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Abstract

Vagus nerve stimulation (VNS) has been used since 1997 for treatment of drug-resistant epilepsy. 

More recently, an off-label use of VNS has been explored in animal models and clinical trials for 

treatment of a number of conditions involving the innate immune system. The underlying premise 

has been the notion of the cholinergic antiinflammatory pathway (CAP), mediated by the vagus 

nerves. While the macroanatomic substrate – the vagus nerve – is understood, the physiology of 

the pleiotropic VNS effects and the “language” of the vagus nerve, mediated brain-body 

communication, remain an enigma. Tackling this kind of enigma is precisely the challenge for and 

promise of bioelectronic medicine. We review the state of the art of this emerging field as it 

pertains to developing strategies for use of the endogenous CAP to treat inflammation and 

infection in various animal models and human clinical trials. This is a systematic PubMed review 

for the MeSH terms “vagus nerve stimulation AND inflammation.” We report the diverse profile 

of currently used VNS antiinflammatory strategies in animal studies and human clinical trials. 

This review provides a foundation and calls for devising systematic and comparable VNS 

strategies in animal and human studies for treatment of inflammation. We discuss species-specific 

differences in the molecular genetics of cholinergic signaling as a framework to understand the 

divergence in VNS effects between species. Brain-mapping initiatives are needed to decode vagus-

carried brain-body communication before hypothesis-driven treatment approaches can be devised.
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INTRODUCTION

Rationale

Vagus nerve stimulation (VNS) has been used for treatment of drug-resistant epilepsy since 

1997, when the US Food and Drug Administration approved it (1–3). More recently, an off-

label use of this well-tolerated treatment modality has been explored in multiple animal 

experimental models and clinical trials for treatment of a number of conditions involving the 

innate immune system (4,5). The underlying systemic antiinflammatory mechanism is 

mediated by the vagus nerves relaying onto the spleen’s α7 nicotinic acetylcholine receptor 

(α7nAChR) expressing macrophages as part of the cholinergic antiinflammatory pathway 

(CAP) (6). While the macroanatomic wiring through the vagus nerve seems clear, the 

physiology of the pleiotropic VNS effects and the “language” of the vagus nerve–mediated 

brain-body communication remain an enigma. Tackling this kind of enigma is precisely the 

challenge for and promise of bioelectronic medicine (7).

Objectives

We review the state of the art of this emerging field as it pertains to developing strategies to 

harness the endogenous CAP via VNS for treatment of inflammation and infection in 

various animal models and human clinical trials.

METHODS

Protocol and registration are available online at PROSPERO (http://www.crd.york.ac.uk/

PROSPERO/display_record.asp?ID=CRD42016035733) under the registration number 

CRD42016035733.

Eligibility Criteria, Information Sources and Search Strategy

We included any studies listed on PubMed in the English language that met the search term 

criteria (vagus nerve stimulation [MeSH terms] AND inflammation [MeSH terms]). All 

years up to June 27, 2016, were considered. The results are depicted in Figure 1 (PRISMA 

flow diagram). One article was found through Google Scholar when searching for a full-text 

version of another paper, Shi et al., Effects of efferent vagus nerve excitation on 

inflammatory response in heart tissue in rats with endotoxemia (article in Chinese).

Study selection—All study designs were considered.

Data collection process and data items—We extracted data on animal model used, 

location and site of VNS, frequency, intensity, pulse and stimulation durations.

Risk of bias in individual studies—Our inclusion criteria were very broad. As such, 

while the review has high precision, there is also potential for bias from combining studies 

in various animal and human trials with acute and chronic experimental designs and 

somewhat variable readouts. Aside from actual VNS settings, its effects on inflammation 

may vary by species, gender, age, anatomical site, duration of treatment application and time 

horizon of readouts (acute versus chronic).
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Summary measures—We addressed the risk of bias by not only providing the VNS 

settings used throughout the literature, but also organizing the results by animal species, 

including gender whenever possible, VNS treatment duration and resulting effect on 

inflammation.

Synthesis of results—All PubMed hits were imported into EndNote software and 

reviewed based on the following criteria: animal model, gender, age, VNS site and duration, 

frequency, amplitude, intensity and duration of the impulse. If the study was conducted 

during a single day (<24 h), it was noted as acute; otherwise it was deemed chronic. Lastly, 

the outcome of the VNS was noted as decreasing or increasing inflammation. All data have 

been summarized in Table 1.

RESULTS

Study selection and characteristics are summarized in Figure 1 (PRISMA flow diagram).

We identified 290 records, of which 36 were deemed eligible and reviewed.

