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Abstract

Hyperspectral image classification with a limited number of training samples without loss of

accuracy is desirable, as collecting such data is often expensive and time-consuming. How-

ever, classifiers trained with limited samples usually end up with a large generalization error.

To overcome the said problem, we propose a fuzziness-based active learning framework

(FALF), in which we implement the idea of selecting optimal training samples to enhance

generalization performance for two different kinds of classifiers, discriminative and genera-

tive (e.g. SVM and KNN). The optimal samples are selected by first estimating the boundary

of each class and then calculating the fuzziness-based distance between each sample and

the estimated class boundaries. Those samples that are at smaller distances from the

boundaries and have higher fuzziness are chosen as target candidates for the training set.

Through detailed experimentation on three publically available datasets, we showed that

when trained with the proposed sample selection framework, both classifiers achieved

higher classification accuracy and lower processing time with the small amount of training

data as opposed to the case where the training samples were selected randomly. Our

experiments demonstrate the effectiveness of our proposed method, which equates favor-

ably with the state-of-the-art methods.

Introduction

Remote sensing is a mature field of science and extensively studied to extract the meaningful

information from earth surface or objects of interest based on their radiance acquired by the

given sensors at short or medium distance [1] [2]. One of the types of remote sensing is
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hyperspectral sensing also referred to as “hyperspectral imaging”. Hyperspectral imaging has

been widely employed in real life applications such as pharmaceutical and food process for

quality control and monitoring, forensic (Ink mismatches detection or segmentation in foren-

sic document analysis), industrial, biomedical, and biometric applications such as face detec-

tion and recognition [3]. Additionally, in recent years, hyperspectral imaging has also been

studied in a wide range of urban, environmental, mineral exploration, and security-related

applications.

Nowadays, researchers are broadly studying hyperspectral image classification techniques

for the case of a limited number of training samples, both with and without reducing the

dimensionality of hyperspectral data. In this regard, the recent works [4] [5] [6] [7] [8] demon-

strate that the choice of classification approach is important future research direction. There-

fore, we discuss some of the main supervised and semi-supervised hyperspectral image

classification techniques and their challenges.

Supervised learning techniques, which require class label information, have been widely

studied for hyperspectral image classification [9]; however, these learning models face various

challenges for hyperspectral image classification including but not limited to, high dimension-

ality of hyperspectral data and an insufficient number of labeled training samples for learning

the Model [3] [10]. Collecting a large number of labeled training samples is time-intensive,

challenging, and expensive because the labels of training samples are selected through human-

machine interaction [11].

To cope with the issues that are discussed above, several techniques have been developed.

These include discriminant analysis algorithms with different discriminant functions (e.g.

nearest neighbor, linear and nonlinear functions) [12] [13], feature-mining [14], decision

trees, and subspace-nature approaches [15]. The goal of subspace-nature and feature-mining

approaches is to reduce the high dimensionality of hyperspectral data to better utilize the lim-

ited accessibility of the labeled training samples. The main problem of discriminant analysis is

its sensitivity to the “Hughes phenomenon” [16]. The kernel based methods, like support vec-

tor machines (SVMs), have also been used to deal with the Hughes phenomenon or curse of

dimensionality [17] [18] [19].

To some extent, semi-supervised approaches have addressed the problem of a limited num-

ber of labeled training samples by generating the labels though machine-machine interaction.

The primary assumption of semi-supervised classification methods is that the newly labeled

samples for learning can be generated with a certain degree of confidence from a set of limited

available labeled training samples without considerable cost and efforts [20] [21]. Semi-super-

vised techniques have been significantly improved in recent years. For example, in [22] Bruz-

zone et al. proposed “transductive SVMs”, in [23], Camps-Valls et al. proposed a “graph-based

method to exploit the importance of labeled training samples” and in [24], Velasco-Forero

et al. proposed a “composite kernel in graph-based classification method”. In [25], Tuia et al.

proposed a “semi-supervised SVM using cluster kernels method”, whereas in [26], Li et al.

explained a “semi-supervised approach which uses a spatial-multi-level logistic prior method”.

In [27], Bruzzone et al. proposed a “context sensitive semi-supervised SVM method” and

Munoz-Mari et al. presented two semi-supervised single-class SVM methods in [28]. Their

first technique models the data marginal distribution with graph-Laplacian built with both

labeled and unlabeled training samples, whereas the other technique is used for the modifica-

tion of the SVM cost function, which massively penalizes the errors made when wrongly classi-

fying the samples for the target class. The algorithm proposed in [29] is based on a sample

selection bias problem in contrast to [29], [30] where the authors proposed an SVM with a lin-

ear combination of two kernels (likelihood and base kernels). The works [31] and [32] done by

Rattle, et al. and Munoz-Mari et al. respectively, exploited a similar concept using a neural
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network as the baseline classification algorithm. To generate the land-cover maps, they

adopted a semi-automatic technique using active queries concept.

All the techniques discussed above assume that the labeled training samples are limited in

number, and these methods enlarge the initial training set by efficiently exploiting the unla-

beled samples to address the “ill-posed problem”. However, to achieve the desired results, sev-

eral vital requirements need to be met. For example, the quantity of the generated data should

not be too large such that it may increase the computational complexity, and the samples

should be properly selected to avoid any confusion in correctly classifying the unseen samples.

