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Summary

Data that have a multilevel structure occur frequently across a range of disciplines, including 

epidemiology, health services research, public health, education and sociology. We describe three 

families of regression models for the analysis of multilevel survival data. First, Cox proportional 

hazards models with mixed effects incorporate cluster-specific random effects that modify the 

baseline hazard function. Second, piecewise exponential survival models partition the duration of 

follow-up into mutually exclusive intervals and fit a model that assumes that the hazard function is 

constant within each interval. This is equivalent to a Poisson regression model that incorporates 

the duration of exposure within each interval. By incorporating cluster-specific random effects, 

generalised linear mixed models can be used to analyse these data. Third, after partitioning the 

duration of follow-up into mutually exclusive intervals, one can use discrete time survival models 

that use a complementary log–log generalised linear model to model the occurrence of the 

outcome of interest within each interval. Random effects can be incorporated to account for 

within-cluster homogeneity in outcomes. We illustrate the application of these methods using data 

consisting of patients hospitalised with a heart attack. We illustrate the application of these 

methods using three statistical programming languages (R, SAS and Stata).
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1 Introduction

Data with a multilevel or hierarchical structure occur frequently in a wide range of research 

disciplines. For instance, in a study of mortality in patients hospitalised with a heart attack, 

subjects are clustered within hospitals, which in turn may be clustered within regions. An 

investigator may be interested in determining the characteristics of patients, hospitals and 

regions that are associated with an increased risk of death following a heart attack. In 
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conventional multilevel data, each level one unit (e.g. patients) is nested in one and only one 

level two unit (e.g. hospitals). The level two units may subsequently be nested in one and 

only one level three unit (e.g. regions). Further levels of clustering or nesting are possible. In 

the current tutorial, we restrict our attention to multilevel data with two levels. However, the 

methods described generalise to settings with more than two levels to the data hierarchy. The 

outcome or response variable is measured at the lowest level of the hierarchy–on the level 

one units, whereas explanatory or predictor variables can be measured on units at any of the 

levels of the hierarchy.

Conventional regression models assume that subjects are independent of one another. 

However, subjects who are nested within the same higher level unit are likely to have 

outcomes that are correlated with one another, thus violating the assumption of independent 

observations. This within-cluster homogeneity may be induced by unmeasured cluster 

characteristics (e.g. hospital culture) that affect the outcome or by unmeasured covariates at 

the subject level (e.g. genetics or dietary practices when subjects are clustered within 

families) that take a similar value for all subjects within the cluster. Multilevel regression 

models allow one to analyse data that have a multilevel structure while accounting for the 

clustering of lower level units within higher level units. In the past two decades, multilevel 

models have moved from being a niche specialty (often requiring specialised stand-alone 

statistical software) to being part of the statistical mainstream (and being able to fit using 

general purpose statistical software programmes).

Survival analysis refers to methods for the analysis of data in which the outcome denotes the 

time to the occurrence of an event of interest. A key feature of survival analysis is that of 

censoring: the event may not have occurred for all subjects prior to the completion of the 

study. Subjects who are event-free at the end of the study are said to be censored. We refer 

the interested reader to several of the classic reference books on survival analysis (Cox and 

Oakes 1984; Kalbfleisch and Prentice 2002; Lawless 1982; Aalen, Borgan and Gjessing 

2008; Mills 2011; Klein and Moeschberger 1997; Therneau and Grambsch 2000; Singer and 

Willett 2003). Of these, only one explicitly describes methods for the analysis of multilevel 

survival data (Singer & Willett, 2003), while three introduce frailty models for the analysis 

of clustered survival data (Therneau & Grambsch, 2000; Mills, 2011; Aalen et al., 2008).

There are a large number of books devoted to issues in the analysis of multilevel data 

(Goldstein, 2011; Raudenbush & Bryk, 2002; Snijders & Bosker, 1999; Hox & Roberts, 

2011; Rabe-Hesketh & Skrondal, 2012a; 2012b). These books describe the concept of 

multilevel data and introduce regression models appropriate for the analysis of such data. 

The primary focus of many of these books is on the analysis of data in which the outcome is 

continuous. The hierarchical linear model (HLM) is introduced as the primary method of 

analysis for multilevel data with continuous outcomes. A secondary focus of a subset of 

these books is on settings with discrete outcomes. The hierarchical generalised linear model 

(HGLM) is introduced for the analysis of multilevel data with discrete outcomes. In applied 

research, time-to-event outcomes occur frequently (Austin et al., 2010). Despite the 

frequency with which survival outcomes occur, many of the comprehensive reference books 

listed earlier omit methods for the analysis of multilevel survival data, while others provide a 

cursory discussion of multilevel survival analysis. Only one, with an emphasis on 
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applications using Stata, provides a more detailed discussion of multilevel survival analysis 

(Rabe-Hesketh & Skrondal, 2012b).

The objective of this article is to describe statistical models for the analysis of multilevel 

survival data. The paper is structured as follows: First, we provide a brief review of HGLMs, 

as these models form the basis for some statistical models for the analysis of multilevel 

survival data. Second, we describe three different methods for the analysis of multilevel 

survival data. Third, we provide a case study illustrating the application of these methods. 

The case study consists of a large cohort of patients hospitalised with acute myocardial 

infarction (AMI or heart attack), who are nested within the hospitals in which they were 

treated.

2 Multilevel Logistic and Poisson Regression Models

In this section, we provide a brief overview of HGLMs for the analysis of multilevel data 

when the outcome is binary or an integer count. The motivation for this review is that two of 

the methods for the analysis of multilevel survival data make use of these models.

