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Abstract The unfolded protein response (UPR) is a key signaling system that regulates protein

homeostasis within the endoplasmic reticulum (ER). The primary step in UPR activation is the

detection of misfolded proteins, the mechanism of which is unclear. We have previously suggested

an allosteric mechanism for UPR induction (Carrara et al., 2015) based on qualitative pull-down

assays. Here, we develop an in vitro Förster resonance energy transfer (FRET) UPR induction assay

that quantifies IRE1 luminal domain and BiP association and dissociation upon addition of misfolded

proteins. Using this technique, we reassess our previous observations and extend mechanistic

insight to cover other general ER misfolded protein substrates and their folded native state.

Moreover, we evaluate the key BiP substrate-binding domain mutant V461F. The new experimental

approach significantly enhances the evidence suggesting an allosteric model for UPR induction

upon ER stress.

DOI: https://doi.org/10.7554/eLife.30257.001

Introduction
The unfolded protein response is a key signaling system that regulates protein homeostasis within

the ER. The response is induced when there is an accumulation of misfolded protein—due to

increase in protein load or aberrant protein folding, which results in activation of a cellular program

that aims to restore correctly folded protein levels, in order to ensure a properly functioning ER

(Schneider and Bertolotti, 2015; Wang and Kaufman, 2016; Hetz and Papa, 2017).

A critical step in this process is the initial detection of misfolded proteins that leads to UPR induc-

tion, the molecular mechanism of which is unclear. We have previously reported an allosteric model

for UPR induction (Carrara et al., 2015). Our model was based on the observation that a interaction

between the luminal domain (LD) of the key UPR protein, IRE1, and the ATPase domain of BiP, an

ER Hsp70 chaperone, dissociates upon the binding of CH1 misfolded protein to the canonical BiP

substrate-binding domain. To observe this important step, we utilized a pull-down assay that qualita-

tively measured noncanonical dissociation (Carrara et al., 2015). In the present study, we developed

a Förster resonance energy transfer (FRET) UPR induction assay that quantifies the association and

subsequent dissociation of IRE1 LD with BiP, upon addition of misfolded protein. This new experi-

mental technique reconstitutes in vitro the most crucial mechanistic step in UPR signaling, namely,

the detection of misfolded protein and UPR induction. We reassess our previous observations, and

extend our measurements to other general ER misfolded proteins and their native folded states.

Moreover, we evaluate the important BiP substrate-binding domain mutant BiPV461F, in the presence

of nucleotide and in combination with a mutation that renders BiP ATPase deficient. The new experi-

mental approach significantly enhances the evidence to suggest an allosteric model for UPR induc-

tion upon ER stress.

Kopp et al. eLife 2018;7:e30257. DOI: https://doi.org/10.7554/eLife.30257 1 of 13

RESEARCH ADVANCE

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.7554/eLife.30257.001
https://doi.org/10.7554/eLife.30257
https://creativecommons.org/
https://creativecommons.org/
http://elifesciences.org/
http://elifesciences.org/
http://en.wikipedia.org/wiki/Open_access
http://en.wikipedia.org/wiki/Open_access


Results
In order to generate a quantitative measure of association and dissociation between IRE1 LD and

BiP, we decided to make use of FRET between two fluorophores: cyan fluorescent protein (CFP) and

yellow fluorescent protein (YFP) (Martin et al., 2008; Pollok and Heim, 1999; Felber et al., 2004;

Bajar et al., 2016).

As we have previously measured an interaction between the N-terminal ATPase domain of BiP

and IRE1 LD (Kd = 1.33 mM), and our pull-down assays utilized an N-terminus-positioned affinity tag

that had no impact on interaction (Carrara et al., 2015), we attached fluorescent proteins to the

N-terminus of both constructs, with YFP connected via short linker to BiP, upstream of the ATPase

domain; and similarly, CFP to IRE1 LD (Figure 1A).

