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Abstract

Vagus nerve stimulation (VNS) has been used since 1997 for treatment of drug-resistant epilepsy.
More recently, an off-label use of VNS has been explored in animal models and clinical trials for
treatment of a number of conditions involving the innate immune system. The underlying premise
has been the notion of the cholinergic antiinflammatory pathway (CAP), mediated by the vagus
nerves. While the macroanatomic substrate — the vagus nerve — is understood, the physiology of
the pleiotropic VNS effects and the “language” of the vagus nerve, mediated brain-body
communication, remain an enigma. Tackling this kind of enigma is precisely the challenge for and
promise of bioelectronic medicine. We review the state of the art of this emerging field as it
pertains to developing strategies for use of the endogenous CAP to treat inflammation and
infection in various animal models and human clinical trials. This is a systematic PubMed review
for the MeSH terms “vagus nerve stimulation AND inflammation.” We report the diverse profile
of currently used VNS antiinflammatory strategies in animal studies and human clinical trials.
This review provides a foundation and calls for devising systematic and comparable VNS
strategies in animal and human studies for treatment of inflammation. We discuss species-specific
differences in the molecular genetics of cholinergic signaling as a framework to understand the
divergence in VNS effects between species. Brain-mapping initiatives are needed to decode vagus-
carried brain-body communication before hypothesis-driven treatment approaches can be devised.
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INTRODUCTION

Rationale

Objectives

Vagus nerve stimulation (VNS) has been used for treatment of drug-resistant epilepsy since
1997, when the US Food and Drug Administration approved it (1-3). More recently, an off-
label use of this well-tolerated treatment modality has been explored in multiple animal
experimental models and clinical trials for treatment of a number of conditions involving the
innate immune system (4,5). The underlying systemic antiinflammatory mechanism is
mediated by the vagus nerves relaying onto the spleen’s a.7 nicotinic acetylcholine receptor
(a7nAChR) expressing macrophages as part of the cholinergic antiinflammatory pathway
(CAP) (6). While the macroanatomic wiring through the vagus nerve seems clear, the
physiology of the pleiotropic VNS effects and the “language” of the vagus nerve—mediated
brain-body communication remain an enigma. Tackling this kind of enigma is precisely the
challenge for and promise of bioelectronic medicine (7).

We review the state of the art of this emerging field as it pertains to developing strategies to
harness the endogenous CAP via VNS for treatment of inflammation and infection in
various animal models and human clinical trials.

METHODS

Protocol and registration are available online at PROSPERO (http://www.crd.york.ac.uk/
PROSPERO/display_record.asp?ID=CRD42016035733) under the registration number
CRD42016035733.

Eligibility Criteria, Information Sources and Search Strategy

We included any studies listed on PubMed in the English language that met the search term
criteria (vagus nerve stimulation [MeSH terms] AND inflammation [MeSH terms]). All
years up to June 27, 2016, were considered. The results are depicted in Figure 1 (PRISMA
flow diagram). One article was found through Google Scholar when searching for a full-text
version of another paper, Shi et al., Effects of efferent vagus nerve excitation on
inflammatory response in heart tissue in rats with endotoxemia (article in Chinese).

Study selection—All study designs were considered.

Data collection process and data items—\We extracted data on animal model used,
location and site of VNS, frequency, intensity, pulse and stimulation durations.

Risk of bias in individual studies—Our inclusion criteria were very broad. As such,
while the review has high precision, there is also potential for bias from combining studies
in various animal and human trials with acute and chronic experimental designs and
somewhat variable readouts. Aside from actual VNS settings, its effects on inflammation
may vary by species, gender, age, anatomical site, duration of treatment application and time
horizon of readouts (acute versus chronic).
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Summary measures—We addressed the risk of bias by not only providing the VNS
settings used throughout the literature, but also organizing the results by animal species,
including gender whenever possible, VNS treatment duration and resulting effect on
inflammation.

Synthesis of results—All PubMed hits were imported into EndNote software and
reviewed based on the following criteria: animal model, gender, age, VNS site and duration,
frequency, amplitude, intensity and duration of the impulse. If the study was conducted
during a single day (<24 h), it was noted as acute; otherwise it was deemed chronic. Lastly,
the outcome of the VNS was noted as decreasing or increasing inflammation. All data have
been summarized in Table 1.

Study selection and characteristics are summarized in Figure 1 (PRISMA flow diagram).
We identified 290 records, of which 36 were deemed eligible and reviewed.