Above all, the obtained samples and their class labels must be obtained without substantial

cost and time.

Active learning techniques can be used to overcome the above-mentioned issues. In gen-

eral, active learning techniques are referred to as a special subcategory of semi-supervised

learning techniques [33] [34]. Without loss of generality, in active learning, the learning model

actively requests the user for class information. To this end, the most recent developments are

“hybrid active-learning [35]” and “active learning in a single pass-context [36]”, which com-

bine the concepts of adaptive and incremental learning from the field of traditional and online

machine-learning. These breakthroughs have resulted in a significant number of different

active-learning methods such as reported in [11] [26] [33] [36] [37] [38] [49] [50] [51] [52]

[53].

In general, the additional labeled samples are selected randomly or by using some informa-

tion criteria or source of information to query the samples and their class information. Ran-

dom selection of the training samples is more-often subjective and tends to bring redundancy

into the classifiers. Furthermore, it reduces the generalization performance of the classifiers.

Moreover, the number of samples required to learn a model can be much lower than the num-

ber of used samples. In such scenarios, there is a risk that the learning model may get over-

whelmed because of the uninformative samples queried by the learning model.

To this end, in this work, an active learning framework using a single sample view critical-

class-oriented query is proposed for hyperspectral image classification. We call this scheme

fuzziness-based active learning framework (FALF). In FALF, the classifier comes with an inte-

grated data acquisition module that ranks unlabeled samples based on their confidence for the

future query that has the maximum learning utility. Thus, the proposed framework aims to

achieve the maximum potential of the learning model using both labeled and unlabeled data,

whereas the amount of training data can be kept to a minimum by focusing only on the most

informative training samples. This process leads to a better utilization of information in the

data, while considerably minimizing the cost of labeled data collection and improving the gen-

eralization performance of the classifiers.

The primary goal of FALF is to focus on selecting difficult samples for the hyperspectral

classification task. In conjunction with “Discriminative” and “Generative” classifiers, hardly

predicted sample pairs are first identified by using the instability of classification boundary. A

category level guidance for which sample should be queried next is then provided to the active

querier. Samples with higher fuzziness and lower distance to the class boundaries are consid-

ered as the difficult samples and are queried first. This strategy of identifying the most infor-

mative samples is based on the hypothesis that, the samples that are far from class boundaries

have a lower risk of being misclassified as compared to the samples that are closer. Moreover,

two selection approaches are implemented and compared. The first approach randomly selects

samples based on their entire fuzziness magnitude; whereas the second approach incorporates

only the hardly predicted samples from higher fuzziness magnitude group.

These methods are developed for a single sample-based critical class query strategy. The

experiments are conducted on both AVIRIS and ROSIS-03 hyperspectral data sets.

Fuzziness-based active learning framework for hyperspectral image classification
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Classification performance was superior to the state-of-the-art active learning methods. It is

worth mentioning that the proposed framework is a two-fold process in which learning is first

done in a fully supervised fashion, and then semi-supervised learning is used to select the

appropriate candidates for the training set. Furthermore, traditional active learning methodol-

ogies add new samples to the training data with their original labels, whereas in the proposed

framework, the new samples are added in a semi-supervised fashion with their predicted class

labels.

To summarize, the primary contributions of our work are as follows:

• Designing and implementing a new fuzziness-based active learning framework to select the

optimal training samples to enhance the classifier’s generalization performance for hyper-

spectral image classification.

• Validation of the effectiveness of the proposed framework for two different kinds of classifi-

ers on three publicly available datasets (both AVIRIS and ROSIS-03 datasets).

• Investigating the potential of the proposed framework to reduce the classification time while

maintaining a good accuracy under high dimensionality.

Materials and methods

The main idea of this work is to employ and retain the relationship between misclassification

rate of boundary samples and fuzziness for each class to select samples for the training set. The

important steps of our proposed algorithm are summarized below:

1. Randomly select 5% of labeled training samples from each class.

2. Train Support Vector Machine (SVM) and Fuzzy K-Nearest Neighbor (FKNN) on ran-

domly selected samples and test them for the rest of the samples.

3. Record the fuzzy membership matrix.

4. Calculate the fuzziness from fuzzy membership matrix for each sample and estimate the

distance between the sample and the boundary.

5. Based on the threshold of fuzziness magnitude, divide the samples into two subgroups as

lower and higher fuzziness magnitude groups.

6. Determine the correct rate of classification and misclassification (i.e., TP and FP) for each

class in both groups individually.

7. (A): Pick 5% of the hardest correctly predicted samples, i.e. the samples with higher fuzzi-

ness and lower distance to the boundary. OR (B): Randomly select 5% of the correctly pre-

dicted samples, without taking into account their fuzziness and distance from the class

boundary. (Step 5), i.e. the samples with high/lower fuzziness and lower/higher distance to

the boundary.

8. Retrain the classifiers after adding the selected samples back into the original training set

using step 7 (A) or (B), individually, and predict the rest of the samples and determine the

accuracy respectively.