Measurement of an interaction using this technique would require excitation of CFP at 430 nm

wavelength, and observation of emission at the longer wavelength of 480 nm. If YFP is in close prox-

imity, approximately 1–10 nm distance (Bajar et al., 2016), then energy transfer will occur between

CFP and YFP, resulting in an emission peak at 530 nm wavelength. This scenario will only occur if

there is a direct interaction between the IRE1 LD and the BiP ATPase domain that brings the fluores-

cent proteins into close proximity (Figure 1B). For our assay, we excited at 430 nm wavelength with

bandwidth 10 nm (430-10 nm), and observed the fluorescence emission intensity at 530 nm wave-

length with a bandwidth of 10 nm (530-10 nm), which was then divided by the emission intensity at

480 nm also with bandwidth 10 nm (480-10 nm) to give a FRET ratio (530-10 nm/480-10nm), and this

was used to measure signal output. This ratio-metric measurement produces less noise then individ-

ual fluorescent intensity observations, and is a more reliable FRET signal measure (Bajar et al.,

2016; Pollok and Heim, 1999; Martin et al., 2008). We mixed CFP-IRE1 LD and YFP-BiP protein in

equimolar ratio, and compared it to non-binding controls. We used two non-binding controls: YFP

with CFP-IRE1 LD, and BiP-YFP (with YFP positioned at the C-terminal, beyond the substrate-binding

domain) with CFP-IRE1 LD.

Upon excitation, we observed a FRET ratio (530-10 nm/480-10nm) of ~0.62 for CFP-IRE1 LD with

YFP-BiP. For our non-binding controls, we measured a FRET ratio of ~0.34 (Figure 1C). The data

show an almost doubling of the FRET ratio for CFP-IRE1 LD with YFP-BiP when compared to non-

binding controls. This represents a significant FRET signal between the two fluorescent proteins

(Pollok and Heim, 1999) that was easily reproducible. Moreover, it indicates a direct interaction

between the IRE1 LD and the BiP ATPase domain that we can quantifiably measure.

We have previously demonstrated that misfolded protein, CH1, binds to the canonical SBP of BiP,

and effects dissociation of BiP from IRE1 LD. We reasoned that the addition of CH1 to our assay

should cause significant reduction in the FRET signal. To this end, we added 10-fold molar excess of

CH1 to CFP-IRE1 LD and YFP-BiP, and measured the FRET signal ratio. To make interpretation eas-

ier, we took the CFP-IRE1 LD with YFP-BiP sample to represent 100% FRET signal, and the non-bind-

ing controls to represent 0% FRET signal. Upon addition of CH1, the FRET signal was reduced

to ~4% (Figure 1D), clearly indicating that the binding of CH1 misfolded protein to the canonical BiP

SBD caused the dissociation of the BiP ATPase domain from the IRE1 LD.

In order to give us a better understanding of CH1’s ability to inhibit the FRET signal, we added

varying concentrations of CH1 to CFP-IRE1 LD and YFP-BiP, and measured the FRET signal. We

found that the addition of CH1 reduced the FRET signal in a dose-dependent fashion (inhibition con-

stant Ki = 0.51 ± 0.01 mM) (Figure 2), with 10-fold molar excess reducing the FRET signal to almost

non-binding control levels. This suggests that a 10-fold molar excess of CH1 was sufficient for almost

complete inhibition of FRET signal.

To confirm that the FRET signal was a consequence of IRE1 binding to the BiP ATPase domain,

we generated YFP-BiP ATPase domain and YFP-BiP SBD proteins (Figure 3A), and measured the

FRET signal upon their interaction with CFP-IRE1 LD. We observed a 100% FRET signal equivalent to

that resulting from full-length YFP-BiP interaction with CFP-IRE1 LD, whereas we measured no FRET

signal when using the SBD (Figure 3B–C). This reaffirms the notion that the ATPase domain of BiP is

necessary for the interaction with IRE1 LD, consistent with microscale thermophoresis (MST) and

pull-down assay measurements (Carrara et al., 2015); furthermore, this interaction has also been

suggested by another study (Todd-Corlett et al., 2007).
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Figure 1. In vitro FRET assay measures noncanonical IRE1 and BiP association and dissociation. (A) Schematic description of constructs used for

the assay, with numbers denoting the amino acid residue of the protein. Both fluorescent proteins, CFP and YFP, are attached N-terminally to the IRE1