We assume that the data have two levels. Let Yij denote the binary or count response 

variable for the i-th subject nested within the j-th cluster. Let X1ij, …, Xpij denote p 
explanatory variables that are measured on this individual (e.g. patient characteristics), while 

Z1j, …, Zqj denote q explanatory variables measured on the j-th cluster (e.g. hospital 

characteristics).

A random intercept logistic regression model incorporates a single random effect, allowing 

the intercept to vary randomly across clusters: logit(Pr(Yij = 1) = α0j + α1 X1ij + · · · + 

αpXpij + β1Z1j + · · ·+βqZqj, where the assumption is made that the random effects follow a 

normal distribution: α0j ~ N(α0, τ2). The random intercept logistic regression model allows 

the probability of the occurrence of the outcome for a reference subject to vary across 

clusters. However, the effects of the individual explanatory variables are constrained to be 

equal across clusters. In a random intercept Poisson regression model for count outcomes, 

the logit of the probability of the occurrence of the event is replaced by log(μij ), where the 

distribution of outcomes for the i-th subject in the j-th cluster is assumed to follow a Poisson 

distribution with mean μij.

The next level of complexity is a random coefficients model, in which the regression 

coefficients for the subject-level covariates are allowed to vary across clusters: logit(Pr(Yij = 

1) = α0j + α1jX1ij + · · · + αpjXpij + β1Z1j + · · · + βqZqj, where it is assumed that 

. Not all of the regression 

coefficients for the subject-level covariates are required to vary across clusters. One can have 

a random coefficients model in which a subset of the regression coefficients for the subject-

level covariates are constrained to be fixed across clusters, while the rest are allowed to vary 

across clusters.
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The reader is referred elsewhere for a more detailed review of multilevel models for use with 

continuous or discrete outcomes (Snijders & Bosker, 1999; Goldstein, 2011).

3 Statistical Models for Multilevel Survival Analysis

We describe three methods for analysing multilevel survival data: frailty models, which are 

Cox proportional hazard models with mixed effects, piecewise exponential (PWE) survival 

models with mixed effects and discrete time survival models with mixed effects. We 

consider each of these methods in turn in the following subsections.

3.1 Frailty Models: Cox Regression Models with Mixed Effects

The Cox proportional hazards regression model is frequently used for the analysis of 

survival data. A brief review of this model is provided in Section 1 of Appendix A in the 

Supporting Information. The inclusion of random effects into a Cox proportional hazards 

model shares many similarities with methods for the analysis for multilevel data with 

continuous, binary or count outcomes. A conventional regression model (in this case the Cox 

proportional hazards model) is enhanced through the incorporation of random effect terms to 

account for within-cluster homogeneity in outcomes.

The term frailty model is used to denote a survival regression model (typically either a Cox 

proportional hazards regression model or a parametric survival model) that incorporates 

random effects. Crowther et al. suggested a differentiation in terminology by using the term 

‘frailty model’ to refer to a survival model with only a random intercept while using the term 

‘mixed effects model’ to refer to a model that can have multiple random effects (Crowther, 

Look and Riley 2014). Thus, a frailty model is a special case of the mixed effects survival 

models. Early frailty models incorporated subject-specific random effects to account for 

unmeasured subject characteristics that influenced the hazard of the occurrence of the 

outcome. These models were then extended to models that incorporate cluster-specific 

random effects to account for within-cluster homogeneity in outcomes. These models have 

been described as shared frailty models, because the same random effect is shared by all 

subjects within the same cluster. In this tutorial article, we focus on the inclusion of random 

effects into the Cox proportional hazard regression model, due to the relative frequency with 

which this model is used. When random effects are incorporated in the Cox model, these 

random effects denote increased or decreased hazard for distinct classes (e.g. clusters such 

as hospitals, schools or workplaces).

Assume that subjects are nested in one of M classes or clusters (e.g. hospitals). A Cox model 

with mixed effects can be formulated as hi (t ) = h0(t ) exp(Xiβ + αj ), where αj denotes the 

random effect associated with the j-th cluster. Rabe-Hesketh and Skrondal use the term 

‘shared frailty’ to denote the exponential of the random effect: exp(αj ) (Rabe-Hesketh & 

Skrondal, 2012b). The random effect can be thought of as a random intercept that modifies 

the linear predictor, while the shared frailty term has a multiplicative effect on the baseline 

hazard function: hi (t ) = h0(t ) exp(αj ) exp(Xj β).

Cox regression models with mixed effects are characterised by the distribution of the shared 

frailty terms. Different distributions have been proposed for the distribution of the shared 
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frailty terms, including the gamma distribution, the log-normal distribution (the frailty terms 

will have a log-normal distribution while the random effects will have a normal distribution), 

positive stable frailty distributions and power variance function distributions (Hougaard, 

2000; Wienke, 2011; Duchateau & Janssen, 2008). The first two appear to be the most 

commonly-used. In the gamma frailty model, the cluster-specific random effects are 

distributed as the logarithms of independent, identically distributed gamma random 

variables, having variance θ. The within-cluster correlation of subjects is . We refer the 

interested reader to comprehensive discussions of frailty models (Wienke, 2011; Hougaard, 

2000; Duchateau & Janssen, 2008).

In conventional HLMs or HGLMs, it is almost always assumed that the random effects 

follow a normal distribution. However, researchers using survival models with frailty terms 

have several distributions from which to select for the distribution of the shared frailty terms. 