It is to be noted that step 7 (A) and (B) are two alternative ways to select the samples. In

general active learning approaches, the samples are selected through step 7 (B), but we propose

to select the samples using step 7 (A) and compare the accuracies obtained by both ways in

experimental and results section.

Fuzziness-based active learning framework for hyperspectral image classification
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The intuition behind selecting the hardest correctly predicted samples using step 7 (A) is

that such samples contain the most information about boundaries rather than the samples

with lower fuzziness in magnitude. The threshold value between lower and higher fuzziness is

set by trial and error. The proposed methodology significantly boosts the performance of the

classifier for hyperspectral image classification not only in terms of accuracies but also reduce

the classification time.

Here we will theoretically explain the procedure for estimating the boundary of each class,

and then how to build a relation between the samples and the estimated boundaries to select

the target samples.

Boundary extraction

Generally, there are two kinds of classifiers: those that use some specific formula to estimate

class boundaries (discriminative), and others that use some distribution for the same task (gen-

erative). For example, [39] [40] [41] used locus approximation on some sample distributions

to estimate the class boundary; whereas [42] used an analytical formula. Fuzzy K-Nearest

Neighbors (FKNN’s) and Support Vector Machines (SVM’s) are two representatives of the

aforementioned types.

Before we discuss the boundary extraction process for both classifiers, it is helpful to under-

stand the concept of a fuzzy membership function, because we seek the output of each classifier

in the form of fuzzy membership grades.

Memberships function

Let us assume a set of N sample vectors {r1, r2, r3, . . ., rN}, and a fuzzy partition of these N sam-

ple vectors represents each sample vector’s degree of membership to each of the C classes. The

fuzzy C partitions have certain characteristics as defined below:

PC
ði¼1Þ

mij ¼ 1

and

0 <
PN
ðj¼1Þ

mij < N;

where μij 2 [0, 1], and μij = μi(rj) is a function that represents the membership (a value in
[0, 1]) for the jth sample rj, to the ith partition, i 2 1, 2, 3, . . ., C, and j 2 1, 2, 3, . . ., N.

Support Vector Machine (SVM)

SVM aims to find the optimal hyperplane according to the maximization of the margin on the

training data. In SVM, data is mapped from the input space into a high dimensional feature

space using an implicit function; such mapping is directly associated with a kernel function

Kðri; rjÞ, which satisfies Kðri; rjÞ ¼< φðriÞ;φðrjÞ >. In the kernel function the terms ri and rj

denotes the ith and jth training samples respectively. The mathematical hypothesis of SVM is

given by:

f ðrÞ ¼ sign
XN

i¼1

ai ci K ri; rj

� �
þ b

 !

ð1Þ

In above equation ci is the ith class label, b and αi are unknown parameters which are deter-

mined by quadratic programming. Furthermore, αi is a vector of non-negative Lagrange mul-

tipliers; therefore, the solution vector αi is sparse and the samples ri which correspond to

Fuzziness-based active learning framework for hyperspectral image classification
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nonzero αi are called support vectors. Thus, the samples ri corresponding to αi = 0 have no

contribution to the construction of the optimal hyperplane. From the literature, one can find

several extensions of SVM [42] and open tools such as LIBSVM [43] which has produced

acceptable performance in hyperspectral image classification. As we explained, SVM has limi-

tations in training using a large number of samples in terms of time and computations. In

order to cope with these difficulties, we can take advantage of fuzzy class membership to filter

the samples based on fuzziness magnitude. In this work, we use the class membership as

expressed in [44].

Fuzzy K-Nearest Neighbors (FKNN)

FKNN produces the output as a vector of class memberships where each component of the

sample vector strictly belongs to the closed interval [0, 1]. If the component of a sample vector

is equal to 0 or 1, then the algorithm behaves like a common KNN. FKNN search is similar to

the traditional KNN search. In traditional KNN, each sample can only belong to one class,

which is the majority class in KNN search, whereas in FKNN, a sample can belong to multiple

classes with different membership degrees associated with these classes. FKNN can be summa-

rized in the following steps:

1. First find K nearest neighbors rj, j 2 1, 2, 3, . . .., K, of the given sample r using Euclidean

distance function from the set of the samples.

2. Evaluate the membership function values for each class. FKNN obtains the membership of

a sample as:

miðrÞ ¼
PK

j¼1
miðrjÞk r � rj k

� 2
ðm� 1Þ

PK
j¼1
k r � rj k

� 2
ðm� 1Þ

ð2Þ

In the above equation kr − rjk is the Euclidean distance and μi(rj) is the membership value

of the point rj for the ith class. The parameter m controls the effective magnitude of the dis-

tance of the prototype neighbors from the sample under process [40]. The value of m can

also be updated through cross-validation along with the value of K, where K is the number

of neighbors.