LD and BiP proteins, respectively. (B) Schematic representation of the in vitro FRET UPR induction assay, which measures a three-component protein

interaction system. CFP-IRE1 LD will be excited at 430 nm with a bandwidth of 10 nm (430–10 nm), and upon excitement it will emit radiation at the

Figure 1 continued on next page
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In addition, we previously demonstrated that non-canonical IRE1 LD and BiP interaction was inde-

pendent of nucleotides, and hence BiP chaperoning activity. We tested this observation again using

our FRET UPR induction assay. We added 5 mM ATP, ADP and AMP-PNP to CFP-IRE1 LD and YFP-

BiP, and compared these to samples examined in the absence of nucleotide. We observed no signifi-

cant difference upon the addition of various nucleotides, or in the absence of nucleotide, with all

Figure 1 continued

longer wavelength of 480–10 nm. When YFP-BiP is added, IRE1 LD should interact with BiP via its ATPase domain, bringing YFP in close proximity to

CFP, resulting in FRET between the fluorescent proteins and an emission at 530–10 nm. Dissociation of the complex—with loss of FRET signal—should

occur upon addition of misfolded protein, which will bind to BiP substrate-binding domain (SBD) to cause conformational change. The ratio of 530-

10 nm/480-10 nm will be used to measure FRET signal output. (C) Bar graph of the FRET ratio (530–10 nm/480–10 nm) upon excitation at 430–10 nm

wavelength when CFP-IRE1 LD and YFP-BiP were mixed in equimolar amounts. This was compared to non-binding controls, YFP with CFP-IRE1 LD, and

BiP with C-terminally tagged YFP with CFP-IRE1 LD. The FRET ratio was almost doubled upon interaction revealing a clear FRET signal. The negative

controls measure a FRET ratio of ~0.34 due to CFP, which contributes a significant fluorescence emission intensity at 530 nm (also referred to as CFP

leakage) when excited at 430 nm. This allows for greater spectral overlap with YFP making CFP and YFP excellent FRET pairs, but adds to the

background noise. The data are shown as mean ± SD (n = 6). (D) FRET UPR induction assay measurements upon addition of misfolded protein CH1. In

this graph, the FRET signal is represented as a percentage, with 0% observation equivalent to non-binding control and 100% being represented by

CFP-IRE1 LD and YFP-BiP. The addition of CH1 caused IRE1 LD and BiP dissociation, resulting in the loss of FRET signal (mean ± SD; n = 6).

DOI: https://doi.org/10.7554/eLife.30257.002

The following source data is available for figure 1:

Source data 1.

DOI: https://doi.org/10.7554/eLife.30257.003

Figure 2. Addition of misfolded protein CH1 inhibits FRET signal in a dose-dependent fashion. Graph showing the

percentage inhibition of FRET signal as a function of the concentration of CH1 (mean ± SD; n = 3). The binding of

CH1 to the YFP-BiP caused its dissociation from the CFP-IRE1 LD. At 300 mM CH1, a 10-fold molar excess over

both CFP-IRE1 LD and YFP-BiP, the signal was almost completely inhibited. Fitting an exponential (two phase

association, r2 = 0.98) curve to data gave an IC50 of 12.3 ± 1.3 mM, the amount of CH1 required to give 50%

dissociation, with an inhibition constant Ki = 0.51 ± 0.01 mM. The inhibition constant Ki is the binding constant that

relates the interaction between a protein complex with a binding affinity Kd and an inhibiting molecule that is

derived from IC50 (Martin et al., 2008).

DOI: https://doi.org/10.7554/eLife.30257.004

The following source data is available for figure 2:

Source data 1.

