ confidence is given by the 

difference [Post-Test - Pre-Test] of confidence average. D-U1 is the confidence difference in 

group D-U, DecNef session 1, D-U2 the confidence distance in group D-U, DecNef session 

2, U-D1 group U-D, DecNef session 1, and U-D2 group U-D, DecNef session 2. Asterisks 

to the left of the slashes represent uncorrected significant differences, while asterisks to the 

right, significant differences after correction for multiple comparisons (* P < 0.05, ** P < 

0.01, *** P < 0.005). (b) Ratios of Δ confidence measured as confidence change in the 

second week divided by the confidence change in the first week, for both Up- and Down-

DecNef. The right column indicates the average of the two ratios, used in the analysis 

displayed in the next panel. (c) Corrected net DecNef effect: the correction is computed by 

dividing the second week effect by the averaged ratios of Δ confidence. This term accounts 

for the anterograde learning interference, decreasing the DecNef effect in the second week. 

Both Up- and Down-DecNef are thus significantly different from zero.
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Fig. 5. 
Confidence changes modeled with nonlinear functions with global parameters. (a) Individual 

and group-modeled data are presented, 0-aligned, with the same color-codes and 

presentation rules as in Fig. 4. Thick black lines represent the three best model fits as 

selected by AICc model comparison. These are, respectively, the model with the most 

negative AICc value, and models having a ΔAICc < 2 from the best model. Empirical data 

from each participant is shown as colored dots. (b) Global parameters estimates resulting 

from model averaging. For each model, based on the ΔAICc, Akaike weights were computed 

(the likelihood of the ith model being the best model). Each parameter was then evaluated as 

the weighted average of single models estimates. Error bars represent the 95% confidence 

intervals, computed from the unconditional standard error. (c) Plot of observed confidence 

changes vs. global model based estimated confidence changes for the test sets in a leave-
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two-out cross-validation (CV) process. Each CV run sees two participants (one for each 

group), left out as test set. The process is repeated in order for each pair of participants to be 

tested (tot. 25 CV runs). In total, there are 30 time points (change between t2 and t1, t3 and 

t2, t4 and t3), 3 for each of the 10 participants, divided between order groups D-U and U-D. 

The correlation between the two measures was significant, supporting the validity of the 

estimated parameters. D-U: Down-Up DecNef order, U-D: Up-Down DecNef order.
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Fig. 6. 
Mixture global and local parameters modeling. The model is based on the parameters 

obtained from the previous model-averaging step using global models. This full model 

accounts for all four major effects of DecNef: Δi, individual differences in Up-DecNef 

confidence change; ε, reduced Down-DecNef effect; α, learning persistence ([1 − memory 

decay] in the week-long interval); γ, anterograde learning interference resulting in reduced 

second week DecNef effect. (a) Thick lines are individual fits, while dots are empirical data. 

Color-codes and presentation rules are the same as in Figs 2 and 4. (b) Model estimates. 

Error bars are standard deviation for Δi, and 95% CI for ε, α, and γ. (c) Plot of observed 

confidence changes vs. mixture model based estimated confidence changes for the test sets 

in a leave-two-out cross-validation (CV) process. Each CV run sees two participants (one for 

each group), left out as test set. The process is repeated in order for each pair of participants 

to be tested (tot. 25 CV runs). There are 30 time points (change between t2 and t1, t3 and t2, 

t4 and t3), 3 for each of the 10 participants, divided between order groups. The correlation 

between the two variables was significant, supporting the high fidelity of the estimated 

parameters in the model with global and local parameters. D-U: Down-Up DecNef order, U-

D: Up-Down DecNef order.
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Fig. 7. 
Net effects of Up- and Down-DecNef trainings. The first bar, labeled “raw”, represents the 

net change in confidence without any correction being applied. The following bars show the 

net change in confidence, with the second week difference between Pre- and Post-tests 

individually corrected by multiplying the difference by 1/γ, the parameter computed in the 

various modeling approaches described in the main text. One-tailed t-test results: + P = 

0.087, * P < 0.05, *** P < 0.005.
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Table 1

Classification of confidence (high vs. low) with permutation testing (n = 1000) for statistical significance 

evaluation. Columns (4) represent the four ROIs of interest, chosen a priori based on previous studies 

highlighting their importance in the computation of confidence judgements. Rows represent individual 

participant’s data, with the first 10 having participated in the full DecNef training program.

