Skip to main content
. Author manuscript; available in PMC: 2018 Jan 5.
Published in final edited form as: Neuroimage. 2017 Feb 3;149:323–337. doi: 10.1016/j.neuroimage.2017.01.069

Table 2.

AICc analysis. The most negative AICc value indicates the best model fit. ΔAICc < 2 indicate that the current model has a high likelihood of being the best model under different circumstances, i.e., a new dataset.

Model (est. parms) Fixed parms AICc Δi wi
Const.Confidencemean(X¯1i)
k −70.6447 24.3397 0

Const.Confidence[mean(X¯2i,X¯3i,X¯4i)]
k −72.1602 22.8242 0

Within-week const. confidence k1 k2 −71.7531 23.2313 0
Polynomial 1st deg. (α1, α2) k −70.5479 24.4365 0
Polynomial 2nd deg. (α1, β1, α2, β2) k1 k2 −61.8877 33.0967 0

Sub-model (Δ) α=1 ε=0 γ=1 −81.6244 13.3600 0.0005
Sub-model (Δ, ε) α=1 γ=1 −91.5062 3.4782 0.0637
Sub-model (Δ, ε, α) γ=1 −89.0275 5.9569 0.0185
Sub-model (Δ, ε, γ) α=0 −77.3589 17.6255 0.0001
Sub-model (Δ, γ, α) ε=0 −91.4285 3.5559 0.0613

Sub-model (Δ, ε, γ) α=1 −94.9402 0.0442 0.3549
Sub-model (Δ, ε, γ, α) −93.0529 1.9315 0.1381
Sub-model (Δ, ε, α) γ=0 −94.9844 0 0.3629