DOI: https://doi.org/10.7554/eLife.30257.005
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Figure 3. IRE1 LD interacts with the BiP ATPase domain to produce FRET signal, independent of nucleotides. (A) Diagram detailing the BiP ATPase

and SBD constructs used for measuring the interaction with IRE1 LD. (B) IRE1 LD interacted with the BiP ATPase domain to produce 100% FRET signal

equivalent to that produced by full-length BiP. No FRET signal observed with the SBD (mean ± SD; n = 6). (C) A schematic illustrating that there was no

observable interaction between SBD and IRE1 LD, with no corresponding FRET signal. (D) 5 mM ATP, ADP and AMP-PNP were added to CFP-IRE1 LD

Figure 3 continued on next page
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samples measuring almost 100% FRET signal (Figure 3D). This result again suggests that IRE1 LD–

BiP association is independent of nucleotide binding.

To gain further mechanistic insights, we wanted to address whether other ER misfolded proteins

could cause dissociation of BiP from IRE1; thereby, applying our model to other general ER mis-

folded proteins. A literature survey identified a number of ER misfolded protein substrates that had

been used previously, including a1-antitrypsin (Tsutsui and Wintrode, 2007), RNase A

(Petrova et al., 2008), apolipoprotein (Morrow et al., 1999), and transthyretin mutant D18G

(TTRD18G) (Sato et al., 2007). Interestingly, some of these misfolded protein substrates were gener-

ated from their correctly folded state in vitro. This allowed us to evaluate not only the misfolded pro-

tein, but also the same proteins in their folded native state, thus providing an important control that

we were previously unable to assess using the inherently misfolded protein CH1. We added both

folded and misfolded proteins to our assay, and compared output to 100% FRET signal sample and

0% non-binding control. The addition of folded antitrypsin, RNase A, and apolipoprotein had no

affect on the FRET signal, with all three measurements close to or equal to 100% (Figure 4A–C). The

addition of misfolded versions of the same ER proteins: antitrypsin, RNase A, and apolipoprotein,

reduced the signal to ~6% (Figure 4A–C). For TTRD18G, which lacked a folded control, the FRET sig-

nal was reduced to ~2% (Figure 4—figure supplement 1). First, the data clearly indicate that only

the misfolded state of the ER proteins induce an effect, by binding to canonical BiP SBD, resulting in

IRE1 and BiP dissociation via the ATPase domain, with resultant loss in FRET signal. Second, dissoci-

ation of IRE1 and BiP upon binding of misfolded protein is not specific to CH1 substrate, rather other

ER misfolded proteins can induce dissociation by binding to BiP SBD, consistent with BiP being a

HSP70-type chaperone.

To reinforce these observations, we repeated the experiment utilizing our previously reported

qualitative pull-down assay, in which GST- or His6-tagged BiP forms a complex with IRE1 LD that

was visualized on aSDS-PAGE gel. In the presence of native folded ER proteins—antitrypsin, RNase

A, or apolipoprotein—the interaction between IRE1 LD and BiP remained intact. Upon addition of

misfolded versions of the same ER proteins, the interaction between the IRE1 LD and the ATPase

domain of BiP dissociated, leaving BiP bound to the misfolded protein via its SBD (Figure 4D–F).

Therefore, the qualitative pull-down assay reproduced the observations made with the FRET UPR

induction assay.

V461F is a key mutation of BiP that prevents misfolded substrate engagement (Laufen et al.,

1999; Petrova et al., 2008); it does this by inserting a bulky side chain that sterically hinders access

to the active site of the SBD. Our allosteric model predicts that dissociation of the IRE1 LD and the

ATPase of this mutated BiP will not occur upon addition of misfolded protein, with no subsequent

loss in the FRET signal. We generated YFP-BiPV461F protein, and compared it to YFP-BiPWT by

observing the FRET signal in the absence and presence of misfolded protein. For YFP-BiPWT, we

observed a 95% reduction in the FRET signal upon addition of misfolded protein. By contrast, the

addition of misfolded protein to the YFP-BiPV461F sample showed no significant loss in FRET signal