There is a paucity of guidance as to how to select between different frailty families. Methods 

for choosing between frailty distributions are reviewed in Section 2 of Appendix A in the 

Supporting Information.

Mixed effect Cox regression models resemble the HGLMs described previously. The cluster-

specific random effect terms have a relative effect on the baseline hazard function. 

Consequently, the relative effect of a given covariate pattern on the baseline hazard function 

varies across clusters. Because of this similarity between HLMs/HGLMs and Cox shared 

frailty models, these models are an attractive approach to fitting survival models to 

multilevel data. As with HLMs/HGLMs, Cox models with mixed effects are not restricted to 

use with data with only one level of clustering. Rondeau et al. use the term ‘nested frailty 

model’ to refer to survival models with random effects in which there are two or more levels 

of clustering (Rondeau, Mazroui & Gonzalez 2012). However, there are some limitations to 

the use of Cox models with mixed effects. First, Cox shared frailty models require the 

assumption that each subject is the member of only one level two unit, thus one cannot 

account for more complex multilevel structures such as multi-membership multilevel data, in 

which some subjects are clustered within more than one level two unit (Therneau & 

Grambsch, 2000). Second, while Cox models with mixed effects can be extended to account 

for multilevel data with more than two levels (e.g. data in which level one units are clustered 

within level two units, which in turn are clustered within level three units), such extensions 

have not been incorporated into many popular statistical software packages.

3.2 Piecewise Exponential Survival Models with Mixed Effects

When using a Cox proportional hazards model, one is freed from the necessity of specifying 

the distribution of the hazard function (or equivalently, from the specifying the distribution 

of event times). In parametric survival models, the analyst is required to make specific 

assumptions about the form of the hazard function. Commonly used parametric survival 

models include the exponential survival model (in which the hazard function is assumed to 

be constant over time: h(t) = λ) and the Weibull survival model (in which the hazard 

function is of the form h(t) = λγtγ−1, with λ and γ denoting the scale and shape parameters, 

respectively).
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The PWE model is a survival model in which the time scale is divided into intervals and the 

hazard function is assumed to be constant within each interval (Allison, 2010). Thus, one 

can define a set of K intervals, defined by K+1 cut points: τ0, τ1, …, τK, (where τ0 = 0 and 

τK = ∞). In interval k, given by [τk−1, τk), the hazard function for a given subject is 

assumed to be constant and is related to the baseline hazard function by the function h(t) = 

λk exp(βX), where λk is the baseline hazard function in the k-th interval. In constructing the 

intervals, Allison suggests that there is some benefit to having approximately equal number 

of events occur in each interval (Allison, 2010). Accordingly, the intervals do not need to be 

of the same length. Alternatively, one can select the intervals using subject matter knowledge 

in such a way that it is reasonable to believe that the hazard is constant within each interval. 

Examples of applications of the PWE model are provided by Breslow (1974), Whitehead 

(1980) and Aitkin et al. (1983). Under certain assumptions, regression coefficients 

equivalent to those obtained from a Cox proportional hazards model can be obtained from a 

survival model in which one assumes that the hazard function is constant between successive 

event times (Breslow, 1974; Laird & Olivier, 1981). Thus, the Cox proportional hazards 

model can be seen as the limiting case of the PWE model.

If the hazard function is constant as a function of time (i.e. λ(t) = λ), then the exponential 

survival model and the Poisson regression model can be used interchangeably (Laird & 

Olivier, 1981). Consequently, the PWE model is equivalent to a Poisson regression model 

(Rodriguez, 2008; Goldstein, 2011). Given survival data consisting of a (possibly censored) 

observed survival time ti for the i-th subject and an event indicator di denoting whether the 

event was observed to occur for the i-th subject (di =1 denoting the event occurred, 0 

otherwise), one can define analogous measures for each duration interval (Rodriguez, 2008). 

Thus tij denotes the survival time for the i-th subject in the j-th interval, and dij is an event 

indicator that takes the value 1 if the i-th subject experienced the event in interval j, and 

takes the value 0 otherwise. A PWE model can fit by treating the event indicators as if they 

were Poisson observations with means μij = λij tij, where λij is the hazard for the i-th 

individual in the j-th interval. In doing so, one would need to incorporate an offset variable 

denoting the logarithm of the time-at-risk during each of the intervals (Crowther et al., 
2012).

As noted earlier, both the theoretical framework and the statistical software are more mature 

for formulating and fitting HLMs and HGLMs. The fact that one can fit a PWE survival 

model using a generalised linear model (i.e. a Poisson regression model) has important 

consequences for fitting multilevel survival models. First, one can incorporate cluster-

specific random intercepts to incorporate within-cluster homogeneity in outcomes. As with 

HLMs and HGLMs, one is not restricted to a two-level data hierarchy, with only one source 

of clustering. Rather, one can develop multilevel models with more than two levels of 

clustering. Second, while the use of Cox models with random effects allows the baseline 

hazard function to vary across clusters, the use of a random coefficients Poisson regression 

model allows the effect of a given covariate to vary across clusters. Random coefficients are 

more easily incorporated using this approach than with the Cox model with mixed effects. 

Third, by using the PWE model, and incorporating random effects, one can use statistical 
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procedures that are available in many popular statistical software packages (e.g. R, SAS and 

Stata).

3.3 Discrete Time Survival Models with Mixed Effects

Discrete time survival models can be used when survival time is measured in discrete values 

(e.g. years to disease incidence). These models use a discrete version of the hazard function. 