All studies were conducted in adult subjects (Table 1). In total, 80% of the studies were 

conducted in rodents, 19 in rats and nine in mice; 69% of the studies were done in male 

adult subjects, and left or right cervical vagus nerve was stimulated. We found a large 

variance in VNS settings, with approximately one-third of the studies not reporting the 

intensity of the stimulus. A total of 77% of the studies were designed as acute protocols (less 

than 24 h VNS treatment) and observed the inflammatory profile for less than 24 h. All 

rodent VNS studies except for one resulted in reduction of inflammation (8). Meanwhile, 

two of the three human studies did not show an antiinflammatory effect (9,10), while one, a 

recent study by Koopman et al., demonstrated in vitro antiinflammatory programming 

effects in peripheral blood monocytes due to VNS in adult human subjects with no known 

immune system dysfunction and in patients with diagnosed rheumatoid arthritis (42). In the 

latter, chronic improvement in disease severity was also observed. All studies except two 

used VNS treatment before inducing inflammatory response rather than after, to mimic a 

clinical scenario.

DISCUSSION

We report the diverse VNS methodological profile reviewing the currently used VNS 

antiinflammatory strategies in animal studies and human clinical trials. While tolerance for 

VNS is good, apart from its successful use in refractory epilepsy in humans, its 

antiinflammatory effects are not supported by the two human studies included in this review 

(9,10). Notably, as of July 10, 2016, a search for “vagus nerve stimulation AND 

antiinflammatory effects” on clinicaltrials.gov turned up 11 registered studies, four of them 

actively recruiting. Seventy studies are listed for “vagus nerve stimulation,” excluding 

epilepsy-related research. This is a testament to the high interest and hopes this 

nonpharmacologic treatment modality elicits among various fields of medicine and the 

relevance of creating and maintaining a uniform reporting standard for VNS.
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The discrepancy between the promising antiinflammatory effects of VNS in animal and 

human studies may be due to a lack of basic physiological understanding of the “vagus 

code,” that is, how the efferent and afferent signals are encoded in the vagus nerve and how 

the information about the various stimuli is represented within the efferent and afferent vagal 

pathways. Evidence exists from VNS studies that frequency coding may be an approach by 

which to discretely stimulate its antiepileptic (~25 Hz activating vagal afferents) or 

antiinflammatory (~5 Hz activating vagal efferents) effects (43). Recently, as proof of 

principle, temporal patterning of VNS has been applied to selectively stimulate vagus nerve 

fibers, inducing bradycardia (44). A systematic effort to decode communication via the 

vagus nerve is needed to devise more hypothesis-driven VNS paradigms that are likely to 

lead to dedicated immune-modulatory effects in humans. This represents the promise and 

mission of bioelectronic medicine and the National Institutes of Health Brain Research 

through Advancing Innovative Neurotechnologies (BRAIN) initiative.

The first step should be a consistent reporting framework for VNS studies. We propose that 

such framework should include the variables presented in Table 1 of this review. The lack of 

consistency in reporting the VNS paradigms makes it difficult to validate and develop some 

of the pioneering work done in this field.

Another reason for the discouraging results in human studies is the male gender bias, which 

became apparent when reviewing the animal, mostly rodent, literature.

Furthermore, the myelinated part of the vagus nerve is phylogenetically more recent than the 

nonmyelinated; differences among species and during development exist as to the degree of 

myelination (45–47). Such functional anatomical differences should have an impact on VNS 

results.

Recent work in molecular genetics provides another rich dimension to the complexity of the 

vagus code: pre- and post-transcriptional and epigenetic modifications govern the 

bioavailability of acetylcholine, the carrier of vagus code within the central and peripheral 

nervous systems, as well as in the neuroimmunological synapse, via the species-specific 

variants of microRNA (miRNA or miR) and alternative splicing, ultimately resulting in the 

complex spatiotemporal landscape of acetylcholine esterase variants (48–51).

Some of these miRNA, for example miR-608, are primate-specific. SNP variants in the 

miR-608 binding region modify miR-608–mediated suppression of acetylcholine esterase, 

and consequently activity of the autonomic and central nervous systems in humans (52–54). 

This explains our finding that rodent VNS models may not be good predictors of VNS 

treatment effects in humans.

Lastly, we found no studies on developing organisms, from perinatal to juvenile age, where 

putative salutary effects of VNS would be investigated, although CAP is active as early as in 

the late-gestation fetus (55,56). There is a continued need to provide better treatments for 

sepsis, severe infection and cardiovascular compromise in early life (55,57).
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CONCLUSION

Overall, this review reveals the nascent stage in which the field of VNS treatment of 

inflammation finds itself 16 years since its inception (6). The results of the animal studies 

are very promising and call for a theoretical modeling of vagus code accounting for all levels 

of organization, from systems biology to systems physiology; a more systematic approach to 

experimental design and reporting; consideration of the gender effect on inflammation (58) 

developmental stages; and more diverse animal models (to better gauge the putative species 

diversity in the vagus code) to ultimately harness the salutary potential of this treatment 

modality. Such framework has the potential to lead to the development of truly personalized 

VNS regimens. Lastly, concerted and well-funded efforts are required to devise noninvasive 

alternatives to VNS to translate this treatment approach into widely used clinical 

experimentation, and eventually practice, to benefit patients.
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Figure 1. 
Approach to systematic review of studies on vagus nerve stimulation to treat inflammation. 

Based on template provided by Preferred Reporting Items for Systematic Reviews and Meta-

Analyses (PRISMA) statement at http://prisma-statement.org.
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