(Figure 5A–C). Furthermore, to emphasize the point that the interaction between the IRE1 LD and

BiP was not regulated by ATP, but that the primary determinant for dissociation was misfolded pro-

teins, we observed the FRET signal upon the addition of ATP and using BiPV461F in combination with

a mutation that renders BiP deficient in its ATPase activity, T229A (Gaut and Hendershot, 1993;

Petrova et al., 2008). In the presence of 5 mM ATP, both BiPWT and BiPT229A interacted with CFP-

IRE1 LD; moreover, dissociation of complex was caused by addition of misfolded protein in a man-

ner that was independent of ATP (Figure 5—figure supplement 1). However, the double mutant,

BiPV461F, T229A, associated with CFP-IRE1 LD in the presence of ATP, but failed to dissociate upon

the addition of misfolded protein (Figure 5—figure supplement 1). Thus this mutant behaved in

exactly the same way as the SBD single mutant, BiPV461F (Figure 5A–C), indicating again that the

BiP–IRE1 association and dissociation were independent of nucleotides..

Figure 3 continued

and YFP-BiP samples and the FRET signal was analyzed and compared to 100% FRET signal. The addition of nucleotides did not have a significant

impact upon the FRET signal and the interaction between IRE1 and BiP.

DOI: https://doi.org/10.7554/eLife.30257.006
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Figure 4. General ER misfolded proteins, – but not their folded state,cause dissociation. (A–C) Measurements from a FRET UPR induction assay upon

addition of folded and misfolded ER proteins. (A) Antitrypsin. (B) RNase A. (C) Apolipoprotein. All data shown are mean ± SD (n = 6). (D–F) Qualitative

pull-down assays, stained with coomassie brilliant blue, showed IRE1 LD and BiP dissociation upon binding of a misfolded version of an ER protein.

Dissociation did not occur upon the addition of folded proteins. (D) Antitrypsin. (E) RNase A. (F) Apolipoprotein.

Figure 4 continued on next page
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Next, to support our in vitro data, we attempted to measure an interaction in cells using co-

immunoprecipitation. We co-transfected HEK293 cells with IRE1 and either BiP wildtype or BiP

V461F in the absence and presence of ER stress. In the absence of ER stress, we observed an inter-

action both between IRE1 and BiP wildtype and between IRE1 and BiP V461F. Upon addition of ER

stress, however, the interaction between IRE1 and BiP wildtype was significantly reduced, whereas

no loss in interaction was observed with BiP V461F, thus supporting the in vitro FRET data. Taken

together, both the in vitro and cellular data indicate that when BiP forms an interaction with

the IRE1 LD, via its ATPase domain, misfolded proteins can bind to the canonical active site of

the BiP SBD to cause dissociation of BiP, resulting in loss of FRET signal. The BiPV461F mutant,

in which access to the active site is blocked, was unable to interact with misfolded protein and hence

could not effect the dissociation of BiP from IRE1, resulting in no reduction of FRET signal. More-

over, as misfolded protein binding to the BiP substrate-binding site caused BiP ATPase domain to

dissociate from IRE1, an allosteric mechanism is clearly suggested, supporting our model.

Discussion
In the present study, we have developed an in vitro FRET UPR induction assay that quantifies

the association and dissociation of the IRE1 LD from BiP upon ER stress; thereby, describing an

important technical tool for dissecting the UPR induction mechanism that measures a three-compo-

nent interacting system. We extend our observations to cover other general ER misfolded proteins

and make comparisons to these proteins in their native folded state. We also evaluate the key BiP

SBD mutant BiPV461F, in the presence of ATP and in combination with an ATPase-deficient BiP

mutant. The mutant data, along with the observation that ER misfolded proteins (and not the same

proteins in their native folded state) cause dissociation, clearly indicates that misfolded proteins are

being recognized or sensed by the BiP SBD when interacting with the IRE1 LD. Interestingly, the

present data provide evidence that would discount a BiP competition model (Bertolotti et al.,