3. The class of sample rj is chosen by the given formula:

CðrÞ ¼ argmaxiðmiðrÞÞ ð3Þ

where C is the total number of classes; therefore the decision boundary is locus expressed

by (4), where m�i is the permutation of μi in decreasing order.

rjm�
ði;:::;CÞðrÞ ¼ m�

ðj;:::;CÞðrÞ; i 6¼ j

rjmiðrÞ ¼ mjðrÞ ¼ 0:5 ð4Þ

Based on the two different classifiers’ boundary extraction process as discussed above, we

can conclude that the estimated class boundary strongly depends on the criteria of classifica-

tion algorithm even for identical training samples. The discussion of FKNN indicates that the

boundary extraction process cannot be explicitly expressed the same way as that of the for-

mula-based classification methods, such as SVM. Thus, it is not easy to identify whether a

training sample is far from or close to the classification boundary, especially when the

Fuzziness-based active learning framework for hyperspectral image classification
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classification boundary cannot be expressed as a mathematical formula. Therefore, the differ-

ence between the actual and found classification boundary is considered as an important index

for evaluating the generalization capability of any classification technique.

In this work, we initialize the learning model with a specific percentage of randomly

selected samples, but one can control the size of samples by adjusting neighbors when assign-

ing fuzzy class memberships to the training samples ri; therefore, the training set is mapped to

a fuzzy training sample as (r(1,. . ..,N), l(1,. . .,N), μ(1,. . ..,N)), where each membership value is

assigned independently.

Fuzziness relation between the samples and boundary

In the above sections, we describe the process to extract the boundary of each class, but now

the problem at hand is how to identify whether the said sample is close or away from the class

boundary. In order to cope with the said problem, let us assume the output of a classifier for a

specific sample is a fuzzy vector mT
ð1;2;3;:::;nÞ in which the component should be a specific number

within the closed interval [0, 1]. The set of these numbers represent the fuzzy membership

grades of the individual sample fit into the corresponding class.

For readers’ ease, let us consider the distance between the class boundary and the sample

with output (μi, μj)
T can be estimated using Eq (5), which we will further incorporate with

fuzziness properties. The said phenomenon is explained in the form of the corollary;

jmi � 0:5j þ jmj � 0:5j ð5Þ

However, for better understanding, it is important to explain the concept of fuzziness.

Fuzziness properties. Consider a mapping R to the closed interval [0, 1] which is a fuzzy

set on R and the mapping is denoted as F(R). The fuzziness from the fuzzy membership set can

be calculated as E: F(R)! [0, 1] or generally it can be expressed as E: [0, 1]R! R+, which satis-

fies the following axioms as defined in [39] [45] [46]:

1. E(μ) = 0 if and only if μ is a crisp set,

2. E(μ) attains its maximum value if and only if μ(r) = 0.5 for all r 2 R,

3. if μ ≼ σ then E(μ)≽ E(σ), where μ≼ σ,min(0.5, μ(r))�min(0.5, σ(r) and max(0.5, μ(r))

�max(0.5, σ(r),

4. EðmÞ ¼ Eð�mÞ where E(μ) = 1 = μ(r), and

5. E(μ [ σ) + E(μ \ σ) = E(μ) + E(σ)

Axiom 3 is known as sharpened order, where μ and σ are fuzzy subsets of a crisp set, where

μ≼ σ means μ is less sharpened than σ and hence μ has more fuzziness than σ. Since F(R) is

not totally ordered, so there are many pairs of fuzzy sets that are not comparable under ≼ but

on the contrary, a measure of fuzziness provides a total order.

Measuring fuzziness. Consider a fuzzy set R = {μ(1,2,3,. . .,n)}, then the fuzziness of R can be

define as,

mðRÞ ¼ milogðmÞ þ ð1 � miÞlogð1 � miÞ

EðRÞ ¼
� 1

n

Xn

i¼1
miðRÞ

The above expression attains its maximum when the membership degree of each sample is
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equal to 0.5 and minimum when every sample absolutely falls into the fuzzy set or not. In this

work, the term fuzziness is a kind of cognitive uncertainty.

We further extend it as a fuzzy partition of the given training samples ðriÞ
P
i¼1
; P� N that

assigns the membership degree of each sample to C classes as M = (μij)C�P, where μij = μi(rj) is

the membership of the jth sample rj belonging to the ith class. The elements of the membership

matrix should follow the properties defined in the above section. Therefore, the membership

matrix upon P training samples is attained once the training procedure completes. For the jth

sample, the classifier produces an output vector represented as a fuzzy set (μj = μ1j, μ2j, μ3j, μCj)
T,

so by the above equation the fuzziness of the classifier can be written as:

EðmjÞ ¼
� 1

C

XC

i¼1
½mijlogðmijÞ þ ð1 � mijÞlogð1 � mijÞ�

Finally, a membership matrix upon P training samples for C classes can be defined as:

EðMÞ ¼
� 1

CP

XC

i¼1

XP

j¼1

mijlogðmijÞ þ ð1 � mijÞlogð1 � mijÞ
h i

ð6Þ

The above expression defines the training fuzziness. In hyperspectral space, a classifier’s

fuzziness is computed as the averaged fuzziness over the entire hyperspectral space. However,

the fuzziness for the testing phase is unknown. For any supervised and semi-supervised classi-

fication problem, there is a premise, “the training samples have a distribution identical to the

distribution of samples in the entire space”. Therefore, the above equation can be used to cal-

culate a classifier’s fuzziness. The following corollary gives further insight into the fuzziness

relation between samples and boundary.

Corollary. Suppose a binary class problem with two samples (ri, rj) and distances (di, dj),

where di is the distance between classification boundary ri and sample, and dj is the distance

between boundary rj and sample.