Binomial regression models, with a logit, probit or complementary log–log link function can 

be used to model the probability that the event occurred at a specified discrete time point, 

conditional on the fact that it had not yet occurred (Rabe-Hesketh & Skrondal, 2012b). Even 

when survival time is (approximately) continuous, the discrete time survival model can be 

used by dividing survival time into a finite number of discrete intervals. The PWE survival 

model described earlier divided the time scale into a sequence of intervals, under the 

assumption that the hazard function was constant within each of these intervals. In fitting the 

PWE survival model, each subject’s duration of exposure (or at-risk time) during the interval 

is taken into account (as an offset variable). Discrete time survival models use a similar 

approach; however, one simply notes whether or not an event occurred within the given 

interval and disregards each subject’s duration of exposure within the given interval. A 

regression model for binary outcomes can then be used to model the probability of the 

occurrence of an event within each interval. Possible link functions for the generalised linear 

model are the logit link function, the probit link function and complementary log–log link 

function (Rodriguez, 2008; Allison, 2010; Goldstein, 2011). An advantage to the latter is 

that the resultant regression coefficients are identical to those of an underlying proportional 

hazards regression model (Allison, 2010; Rabe-Hesketh & Skrondal, 2012b). Thus, the 

estimated coefficients can be interpreted as having a relative effect on the hazard of the 

occurrence of the event. An advantage to discrete time survival models compared with the 

PWE survival model is that one does not need to make the assumption that the hazard 

function is constant within each interval.

Discrete time survival models can easily incorporate the multilevel structure of the data. 

Because one is fitting an HGLM (a binomial model with either a logit link function or a 

complementary log–log link function), standard statistical methods and software for HGLMs 

can be employed. Detailed discussions of multilevel discrete time models are provided by 

Steele (2011), by Barber et al. (2000) and by Rabe-Hesketh & Skrondal (2012b). As with 

the PWE mixed effects survival model, random coefficients can be readily incorporated by 

including random coefficients in the HGLM that is being fit.

4 Case Study

4.1 Research Question

There were two primary research questions that we sought to address. The first question was 

more general: which patient and hospital characteristics increase the risk of death 

subsequent to hospitalisation for AMI. The second question focused on a specific patient 

characteristic: the presence of cardiogenic shock at hospital arrival (a condition in which the 

heart fails to pump properly, with an ensuing drop in blood pressure, which may lead to a 

loss of patient consciousness). We sought to answer two specific questions related to 

Austin Page 7

Int Stat Rev. Author manuscript; available in PMC 2018 January 05.

C
IH

R
 A

uthor M
anuscript

C
IH

R
 A

uthor M
anuscript

C
IH

R
 A

uthor M
anuscript



cardiogenic shock: (i) To what extent does the presence of cardiogenic shock increase the 

risk of death in patients hospitalised with an AMI? (ii) Does the magnitude of the effect of 

cardiogenic shock on the hazard of death vary across hospitals?

4.2 Data

We illustrate the analysis of multilevel survival data using data from the Ontario Myocardial 

Infarction Database, which contains information on patients hospitalised with a diagnosis of 

AMI at Ontario hospitals between 1992 and 2013. Details on its construction by linking 

different healthcare administrative databases provided elsewhere (Tu, Austin & Naylor 

1999) (the database is updated annually, thus it contains data for years beyond those 

described in the initial description). For our analyses, we used hospital separations 

(separations that occurred either because of patient discharge or of in-hospital death) that 

occurred in the 12-month period between 1 April 2005 and 31 March 2006. For each patient, 

we noted the identity of the hospital to which the patient was admitted. The data have a 

hierarchical structure, with patients nested within hospitals. The study sample consisted of 

16 985 patients treated at 164 hospitals. The sample consisted of unique patients: Due to the 

study inclusion and exclusion criteria, no patient had more than one hospital discharge 

during the 1-year time frame of the study.

Variables were measured on both levels of the hierarchy. Patient-level variables consisted of 

the eleven variables in the Ontario AMI Mortality Prediction model (age, sex, congestive 

heart failure, cardiogenic shock, arrhythmia, pulmonary edema, diabetes mellitus with 

complications, stroke, acute renal disease, chronic renal disease and malignancy) (Tu et al., 
2001). Hospital-level variables consisted of academic teaching hospital (vs non-academic 

hospital), hospital AMI volume in the year prior to the study, and hospital capacity for 

invasive cardiac procedures (categorised as revascularization (percutaneous coronary 

intervention or coronary artery bypass graft surgery) capacity versus cardiac catheterisation 

(coronary angiography) capacity versus no capacity for invasive procedures). The two 

continuous explanatory variables (age and hospital AMI volume) were each centred around 

the sample average for that variable. The variable names reported in the statistical software 

output are described in Section 3 of Appendix A in the Supporting Information.

The patient-level outcome for the case study was the time from hospital admission to the 

occurrence of death due to any cause. Patients were followed for up to 30 days from the time 

of hospital admission and were censored after 30 days of follow-up if they were still alive. 

Death within 30 days of hospital admission occurred for 2 107 (12.4%) patients in the study 

sample.

4.3 Statistical Software

Analyses in our case study used three different statistical software programmes: R (version 

3.0.2), SAS (version 9.3) and Stata (version 13.1). The following R packages were used: 

survival (version 2.38-2), lme4 (version 1.1-7) and coxme (version 2.2-3). Two Stata 

functions, mepoisson and mecloglog, were used that were not available in earlier versions of 

Stata. Statistical software code in R, SAS and Stata is provided in Appendix B in the 

Supporting Information for all of the analyses. Output from some of the analyses is reported 
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in the text; however, to reduce redundancies, some output is reported in Appendix C in the 

Supporting Information.