2000; Kimata et al., 2003; Okamura et al., 2000; Liu et al., 2000). In this model, IRE1 binds to BiP

via the SBD, which is the same site that misfolded proteins bind to BiP. Upon ER stress, misfolded

protein titre BiP off from IRE1 in a competitive fashion, resulting in dimerization and activation of

UPR. This process is ATP dependent (Bertolotti et al., 2000; Kimata et al., 2003), with ATP (and

not necessarily misfolded proteins) being sufficient to cause dissociation of IRE1 and BiP. However,

as the interaction between IRE1 and BiP is mediated via the SBD, this suggests a chaperone-sub-

strate type interaction (Bertolotti et al., 2000; Kimata et al., 2003); this point is further emphasized

by the process being ATP dependent—ATPase activity is an integral part of the Hsp 70 chaperone-

substrate mechanism.

Our in vitro data support an allosteric model (Carrara et al., 2015); whereby, the interaction

between IRE1 and BiP occurs via the ATPase domain of BiP and is independent of nucleotides; this

clearly indicates a UPR signaling productive association and not a chaperone-substrate type interac-

tion. Furthermore, the primary determining factor for dissociation is misfolded protein binding to

the SBD of BiP, which engenders an allosteric change that results in the dissociation of the ATPase

domain of BiPfrom IRE1 (Carrara et al., 2015). Moreover, as binding between IRE1 and BiP, and the

detection of misfolded proteins, involves two different domains of BiP that are coupled by conforma-

tional change, there is no requirement for the association with IRE1 and detection of misfolded pro-

tein to be a competitive process, thus reconciling the sensitive nature of UPR signaling.

Although our model indicates that the binding and release of BiP from IRE1 is independent of

ATPase activity, it could be that nucleotides have influence over other aspects of UPR signaling. It is

known that nucleotides greatly impact BiP conformation, with ADP-bound BiP adopting a

Figure 4 continued

DOI: https://doi.org/10.7554/eLife.30257.007

The following figure supplement is available for figure 4:

Figure supplement 1. TTRD18G affects IRE1 LD and BiP dissociation.

DOI: https://doi.org/10.7554/eLife.30257.008
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Figure 5. BiP V461F mutation prevents dissociation of the IRE1 LD and BiP upon addition of misfolded protein. (A) A schematic illustrating the location

of the V461F mutation within the SBD of BiP, which is represented by a six-sided black ring that denotes the phenylalanine residue. If the mutation

prevents the binding of misfolded protein to BiP, then there will be no allosteric change, and no dissociation of the IRE1–BiP complex, with the FRET

signal remaining intact. (B) The FRET signal was significantly reduced upon addition of misfolded protein to BiPWT–IRE1 LD sample. By contrast, there

Figure 5 continued on next page
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substantially different conformation to that of ATP-bound BiP. Exactly how this relates to UPR signal-

ing is an area of ongoing research.

The results of the current study are also consistent with our previous data from microscale

thermophoresis (MST) and pull-down assays that have shown an interaction between the ATPase

domain (and not the SBD) of BiP and IRE1; this observation has been reported before (Todd-

Corlett et al., 2007). In summary, we develop an in vitro FRET UPR induction assay that quantifies

non-canonical association and dissociation upon ER stress. Furthermore, the data enhance the exper-

imental evidence suggesting an allosteric mechanism for UPR induction.

Materials and methods

Expression and purification of IRE1 LD and BiP fluorescent fusion
proteins
Fluorescent fusion constructs were designed in which the fluorescent proteins CFP and YFP were

attached N-terminally to human IRE1 LD (32-440) and human BiP (28-654), respectively, via a short

15aa linker (GGAGGAGGAGGAGGA). This construct was then cloned into a pGEX 6p1 vector, con-

taining a GST tag and a PreScission protease site, and expressed in Escherichia coli BL21 (DE3) cells