Furthermore, α and β are outputs of the classifier on samples ri and rj. According to [39], if

di is less than dj, then the fuzziness of α should be greater than β; which means that the fuzzi-

ness of ri is no less than that of rj. The said phenomena is further explained in Fig 1.

To prove the statement, let us assume that the outputs of the classifier on ri and rj are in the

form of α = (α1, α2)T and β = (β1, β2)T, respectively. Therefore, by Eqs (4) and (5), the boundary

and the distance between boundary and sample with the output (α1, α2)T can be estimated as

rjα1(r) = α2(r) = 0.5 and |α1 − 0.5| + |α2 − 0.5|. By the above definition, we can find the dis-

tances for each membership value as:

di ¼ ja1 � 0:5j þ ja2 � 0:5j

dj ¼ jb1 � 0:5j þ jb2 � 0:5j

In addition, by using the above relations, we can further observe the right threshold value to

identify a sample either close to or away from the boundary. Let us assume that α1� α2 and

β1� β2. This implies that α1� 0.5 and β1� 0.5, which results in di = 2(α1 − 0.5) and dj = 2(β1 −
0.5). Based on our assumption, di is less than dj, therefore α1 < β1. Thus, the sharpened order

axiom α1 ≼ β1 satisfies the inequality of fuzziness as E(α1)> E(β1) but by definition, we know

that E(α1)� E(α2) and E(β1)� E(β2), therefore, we can conclude that, E(α)> E(β).

The above mathematical evidence shows that the samples far from the classification bound-

ary have low fuzziness as compared to the samples that are near to the classification boundary.

This phenomenon is relatively simple and it is easy in a binary class problem with linearly

Fuzziness-based active learning framework for hyperspectral image classification
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separable samples to judge for each sample whether it is near to or away from classification

boundary with some threshold value. The problem becomes trickier in case of complex bound-

aries with nonlinear mixtures. In such situations, we have three possibilities:

• The samples actually belong to the region where they are supposed to be; with high or low

fuzziness,

• The samples belong to the other region where they are not supposed to be; with high or low

fuzziness, and

• Homogeneous mixtures, i.e. non-distinguishable regions without any prerequisite condi-

tions to make them distinguishable.

The first two cases belong to heterogeneous-type mixtures, and can easily be solved, but the

third case is trickier. To cope with the third case, we suggest measuring the correct rate of clas-

sification and misclassification from each class while considering the fuzziness subgroups.

This can also be solved by applying any filter, which will recursively pass the same distribution

of samples at once based on their class.

System validation

Hyperspectral image classification with an optimal number of labeled training samples is one

of the fundamental and challenging tasks. In practice, the availability of labeled training sam-

ples is often insufficient for hyperspectral image classification, and in such scenarios, the classi-

fication methods generally either overwhelmed with uninformative samples or suffer due to

the undersampling problem. Thus, in this work, we investigate the above-mentioned classifiers

performance as a function of a different number of training samples size, varying from a mini-

mum of 5% to a maximum of 25% per class (i.e., 5%, 10%, 15%, 20%, and 25%).

Fig 1. Sample distance from boundary.

https://doi.org/10.1371/journal.pone.0188996.g001
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Experimental setup

In all experiments, the parameters of the classifier are chosen as those that provide the best

training accuracy. To avoid any bias, all the experiments are done within the same fixed set-

tings which maximize the training accuracies. All the initializing parameters are evaluated in

the first few experiments. When the parameters remain unchanged, the evaluation of the opti-

mal parameters is stopped and selected for further experiments. We implemented SVM with a

Polynomial kernel function and FKNN with 10 as the number of nearest neighbors and the

Euclidean distance function.

In all experiments, the terms SVM and FKNN refer to the classifiers trained on samples

selected using step 7(B), whereas the terms PSVM and PFKNN are used for the cases where

the classifiers are trained using the samples selected using step 7(A) as explained in the meth-

odology section. To this end, the first goal is to compare the performance of PSVM and

PFKNN against that of SVM and FKNN, respectively. The second goal is to compare the

performance of PSVM, PFKNN, FKNN, and SVM with state-of-the-art active learning

frameworks.

The Kappa (κ) coefficient and overall accuracy are analyzed using a five-fold cross-valida-

tion process, related to a different number of training samples for all three datasets. It is worth

noting that the training accuracy is not 100% and might include some error in terms of fuzzi-

ness estimation. All the experiments are carried out using MATLAB (2014b) on Intel1 Core™
i5 CPU 3.20 GHz with 8 GB of RAM and the Machine is the 64-bit operating system.

Experimental datasets

The performance of the proposed FALF method is validated on three widely used publicly

available hyperspectral datasets using two different classifiers with two different ways to select

the target samples.

The ROSIS-03 optical sensor acquired the Pavia University (PU) and Pavia Centre (PC)

data over the urban area of northern Italy. The PU and PC datasets consist of 610�340 and

1096�710 samples with 115 and 102 bands respectively. For the PU data, 12 noisy bands were

removed prior to the analysis and the remaining 103 bands were used in our experiments. The

ground truths differentiate 9 different classes in both datasets.