4.4 Statistical Models for Multilevel Survival Data

4.4.1 Cox models with mixed effects—Both R and SAS allow one to choose between 

two distributions of the shared frailty terms (gamma or log-normal), whereas Stata restricts 

the user to assuming a gamma distribution. Statistical software code for fitting a Cox 

proportional hazards models with mixed effects are described in Statistical software code 1 

through Statistical software code 5 in Appendix B in the Supporting Information. The SAS 

output for a Cox model with mixed effects in which the shared frailty terms follow a log-

normal distribution is reported in Statistical software output 1.

The parameter estimates reported in Statistical software output 1 are log-hazard ratios. 

Exponeniating them produces hazard ratios. Thus, the hazard ratio for cardiogenic shock is 

exp(2.09270) = 8.11. Therefore, the presence of cardiogenic shock increases the hazard of 

death by a factor of eight compared with subjects without cardiogenic shock. In examining 

the output, one observes that, with the exception of pulmonary edema, all patient-level 

characteristics are associated with the hazard of mortality (P < 0.039). This provides an 

answer to the first component of our specific research question.

Increasing patient age, female sex, and the presence of eight of the nine risk factors 

increased the hazard of post-AMI mortality. Increasing hospital volume is associated with a 

decreasing hazard of mortality (P = 0.018). The hazard ratio for an increase of hospital 

volume by 100 patients is equal to exp(100 ×−0.0006368) = 0.94. Thus, an increase in 

hospital volume by 100 patients is associated with a 6% decrease in the rate of patient 

mortality. The effect of the hospital’s academic affiliation and the presence of the capacities 

for invasive procedures are not statistically significantly different from zero (P >0.075). 

These observations provide answers to our first general research question.

The SAS output for the gamma frailty model is reported in Appendix C in the Supporting 

Information, in Statistical software output C1. The estimate of θ, the variance of the frailty 

distribution, was 0.02443. As described earlier,  is an estimate of the within-

cluster correlation of outcomes. Thus, the within-cluster correlation of survival times is 

marginally greater than 0.01. The parameter estimates and levels of statistical significance 

were very similar between the gamma shared frailty model and the log-normal shared frailty 

model estimated using SAS. Output for the log-normal shared frailty model estimated using 

R, the gamma shared frailty model estimated using R and the gamma shared frailty model 

estimated using Stata are reported in Statistical software output C2, C3 and C4, respectively, 

in Appendix C in the Supporting Information. The models fitted using R and SAS were very 

similar to one another. In general, the regression coefficients for the gamma frailty model 

estimated using Stata was very similar to those from the gamma frailty models estimated 

using R or SAS; however, there were a few exceptions where there were meaningful 

differences in the estimated hazard ratios. For instance, in the gamma frailty model 

estimated using SAS, the hazard ratio for shock was 8.12 (= exp(2.09449)), whereas the 

corresponding hazard ratio for the gamma frailty model estimated using Stata was 6.0303. 
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Similarly, there was one variable with a qualitatively different level of statistical significance 

between software packages. The effect of patient sex was statistically significantly different 

from null in the gamma frailty model estimated using both SAS and R (P = 0.025 in both 

packages), whereas the estimated hazard ratio was not statistically significantly different 

from null in the gamma frailty model estimated using Stata (P = 0.160). Apart from this one 

inconsistency, qualitatively similar conclusions about statistical significance were obtained 

from the different statistical software packages.

In R, an alternative to the use of the coxph function is the use of the coxme function from 

the coxme package or the frailty Penal function from the frailtypack package. These 

alternative functions can be used in fitting Cox models with two different sets of random 

effects.

The variation in the hazard and survival functions for a reference subject across hospitals is 

described in Figure 1. A reference patient was a subject all of whose covariates were equal 

to zero (i.e. a male patient of average age, with no comorbidities, admitted to a non-teaching 

hospital with average AMI volume and that had no capacity for invasive cardiac procedures). 

These figures were derived from the frailty model fitted in R that assumed a log-normal 

distribution for the shared frailty distribution. The left panel depicts variation in the hazard 

function for this reference patient across hospitals. The upper two lines represent hospitals 

whose random effects were one and two standard deviations higher than average, the lower 

two lines represent hospitals whose frailties were one and two standard deviations lower 

than average, and the middle one represents an average hospital (with a frailty of zero). The 

right panel depicts the survival curves for a reference patient at these five hospitals. Note that 

the ordering of the curves is reversed in this figure: a hospital with a relatively lower hazard 

of death will have a relatively higher survival function. We observe that the hazard of death 

is greatest in the period immediately after admission and then declines over time. In the right 

panel, we observe meaningful differences in survival between these hospitals. The difference 

in the 30-day survival probabilities between a hospital whose random effect was one 

standard deviation higher than average and a hospital whose random effect was one standard 

deviation lower than average was 0.028. The reciprocal of this difference is equal to 35.7, 

which is equal to the number needed to treat; one would need to move 36 patients from a 

hospital whose random effect was one standard deviation higher to a hospital whose random 

effect was one standard deviation lower to avoid one death within 30 days of hospital 

admission (Altman & Andersen, 1999).

4.4.2 Piecewise exponential model with mixed effects—In consultation with a 

cardiovascular expert, we divided the maximum duration of follow-up into five strata such 

that it would be reasonable to assume that the hazard of death post-AMI was approximately 

constant within each interval. The intervals were as follows: [0,2), [2,5), [5,10), [10,20) and 

[20,30]. For the purposes of the subsequent analyses, we assumed that the hazard of death 

post-AMI was constant within each of these time intervals.