(Agilent, CA, USA). Separately, non-fluorescent human BiP and IRE1 LD proteins were cloned and

expressed with either an N-terminal His6-tag or a GST-tag followed by a PreScission Protease cleav-

age site. His6-tagged proteins were purified by Co2+-NTA affinity using TALON metal affinity resin

(Clontech, CA, USA) in buffer A (50 mM HEPES [pH 8.0], 400 mM NaCl and 10% glycerol) and eluted

in the presence of 250 mM imidazole. GST-tagged proteins were purified using Agarose Glutathione

Affinity resin (ThermoFisher, MA, USA) in buffer B (50 mM HEPES [pH 7.3], 400 mM NaCl, 1 mM

DTT, and 10% glycerol) and eluted in buffer A supplemented with 10 mM reduced glutathione and 1

mM DTT. Initial lysis and purification steps for BiP were supplemented with 5 mM ATP and 10 mM

MgCl2. Unless otherwise specified, the His6-tag or GST-tag was removed by overnight incubation

with PreScission Protease followed by an additional affinity step to remove uncleaved protein. All

proteins were further purified by anion-exchange using a HiTrap Q HP column (GE Healthcare, UK)

and size-exclusion chromatography on a HiLoad 16/60 Superdex 200 column in buffer C (50 mM

HEPES [pH 8.0], 50 mM NaCl, 10 mM KCl, 10% glycerol).

Expression and purification of misfolded proteins
Soluble RNaseA, a1-Anti-trypsin, and Apolipoprotein-AI were purchased from Sigma (MO) and then

unfolded for use in experiments. Folded versions of a1-Anti-trypsin, Apolipoprotein-AI, and RNaseA

were dissolved in buffer C with no other treatment. For misfolded proteins, a1-Anti-trypsin and Apo-

lipoprotein-AI were dissolved in buffer C and heated at 60˚C for 1 hr. RNaseA was incubated in 6 M

Guanidinium-HCL and 0.1 M DTT overnight then dialyzed into buffer C. CH1 protein was expressed

as previously described (Marcinowski et al., 2011). TTR mutant D18G was expressed as a fusion

protein with an N-terminal GST-tag, which was not removed, and purified as described above for

GST-tagged proteins.

FRET assay
FRET assay experiments were carried out using a CLARIOstar microplate reader (BMG Labtech, DE).

Fluorescently labelled proteins were combined in an equimolar ratio in all samples. Folded or

Figure 5 continued

was no loss of FRET signal with BiP V461F. (C) A secondary pull-down assay recapitulates the FRET assay results, with BiPWT fully able to respond to

misfolded protein, whereas BiP V461F was unaffected by the presence of misfolded protein. (D) Various combinations of Flag-IRE1, HA-BiP and HA-BiP

V461F were co-expressed in HEK293 cells and treated with 5 mM tunicamycin to replicate ER stress. Flag-IRE1 was immunoprecipitated with anti-Flag

magnetic resin and then samples were immunoblotted with both Flag and HA antibodies, before and after the addition of ER stress.

DOI: https://doi.org/10.7554/eLife.30257.009

The following figure supplement is available for figure 5:

Figure supplement 1. Misfolded proteins are the primary determinant for dissociation of the IRE1 LD and BiP.

DOI: https://doi.org/10.7554/eLife.30257.010
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misfolded protein was added at 10-fold molar excess to the concentration of the fluorescent pro-

teins, unless the concentration is otherwise specified. The mixture was then diluted with buffer C to

a volume of 160 mL, adjusting the concentration for each of the fluorescent proteins to 30 mM.

Where stated, buffer C was supplemented with 5 mM ATP, ADP, or AMP-PNP and 10 mM MgCl2.

50 mL of sample was loaded into each well of a 384-well microplate (Greiner Bio-one, AT). The sam-

ple was excited at 430–10 nm wavelength, and the fluorescence emission intensity at 530–10 nm

divided by the emission intensity at 480–10 nm (to give a FRET ratio) was used to measure FRET sig-

nal. Experiments were conducted as n = 6 and presented as mean ± SD, unless otherwise stated. To

deduce the inhibition constant Ki by measuring the loss of FRET signal by a tertiary protein, the pro-

tocol described by Martin et al. (2008) was followed using a CH1 concentration ranging from 0.001

mM to 400 mM to calculate IC50 with nonlinear regression performed in graphpad6. The other varia-

bles used for deducing Ki were: initial substrate concentration of 30 mM and Kd = 1.33 mM.