The third dataset was acquired by the Airborne Visible Infrared Imaging Spectrometer

(AVIRIS) sensor. The Indian Pines (IP) dataset consists of 145�145 samples and 220 spectral

bands with a spatial resolution of 20-m and a spectral range from 0.4–2.5 Î¼m. Twenty noisy

bands were removed prior to the analysis whereas the remaining 200 bands were used in our

experimental setup. The removed bands are 104–108, 150–163, and 220. Indian Pines dataset

consists of 16 classes. All three datasets can be freely obtained from [47] [48].

Experimental results

The Kappa (κ) coefficient and overall accuracies are considered as the evaluation metrics since

these are widely used in existing works. The kappa coefficient is obtained by using the expres-

sions given below [49].

EðkÞ ¼
ðn
P

kCk �
P

ksk�kÞ

n2 �
P

ksk�k
ð7Þ

In the above equations, N is the total number of samples, Ck represents the number of cor-

rectly predicted samples in the given class, ∑k Ck is the sum of the number of correctly
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predicted samples, σk is the actual number of samples belonging to the given class, and φk is

the number of samples that have been correctly predicted into the given class [49].

The average performance comparison of the proposed algorithm with each classifier is

shown in Figs 2 and 3. These figures show the average classification accuracy and kappa coeffi-

cient analysis for both classifiers trained by randomly selected samples (Step 7(B)), and the

same classifiers trained by using hardest predicted samples (Step 7(A)).

As explained earlier, we set the minimum training sample size as 5% for the first experiment

and in each experiment, we increase the size with 5% newly selected samples. In the extreme

case, the sample size is not more than 25% of the entire population. Based on the analysis is

shown in Figs 2 and 3, for the IP and PU datasets, the PSVM classifier outperforms the rest of

the classifiers. From different observations with a different number of training samples, there

is a slight improvement using SVM and FKNN but PFKNN improves the accuracy impres-

sively when we increase the size of training samples from 5% to 10% in both IP and PU

datasets.

Fig 4 shows the average computational time for our first experiment. These results show

that for a different number of training samples processed by PSVM, it exhibits almost identical

Fig 2. Overall classification accuracy for PSVM, SVM, PFKNN and FKNN for both Indian Pines, Pavia University, and Pavia Centre datasets.

https://doi.org/10.1371/journal.pone.0188996.g002
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computational cost for the same datasets, which indicates that the quantity of hardest pre-

dicted samples slightly influences the computational time of PSVM as compared to SVM. On

the other hand, PFKNN obtained almost the same or a slightly lower computational time as

compared to FKNN for all datasets in different experiments. In both experiments, the compar-

ison between randomly selected samples and the hardest predicted samples has been shown

for the IP and PU datasets. Moreover, the PC dataset is used to show the performance only for

hardly predicted samples.

As shown in Fig 4, the computational cost gradually increases as the size of data increases in

the PC dataset. Therefore, it is crucial to deal with such high computational time. Certain pos-

sible solutions can be applied to solve this problem. For example, one approach is to split the

dataset into small regions and then build a separate classifier for each of the sub-regions. How-

ever, for this strategy to work well, there is another problem of how to conduct the data split-

ting such that it does not minimize the classification performance.

Figs 5 and 6 show the classification maps for the PU and IP datasets respectively. The com-

plete hypotheses on both datasets processed by the proposed FALF method to select the most

informative samples to retrain the classifier, and the same classifier, trained on randomly

Fig 3. Kappa coefficient for PSVM, SVM, PFKNN and FKNN for both Indian Pines, Pavia University, and Pavia Centre datasets.

https://doi.org/10.1371/journal.pone.0188996.g003
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selected samples, have been shown. Fig 7 presents the validation of our proposed model on the

PC dataset. These figures show the complete performance assessment on experimental results

with profound improvement. As shown in the figures, the classification maps generated by

adopting the FALF framework are less noisy and more accurate than the maps generated by

the same classifiers on randomly selected training samples.

For the trusted external judgments and for statistical analysis of any classification problem,

true positive (TP), true negative (TN), false positive (FP), and false negative (FN) are usually

compared. In this regard, we have made several judgments that are presented in Tables 1, 2

and 3, which show average statistics for all experimental datasets with a different number of

training samples for each classifier.

We have abbreviated the test names in Tables 1, 2 and 3 as PPV = Positive Predictive Value,

FDR = False Discovery Rate, FOR = False Omission Rate, and LRN = Likelihood Ratio for

Negative or False Test. Positive predictive values are the scores of the positive statistical results

based on TP and TN values. PPV shows the performance of a statistical measure, and we use it

to confirm the probability of positive and negative results. A higher value of PPV indicates that

a few positive results are a false positive.

Fig 4. Computational time for PSVM, SVM, PFKNN and FKNN for both Indian Pines, Pavia University, and Pavia Centre datasets.

https://doi.org/10.1371/journal.pone.0188996.g004
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FOR and FDR is a statistical method used in multiple hypothesis testing to correct for mul-

tiple comparisons. It measures the proportion of false negatives that are incorrectly rejected.

FOR is computed by using FN and TP; it can also be computed by taking the complement of

negative predictive values (NPVs). FDR measures the proportion of actual positives that are

incorrectly identified and is computed by using FP and TP.