Fitting the PWE model required that the dataset be restructured. The dataset was modified so 

that there was one record corresponding to each of the aforementioned time intervals in 

which the patient was alive. Thus, if a patient died on day 24, the rows of data for this 
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subject would be as follows (note: the following data are purely hypothetical and are used 

for illustrative purposes only):

Id interval start_time end_time at_risk_time event age

1 1 0 2 2 0 65

1 2 2 5 3 0 65

1 3 5 10 5 0 65

1 4 10 20 10 0 65

1 5 20 24 4 1 65

Fitting the PWE model requires creating an offset variable that is equal to the logarithm of 

the duration of exposure within each window. Because survival time was measured in 

integer values of days, there was a non-zero probability that a patient would die at the 

beginning of the interval, resulting in an exposure time of zero and an offset variable that is 

undefined. When this occurred, subjects were defined to have an exposure duration of 0.5 

days (i.e. assuming that they died in the middle of the day) and an offset variable of log(0.5). 

In R, the survSplit function in the survival package can be used to structure the dataset 

appropriately, while in Stata, the stsplit function can be used. In SAS, to the best of our 

knowledge, programming using data steps must be used to create the necessary dataset.

Statistical software code for fitting a PWE mixed effects survival model are described in 

Statistical software code 6 through Statistical software code 8 in Appendix B in the 

Supporting Information. Each software function or procedure has a different default 

estimation method. We specified each function or procedure so that the same estimation 

method was used in each of the three software packages. In Stata, the function xtpoisson 

could have been used in place of the function mepoisson. The former function is restricted to 

settings with two-level multilevel data, while the latter can accommodate data structures 

with more than one level of clustering. Due to the greater flexibility of the mepoisson 

function, we have described its use here. The output from the PWE survival model fit using 

Stata is provided in Statistical software output 2.

Output for the PWE survival model estimated using R and SAS is reported in Statistical 

software output C5 and C6, respectively, in Appendix C in the Supporting Information. 

Estimated regression coefficients and levels of statistical significance are similar across the 

three statistical software packages. In Stata, the estimate of the variance of the random effect 

distribution is 0.0256063, while in SAS and R, the estimated variance of the random effects 

were 0.02578 and 0.02563, respectively. Note that when treating the time interval as a 

categorical variable, SAS chooses the last interval as the reference level for the categorical 

variable, while R and Stata choose the first interval as the reference level for the categorical 

variable. Thus, the estimated intercept and regression coefficients for the non-reference 

levels of the time interval variable differ between the model estimated using SAS and the 

models estimated using R and Stata.

Hazard functions for a reference patient (similar to the one described earlier) for an average 

hospital and for hospitals whose random effect was one or two standard deviations above or 
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below the average are depicted in Figure 2. These figures were based on the results of the 

PWE model fit in R. If the PWE model is fit without an intercept and if indicator variables 

for each of the time intervals are included, then the exponentiated regression coefficient for 

each time interval is the constant hazard within that interval (Rabe-Hesketh & Skrondal, 

2012b). The model described earlier was refitted using this specification to estimate the 

hazard function (results not shown). One notes that the absolute differences in the hazard of 

death between different hospitals decrease as time progresses: the greatest differences in the 

hazard of death between hospitals occurs in the period immediately after hospital admission.

4.4.3 Discrete time mixed effects model—In the discrete time model, we use the 

complementary log–log model to model the occurrence of an event during each time 

interval. The same time intervals were used as in the PWE mixed effect model. A dataset 

appropriate for fitting a conventional survival model would require restructuring in a fashion 

similar to that used for the PWE survival model. Statistical software code for fitting a 

discrete time multilevel survival model are described in Statistical software code 9 through 

Statistical software code 11 in Appendix B in the Supporting Information. As with the PWE 

models earlier, we specified each function or procedure so that the same estimation method 

was used in each of the three software packages. In Stata, the function xtcloglog could have 

been used in place of the function mecloglog. The former function is restricted to 

incorporating one source of clustering (i.e. two level data structures). The output from the R 

analysis is described in Statistical software output 3.

The output for the discrete time mixed effects survival model fit using SAS and Stata is 

reported in Statistical software output C7 and Statistical software output C8, respectively, in 

Appendix C in the Supporting Information. Estimated regression coefficients and level of 

statistical significance for the discrete time survival model were similar between the three 

statistical software packages. The estimated variance of the random effect distribution was 

0.02509, 0.02258 and 0.0250974 when using R, SAS, and Stata, respectively.

Increasing patient age, female sex and the presence of seven of the nine risk factors 

increased the hazard of post-AMI mortality. In all three models, pulmonary edema was not 

associated with the hazard of post-AMI mortality. When the model was fit using SAS, the 

presence of cardiac dysrhythmia was not associated with the hazard of death (P = 0.060 ), 

while it had a statistically significant association in the models estimated in R (P =0.044 ) 

and Stata (P =0.044 ). Of the measured hospital characteristics, only hospital volume of AMI 

patients was associated with a decreased hazard of mortality, while the other hospital 

characteristics did not have a statistically significant association with the hazard of mortality.