IPL IFS MFS MFG

69.5 ± 8.3, P = 0.0010 80.0 ± 8.2, P = 0.0010 61.5 ± 8.4, P = 0.0020 66.0 ± 6.5, P = 0.0010

56.4 ± 7.3, P = 0.0270 58.9 ± 5.3, P = 0.0020 53.2 ± 7.9, P = 0.2038 58.9 ± 7.5, P = 0.0110

65.0 ± 3.1, P = 0.0010 68.9 ± 5.6, P = 0.0010 72.3 ± 3.6, P = 0.0010 71.4 ± 4.9, P = 0.0010

53.2 ± 6.3, P = 0.1968 58.5 ± 5.5, P = 0.0110 55.0 ± 7.0, P = 0.0989 64.2 ± 5.7, P = 0.0010

64.4 ± 6.7, P = 0.0010 61.3 ± 2.9, P = 0.0020 69.4 ± 4.6, P = 0.0010 61.9 ± 6.3, P = 0.0010

55.0 ± 7.5, P = 0.0649 53.3 ± 6.5, P = 0.1738 59.4 ± 7.5, P = 0.0010 61.1 ± 5.0, P = 0.0020

72.6 ± 7.0, P = 0.0010 75.5 ± 4.4, P = 0.0010 63.1 ± 6.5, P = 0.0010 85.5 ± 4.4, P = 0.0010

66.0 ± 6.1, P = 0.0010 69.3 ± 4.9, P = 0.0010 69.7 ± 4.8, P = 0.0010 64.7 ± 5.1, P = 0.0010

69.3 ± 5.8, P = 0.0010 63.8 ± 3.4, P = 0.0010 61.0 ± 3.0, P = 0.0010 69.0 ± 6.1, P = 0.0010

65.0 ± 6.4, P = 0.0010 63.7 ± 5.4, P = 0.0010 67.5 ± 3.3, P = 0.0010 75.0 ± 3.7, P = 0.0010

67.9 ± 6.5, P = 0.0010 68.5 ± 2.7, P = 0.0010 68.5 ± 4.6, P = 0.0010 74.0 ± 4.0, P = 0.0010

57.5 ± 5.0, P = 0.0270 62.5 ± 4.9, P = 0.0010 75.0 ± 6.7, P = 0.0010 67.5 ± 5.3, P = 0.0010

71.4 ± 5.0, P = 0.0010 59.5 ± 7.2, P = 0.0050 67.6 ± 5.3, P = 0.0010 68.6 ± 7.1, P = 0.0010

60.2 ± 5.5, P = 0.0010 51.0 ± 4.0, P = 0.3866 83.8 ± 4.2, P = 0.0010 68.8 ± 5.4, P = 0.0010

74.8 ± 5.2, P = 0.0010 56.4 ± 3.6, P = 0.0350 64.0 ± 6.4, P = 0.0010 62.1 ± 5.1, P = 0.0020

71.7 ± 5.6, P = 0.0010 67.9 ± 6.3, P = 0.0010 62.9 ± 4.1, P = 0.0010 77.5 ± 3.5, P = 0.0010

70.0 ± 9.7, P = 0.0010 65.8 ± 6.5, P = 0.0010 65.0 ± 7.6, P = 0.0010 57.5 ± 5.3, P = 0.0320
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Table 2

AICc analysis. The most negative AICc value indicates the best model fit. ΔAICc < 2 indicate that the current 

model has a high likelihood of being the best model under different circumstances, i.e., a new dataset.

Model (est. parms) Fixed parms AICc Δi wi

k −70.6447 24.3397 0

k −72.1602 22.8242 0

Within-week const. confidence k1 k2 −71.7531 23.2313 0

Polynomial 1st deg. (α1, α2) k −70.5479 24.4365 0

Polynomial 2nd deg. (α1, β1, α2, β2) k1 k2 −61.8877 33.0967 0

Sub-model (Δ) α=1 ε=0 γ=1 −81.6244 13.3600 0.0005

Sub-model (Δ, ε) α=1 γ=1 −91.5062 3.4782 0.0637

Sub-model (Δ, ε, α) γ=1 −89.0275 5.9569 0.0185

Sub-model (Δ, ε, γ) α=0 −77.3589 17.6255 0.0001

Sub-model (Δ, γ, α) ε=0 −91.4285 3.5559 0.0613

Sub-model (Δ, ε, γ) α=1 −94.9402 0.0442 0.3549

Sub-model (Δ, ε, γ, α) −93.0529 1.9315 0.1381

Sub-model (Δ, ε, α) γ=0 −94.9844 0 0.3629
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