For class-based classification judgments, we have done two statistical analysis, which is pre-

sented in Figs 8 and 9, in which we show the average statistics for all classes with a different

number of training samples for each classifier. Figs 8 and 9 show the sensitivity and specificity

of classification analysis on all three datasets for each class. PFKNN and PSVM have quite sim-

ilar behavior for different classes, as one can see from the figures.

The summary classes for classification are as follows. Indian Pines: classes 1 to 16 are

““Alfalfa”, “Corn Notill”, “Corn Mintel”, “Corn”, “Grass Pasture”, “Grass Trees”, “Grass Pasture
Mowed”, “Hay Windrowed”, “Oats”, “Soybean Notill”, “Soybean Mintel”, “Soybean Clean”,

“Wheat”, “Woods”, “Buildings Grass Trees Drives” and “Stone Steel Towers””.

Fig 5. Classification maps of Pavia University (PU) with different number of training samples i.e. 5%, 10%, 15%, 20%, and 25% to train FKNN,

SVM, PFKNN, and PSVM respectively.

https://doi.org/10.1371/journal.pone.0188996.g005
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Pavia University: classes 1 to 9 are, ““Asphalt”, “Meadows”, “Gravel”, “Trees”, “Painted
Metal Sheets”, “Bare Soil”, “Bitumen”, “Self-Blocking Bricks” and “Shadows””.

Pavia Centre: classes 1 to 9 are, ““Water”, “Trees”, “Asphalt”, “Self-Blocking Bricks”, “Bitu-
men”, “Tiles”, “Shadows”, “Meadows”, and “Bare Soil””.

Comparison with state-of-the-art

To evaluate the performance of our proposed framework, the following state-of-the-art meth-

ods are compared. All competing methods are evaluated on two publicly available real hyper-

spectral datasets and the average performance of 5-fold cross validation is presented. The

detailed performance comparison of the proposed algorithm with state-of-the-art methods

defined below is presented in Tables 4 and 5. From these tables, we can see that the proposed

framework outperforms the state-of-the-art active learning frameworks because of our careful

sample selection using a twofold learning hierarchy. In traditional active learning frameworks,

Fig 6. Classification maps of Indian Pines (IP) with different number of training samples i.e. 5%, 10%, 15%, 20%, and 25% to train FKNN, SVM,

PFKNN, and PSVM respectively.

https://doi.org/10.1371/journal.pone.0188996.g006
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the supervisor selects the samples in an iterative fashion, whereas the proposed model system-

atically selects the samples by machine-machine interaction without involving any supervisor,

in computationally efficient fashion for high-dimensional hyperspectral datasets.

1. Multinomial Logistic Regression with Active Learning [26]

2. Active Learning framework using hierarchical segmentation [50]

3. Spatial Coherence Batch Mode Active Learning [51]

4. Spectral-Spatial Classification using Loopy Belief Propagation and Active Learning [52]

Discussion

We can find many classical active learning frameworks in the literature that are similar to the

proposed framework. For example, the work proposed by Lughofer in [36] focused on online

Fig 7. Classification maps of Pavia Centre (PC) with different number of training samples i.e. 5%, 10%, 15%, 20%, and 25% to train PFKNN, and

PSVM.

https://doi.org/10.1371/journal.pone.0188996.g007
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learning and it was specifically designed for “an on-line single-pass setting in which the data

stream samples arrive continuously”. Such kind of methods does not allow classifier re-train-

ing for the next round of sample selection. Furthermore, Lughofer uses the close concepts of

conflict and ignorance. Conflict models how close a query point is to the actual decision

boundary and ignorance represents the distance between a new query point and the training

samples seen so far. Our membership concept is conceptually close to these indicators, but we

are able to consider both the distance from the class boundary and in-class variance inside one

parameter. In addition, unlike [36], we implemented and validated our active learning

approach for hyperspectral image classification problem.

In contrast to [36], Nie et al. proposed another active learning framework in [53], in

which the authors focused only on early active learning strategies, i.e., solving the early stage

experimental design problem. The Transductive Experimental Design (TED) method was

proposed to select the data points, and for this, the authors propose a novel robust active

learning approach using the structured sparsity-inducing norms to relax the NP-hard

objective to the convex formulation. Thus their framework only focused on selecting an

optimal set of initial samples to kick-start the active learning procedure. However, the bene-

fit of our framework is that it shows state-of-the-art performance independent of how the

initial samples are selected. Of course, the framework proposed by Nie et al. can be easily

integrated with our framework to be executed instead of executing the first step of our

algorithm.

Table 1. Indian Pines.