4.4.4 Random coefficients models—In the models considered earlier, the effect of 

each individual patient characteristic was constant across hospitals. In random coefficients 

models, the effect of individual covariates is allowed to vary randomly across clusters. We 

illustrated the inclusion of random coefficients by examining whether the effect of 

cardiogenic shock on the rate of subsequent death varied across hospitals. SAS code for 

fitting a random coefficients model when using a discrete time mixed effects survival model 

is described in Statistical software code 12 in Appendix B in the Supporting Information. 

The resultant output from the SAS analysis is described in Statistical software output 4. R 
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code using the coxme function for fitting a Cox model with mixed effects is described in 

Statistical software code 13 in Appendix B in the Supporting Information.

In the above output, more than one random effect covariance parameter is reported. For the 

above model, three variance–covariance terms are reported: 0.03140, −0.06406 and 0.5383. 

The first (0.0314) denotes the variance of the random intercepts across hospitals. The last 

(0.5383) denotes the variance of the random slope for cardiogenic shock across hospitals. 

The second term (−0.06406) denotes the covariance between these two random effects. The 

covariance term is negative, denoting a negative correlation between the hospital-specific 

random intercepts and the hospital-specific random slopes for cardiogenic shock. The 

correlation between random intercepts and slopes is equal to . Thus, 

hospitals that have a higher intercept (increased hazard of death for a reference patient) will 

tend to have a diminished effect of cardiogenic shock on death.

The hazard ratio for cardiogenic shock at an average hospital is exp(2.0756) = 7.97. Thus, at 

an average hospital, the presence of cardiogenic shock increases the rate of death by a factor 

of almost eight. Ninety-five percent of hospitals have a log-hazard ratio for cardiogenic 

shock that lies within the interval . By taking the 

endpoints of this interval to the power e, one concludes that 95 percent of hospitals have a 

hazard ratio for cardiogenic shock that lies in the interval (1.89, 33.58). Thus, while the 

presence of cardiogenic shock increases the risk of death at the large majority of hospitals, 

there is a small minority of hospitals at which its presence is particularly lethal. This 

provides an answer to the second component of our specific research question: the 

magnitude of the effect of cardiogenic shock varies across hospitals.

The output for the Cox model with mixed effects fit using R is reported in Statistical 

software output C9 in Appendix C in the Supporting Information.

5 Discussion

Time-to-event outcomes occur frequently across a wide range of fields of research. 

Multilevel data are common in many of these research fields. While HLMs and HGLMs are 

well known and used frequently for the analysis of multilevel data with continuous or 

discrete outcomes, methods for the analysis of multilevel survival data are less well known. 

The objective of this article is to describe statistical methods for analysing multilevel 

survival data.

We described three different families of models that allow one to fit survival models to 

multilevel data: Cox regression models with mixed effects, PWE models with mixed effects, 

and discrete time survival models with mixed effects. The first approach modifies a Cox 

proportional hazards regression model by incorporating cluster-specific random effects that 

modify the baseline hazard function. The second approach divides follow-up time into a 

finite set of mutually exclusive intervals and fits a survival model that assumes that the 

hazard function is constant within each interval (equivalent to assuming that survival times 

follow an exponential distribution within each interval). This approach makes use of the fact 

that an exponential survival model is equivalent to a Poisson regression model. Thus, one 
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can account for the multilevel structure of the data by fitting a Poisson regression model 

within each time interval and incorporating cluster-specific random effects. The third 

approach is similar to the second. However, rather than taking into account the duration of 

exposure time or at-risk time within each interval, one simply notes whether the subject 

experienced an event within the given interval. Then a complementary log–log generalised 

linear model can be fit. As with the PWE model, cluster-specific random effects can be 

incorporated to account for the multilevel structure of the data.

Relative strengths and limitations of each method are summarised in Table 1. We provide 

some recommendations for applied analysts when choosing between the models. If the data 

consist of a two-level multilevel structure, and one simply wants to account for clustering 

(and possibly to describe the magnitude of the effect of clustering), we recommend that the 

Cox model with random shared frailty terms be used. This method requires weaker 

assumptions than the PWE model. Furthermore, it does not require restructuring the dataset 

and dividing follow-up time into discrete intervals. Such a discretisation process can result in 

a loss of information. Furthermore, when a Cox model with random shared frailty terms is 

fit, one can use the median hazard ratio as a measure of the magnitude of the effect of 

clustering on the hazard of the outcome (Austin et al., 2017). However, several popular 

statistical analysis packages currently appear to be unable to fit a Cox model with random 

frailty terms to data in which there are more than two levels to the data hierarchy. 

Furthermore, the Cox shared frailty model requires that each subject be a member of only 

one level two unit. Thus, one cannot fit this model to multilevel multi-membership data. 

Users of some statistical software packages whose research question requires them to fit 

models with random coefficients (e.g. to examine whether the effect of a given covariate 

varies across clusters) may be required to choose between the PWE and the discrete time 

model because the Cox model with random coefficients currently cannot be fit in all popular 

statistical software packages. Of these two models, the PWE requires the stronger 

assumption that the hazard function is constant within each time interval. However, the PWE 

model accounts for the duration of at-risk time within each time interval, whereas the 

discrete time model simply models whether or not an event occurred during each time 

interval. Thus, an analyst who had data consisting of more than two levels or who wanted to 

fit a model with random coefficients may be required to consider either the PWE model or 

the discrete time model. Strengths and limitations of three popular statistical analysis 

packages (R, SAS and Stata) are described in Section 4 of Appendix A in the Supporting 

Information.