All studies were conducted in adult subjects (Table 1). In total, 80% of the studies were
conducted in rodents, 19 in rats and nine in mice; 69% of the studies were done in male
adult subjects, and left or right cervical vagus nerve was stimulated. We found a large
variance in VNS settings, with approximately one-third of the studies not reporting the
intensity of the stimulus. A total of 77% of the studies were designed as acute protocols (less
than 24 h VNS treatment) and observed the inflammatory profile for less than 24 h. All
rodent VNS studies except for one resulted in reduction of inflammation (8). Meanwhile,
two of the three human studies did not show an antiinflammatory effect (9,10), while one, a
recent study by Koopman et al., demonstrated /7 vitro antiinflammatory programming
effects in peripheral blood monocytes due to VNS in adult human subjects with no known
immune system dysfunction and in patients with diagnosed rheumatoid arthritis (42). In the
latter, chronic improvement in disease severity was also observed. All studies except two
used VNS treatment before inducing inflammatory response rather than after, to mimic a
clinical scenario.

DISCUSSION

We report the diverse VNS methodological profile reviewing the currently used VNS
antiinflammatory strategies in animal studies and human clinical trials. While tolerance for
VNS is good, apart from its successful use in refractory epilepsy in humans, its
antiinflammatory effects are not supported by the two human studies included in this review
(9,10). Notably, as of July 10, 2016, a search for “vagus nerve stimulation AND
antiinflammatory effects” on clinicaltrials.gov turned up 11 registered studies, four of them
actively recruiting. Seventy studies are listed for “vagus nerve stimulation,” excluding
epilepsy-related research. This is a testament to the high interest and hopes this
nonpharmacologic treatment modality elicits among various fields of medicine and the
relevance of creating and maintaining a uniform reporting standard for VNS.
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The discrepancy between the promising antiinflammatory effects of VNS in animal and
human studies may be due to a lack of basic physiological understanding of the “vagus
code,” that is, how the efferent and afferent signals are encoded in the vagus nerve and how
the information about the various stimuli is represented within the efferent and afferent vagal
pathways. Evidence exists from VNS studies that frequency coding may be an approach by
which to discretely stimulate its antiepileptic (~25 Hz activating vagal afferents) or
antiinflammatory (~5 Hz activating vagal efferents) effects (43). Recently, as proof of
principle, temporal patterning of VNS has been applied to selectively stimulate vagus nerve
fibers, inducing bradycardia (44). A systematic effort to decode communication via the
vagus nerve is needed to devise more hypothesis-driven VNS paradigms that are likely to
lead to dedicated immune-modulatory effects in humans. This represents the promise and
mission of bioelectronic medicine and the National Institutes of Health Brain Research
through Advancing Innovative Neurotechnologies (BRAIN) initiative.

The first step should be a consistent reporting framework for VNS studies. We propose that

such framework should include the variables presented in Table 1 of this review. The lack of
consistency in reporting the VNS paradigms makes it difficult to validate and develop some

of the pioneering work done in this field.

Another reason for the discouraging results in human studies is the male gender bias, which
became apparent when reviewing the animal, mostly rodent, literature.

Furthermore, the myelinated part of the vagus nerve is phylogenetically more recent than the
nonmyelinated; differences among species and during development exist as to the degree of
myelination (45-47). Such functional anatomical differences should have an impact on VNS
results.

Recent work in molecular genetics provides another rich dimension to the complexity of the
vagus code: pre- and post-transcriptional and epigenetic modifications govern the
bioavailability of acetylcholine, the carrier of vagus code within the central and peripheral
nervous systems, as well as in the neuroimmunological synapse, via the species-specific
variants of microRNA (miRNA or miR) and alternative splicing, ultimately resulting in the
complex spatiotemporal landscape of acetylcholine esterase variants (48-51).

Some of these miRNA, for example miR-608, are primate-specific. SNP variants in the
miR-608 binding region modify miR-608—-mediated suppression of acetylcholine esterase,
and consequently activity of the autonomic and central nervous systems in humans (52-54).
This explains our finding that rodent VNS models may not be good predictors of VNS
treatment effects in humans.

Lastly, we found no studies on developing organisms, from perinatal to juvenile age, where
putative salutary effects of VNS would be investigated, although CAP is active as early as in
the late-gestation fetus (55,56). There is a continued need to provide better treatments for
sepsis, severe infection and cardiovascular compromise in early life (55,57).
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CONCLUSION

Overall, this review reveals the nascent stage in which the field of VNS treatment of
inflammation finds itself 16 years since its inception (6). The results of the animal studies
are very promising and call for a theoretical modeling of vagus code accounting for all levels
of organization, from systems biology to systems physiology; a more systematic approach to
experimental design and reporting; consideration of the gender effect on inflammation (58)
developmental stages; and more diverse animal models (to better gauge the putative species
diversity in the vagus code) to ultimately harness the salutary potential of this treatment
modality. Such framework has the potential to lead to the development of truly personalized
VNS regimens. Lastly, concerted and well-funded efforts are required to devise noninvasive
alternatives to VNS to translate this treatment approach into widely used clinical
experimentation, and eventually practice, to benefit patients.
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Approach to systematic review of studies on vagus nerve stimulation to treat inflammation.
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