Pull-down assay
All pull-down experiments were conducted in 2 mL gravity flow columns. 75 mL of TALON or Gluta-

thione resin pre-equilibrated with buffer C was incubated with 40 mM BiPHis or BiPGST, respectively.

The resin was washed with 500 mL of buffer C to remove any unbound BiP. Then 50 mL of purified

IRE1 LD at 150 mM was added and the mixture was incubated for 1 hr at room temperature (RT).

The resin was then washed with 500 mL of Buffer C in 125 mL increments. Then 50 mL of 300 mM

folded if applicable and unfolded RNase A, a1-Anti-trypsin, Apolipoprotein-AI, and TTR were added

to the resin and incubated for 1 hr at RT. The resin was washed as previously described with buffer

C, and subsequently re-suspended with 75 mL of buffer. Samples of the re-suspended resin were

analysed on a 4–12% gradient SDS-PAGE gel.

Cell culture and co-immunoprecipitation
Suspension Human Embryonic Kidney cells (Expi293F) were cultured in serum-free Gibco’s Expi293

Expression medium. A day before transfection, 30,000,000 cells (15 ml) were split into 125 ml Erlen-

meyer vented flasks and incubated in 37˚C in 8% CO2 atmosphere. The following day, cells were

diluted to the concentration of 2.5 � 106 cells/ml and co-transfected. DNA containing Flag-IRE1 and

either HA-BiP WT or HA-BiPV461F (which were present in pcDNA 3.1(+) vector) were co-transfected

with ExpiFectamine reagent to a concentration of 15 mg total DNA (1 ug/ml DNA) (ThermoFisher),

according to the manufacturer’s protocol (ThermoFisher). After 48 hr, cells were either harvested or

5 mM tunicamycin was added for 2 hr to produce ER-stressed samples. Next, cells were lysed by

FastPrep-24 5Ghomogenizer/Lysing Matrix D (MP Biomedicals) in 500 ml buffer containing 50 mM

Tris pH 7.5, 150 mM NaCl, 1% digitonin and EDTA-free protease inhibitor cocktail (Sigma). Lysates

were centrifuged (15 min, 20,000xg), diluted and mixed with equilibrated anti-Flag M2 magnetic

beads (Sigma) and incubated at RT for 30 min. Next, magnetic beads were collected by magnet and

washed three times in buffer containing 50 mM Tris pH 7.5, 150 mM NaCl, 0.2% digitonin and 1x

protease inhibitor cocktail. Flag-tagged IRE1 was eluted from beads by competitive elution buffer

composed of 50 mM Tris pH 7.5, 150 mM NaCl, 0.2% digitonin, 1x EDTA-free protease cocktail and

200 ug 3X Flag peptide (Sigma). Eluates were mixed with Laemmli buffer, boiled and run on Tris-Gly-

cine Wedge 10% gel (ThermoFisher).

Immunoblotting
Gels were transferred to nitrocellulose membrane (iBlot2 system, ThermoFisher) and blocked in

TBST buffer plus 5% Marvel dried milk for 1 hr at RT. Next, anti-Flag, 1:1000 (Sigma) and anti-HA,

1:2000 (ThermoFisher) were added to blocking buffer (TBST + 1% milk powder) and incubated over-

night at 4˚C. Next, membranes were washed three times in TBST buffer and incubated with second-

ary antibody in TBST + 2% milk: anti-mouse-HRP, 1:6000 (GE Healthcare). After 1 hr incubation at

RT and three further washes, blots were visualized by Millipore Luminata Crescendo Western HRP

substrate and developed by the ChemiDoc MP gel imaging system (BioRad).
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