We described three different families of models for the analysis of multilevel survival data: 

Cox proportional hazards regression models with mixed effects, PWE survival models with 

mixed effects and discrete time survival models with mixed effects. While we have 

presented these as three distinct families, they are related to one another. The Cox 

proportional hazards model with gamma frailty is equivalent to the PWE survival model in 

which intervals are defined so that there is one event per interval and that incorporates 

cluster-specific random effects (Rabe-Hesketh & Skrondal, 2012b) (Section 15.9, page 843). 

Similarly, the complementary log–log discrete time survival model is an approximation to 

the PWE survival model. The approximation improves as the intervals become narrower 

(Steele, 2011) (page 5). Consequently, a complementary log–log discrete time survival 
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model with random intercepts will be approximately equivalent to a Cox proportional 

hazards model with log-normal frailty terms.

In the current tutorial, we focused on models that incorporated random effects to account for 

within-cluster homogeneity of outcomes. These methods explicitly model the between-

cluster variability in the hazard of the occurrence of an outcome. We did not discuss 

methods that did not explicitly incorporate cluster-specific random effects for accounting for 

within-cluster homogeneity. Accordingly, our focus was on conditional models, rather than 

on marginal models. When using marginal models with a two-level data structure, one could 

use a robust or sandwich-type variance estimator to account for the clustering of subjects 

(Lin & Wei, 1989). However, this approach can lead to loss of information, as one is not 

explicitly modelling between-cluster variability. An example of a consequence of this is that 

one cannot describe variation in the conditional hazard function across clusters. It is 

important to note that the regression coefficients derived from conditional and marginal 

models have different interpretations. Regression coefficients from the former family have a 

conditional interpretation: an estimated regression coefficient denotes the effect of a 

covariate on the hazard of the occurrence of the outcome conditional on both the random 

effect being fixed or constant and on the other covariates being fixed. For this reason, the 

coefficients are sometimes described as having a cluster-specific interpretation. Regression 

coefficients from a marginal model have a population-average interpretation; an estimated 

regression coefficient denotes the effect of the covariate comparing two random sample of 

subjects such that the two samples differ in the value of the covariate by one unit (and all 

other covariates are fixed) (Therneau & Grambsch, 2000). In general, marginal hazard ratios 

will be closer to the null than conditional hazard ratios (Gail, Wieand & Piantadosi 1984). A 

limitation to the use of marginal models is that it is more difficult to account for clustering 

when the data have more than two levels, whereas such data structures can be readily 

accommodated with conditional survival models.

In the current paper, we have discussed methods for the analysis of multilevel survival data. 

Our descriptions have been set in the context of a two-level data structure (e.g. patients 

nested within hospitals). However, all of the methods can be extended to data in which there 

are more than one level of clustering (e.g. patients nested within physicians who are in turn 

nested within hospitals). When using the PWE survival model with mixed effects or the 

discrete time survival model with mixed effects, methods for fitting HGLMs in major 

statistical software packages permit the inclusion of more than one source of clustering or 

the inclusion of more than one set of random effects. When fitting a multilevel Cox model 

with mixed effects, not all major statistical software packages currently permit the inclusion 

of more than one set of random effects. However, this is possible in R (e.g. when using the 

coxme or frailtypack packages).

Multilevel data structures abound across a wide range of fields of research. Time-to-event 

outcomes occur frequently in many of these fields. Conventional survival models do not 

permit the analyst to account for the loss of independence that arises from the clustering of 

subjects in higher level units. Multilevel survival models permit researchers to make valid 

inferences when examining the effect of both subject characteristics and cluster 

characteristics on the risk of the occurrence of the outcome.
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Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Variation in hospital-specific hazards and survival ( frailty model). SD, standard deviation. 

[Colour figure can be viewed at wileyonlinelibrary.com]
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Figure 2. 
Variation in hazard functions across hospitals (piecewise exponential model). SD, standard 

deviation. [Colour figure can be viewed at wileyonlinelibrary.com]
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Statistical software output 1. 
SAS output for Cox frailty survival model (log-normal frailty distribution)
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Statistical software output 2. 
Stata output for PWE survival model
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Statistical software output 3. 
R output for discrete time mixed effects survival model
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Statistical software output 4. 
SAS output for discrete time mixed effects survival model with random intercept and 

random effect for cardiogenic shock
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Table 1

Strengths and limitation of each statistical model.

Model Strengths Limitations

Cox model with 
mixed effects

• Can easily incorporate shared frailty terms 
using standard software for the Cox model.

• Allows hazard function to vary continuously.

• Familiar to researchers in the 
epidemiological and biomedical literature.

• Random coefficients cannot currently be 
incorporated in some software packages.

• Limited information on how to choose 
between different frailty distributions.

PWE model • Can be fit using software for fitting HGLMs.

• Can easily incorporate random coefficients 
using standard software for HGLMs.

• May be more familiar to researchers in the 
social and behavioural sciences.

• Requires dividing follow-up time into 
discrete intervals with the assumption 
that the hazard function is constant 
within each interval. This may not be a 
realistic assumption in all settings.

• Little research on sensitivity to choice of 
time intervals.

• Dataset must be restructured.

Discrete time model • Can be fit using software for fitting HGLMs.

• Can easily incorporate random coefficients 
using standard software for HGLMs.

• Regression coefficients are identical to those 
of an underlying proportional hazards 
regression model.

• May be more familiar to researchers in the 
social and behavioural sciences.

• Requires dividing follow-up time into 
discrete intervals.

• Does not take the duration of time at-
risk within each interval.

• Little research on sensitivity to choice of 
time intervals.

• Dataset must be restructured.

PWE, piecewise exponential; HGLM, hierarchal generalised linear model.
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