Classifier PPV FDR FOR LRN

5% Training Samples

FKNN 0.47158 0.52841 0.02697 0.37514

PFKNN 0.74105 0.25894 0.01023 0.10667

SVM 0.65470 0.34529 0.02046 0.30210

PSVM 0.97889 0.02110 0.00184 0.03586

10% Training Samples

FKNN 0.52308 0.47691 0.02380 0.40514

PFKNN 0.83876 0.16123 0.00283 0.05639

SVM 0.72716 0.27283 0.01560 0.22258

PSVM 0.98987 0.01012 0.00079 0.01493

15% Training Samples

FKNN 0.55085 0.44914 0.02244 0.36847

PFKNN 0.85093 0.14906 0.00190 0.03474

SVM 0.75154 0.24845 0.01389 0.22821

PSVM 0.99135 0.00864 0.00067 0.01559

20% Training Samples

FKNN 0.56465 0.43534 0.02129 0.24515

PFKNN 0.98529 0.01470 0.00120 0.01934

SVM 0.79040 0.20959 0.01209 0.19190

PSVM 0.99195 0.00804 0.00057 0.01339

25% Training Samples

FKNN 0.59093 0.40906 0.02075 0.26579

PFKNN 0.98753 0.01246 0.00095 0.01565

SVM 0.80667 0.19332 0.01131 0.17088

PSVM 0.99345 0.00654 0.00040 0.00821

https://doi.org/10.1371/journal.pone.0188996.t001
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Table 2. Pavia University.

Classifier PPV FDR FOR LRN

5% Training Samples

FKNN 0.80161 0.19838 0.02625 0.16163

PFKNN 0.81328 0.18671 0.01236 0.14526

SVM 0.87181 0.12818 0.01276 0.11241

PSVM 0.93518 0.06481 0.00320 0.04772

10% Training Samples

FKNN 0.83173 0.16826 0.02161 0.14281

PFKNN 0.88934 0.11065 0.00642 0.08669

SVM 0.89917 0.10082 0.01050 0.09875

PSVM 0.96010 0.03989 0.00216 0.02670

15% Training Samples

FKNN 0.82923 0.17076 0.02237 0.12797

PFKNN 0.90929 0.09070 0.00512 0.05990

SVM 0.90132 0.09867 0.00992 0.09650

PSVM 0.96912 0.03087 0.00149 0.02035

20% Training Samples

FKNN 0.83511 0.16488 0.02157 0.12634

PFKNN 0.93043 0.06956 0.00396 0.03985

SVM 0.90577 0.09422 0.00919 0.09067

PSVM 0.97383 0.02616 0.00109 0.01718

25% Training Samples

FKNN 0.84384 0.15615 0.02047 0.11798

PFKNN 0.93864 0.06135 0.00349 0.03499

SVM 0.91339 0.08660 0.00843 0.08203

PSVM 0.97341 0.02658 0.00098 0.01803

https://doi.org/10.1371/journal.pone.0188996.t002

Table 3. Pavia Centre.

Classifier PPV FDR FOR LRN

5% Training Samples

PFKNN 0.92469 0.07530 0.00297 0.08148

PSVM 0.94539 0.05460 0.00187 0.05048

10% Training Samples

PFKNN 0.93624 0.06375 0.00261 0.07247

PSVM 0.96135 0.03864 0.00138 0.03626

15% Training Samples

PFKNN 0.94072 0.05927 0.00237 0.06618

PSVM 0.96455 0.03544 0.00128 0.03479

20% Training Samples

PFKNN 0.94380 0.05619 0.00225 0.06276

PSVM 0.96640 0.03359 0.00120 0.03250

25% Training Samples

PFKNN 0.94339 0.05660 0.00216 0.05917

PSVM 0.96960 0.03039 0.00113 0.03117

https://doi.org/10.1371/journal.pone.0188996.t003

Fuzziness-based active learning framework for hyperspectral image classification

PLOS ONE | https://doi.org/10.1371/journal.pone.0188996 January 5, 2018 18 / 26

https://doi.org/10.1371/journal.pone.0188996.t002
https://doi.org/10.1371/journal.pone.0188996.t003
https://doi.org/10.1371/journal.pone.0188996


In our work, we start evaluating our hypotheses from 5% of randomly selected training

samples and we demonstrate that randomly adding more samples (step 7(B)) back into the

training set slightly increases accuracy but the classifiers become computationally complex.

Therefore, we decided to separate the set of samples that were most difficult to predict in our

first phase of classification (The samples between the ranges of 0.7–1.0 in fuzziness magnitude).

We then fuse a specific percentage of these hardly predicted samples back into the original

training set to retrain the classifier from scratch for better generalization and classification per-

formance on those samples which were initially misclassified.

It is worth noting from experiments that adding hardly predicted samples back into the

training set improves the performance on those samples that were misclassified in the first

phase. For the IP and PU datasets, we have experimentally proved that randomly adding sam-

ples back into the training set does not provide the desired accuracy, but that by adding the

samples back into the training set selected by the proposed FALF framework boosts the

Fig 8. Sensitivity for each class classification analysis on Indian Pines, Pavia University, and Pavia Centre, for both PFKNN and PSVM for all

three datasets.

https://doi.org/10.1371/journal.pone.0188996.g008

Fuzziness-based active learning framework for hyperspectral image classification

PLOS ONE | https://doi.org/10.1371/journal.pone.0188996 January 5, 2018 19 / 26

https://doi.org/10.1371/journal.pone.0188996.g008
https://doi.org/10.1371/journal.pone.0188996


performance of the classifier. We further validate our hypotheses on the PC dataset which also

produces good accuracy in a computationally efficient way.

A second most important factor involved in the training and testing phase is computational

time, which is significantly improved for both classifiers. Therefore, to make the model effi-

cient and quick, we fuse the most difficult and informative samples back into the training set

to retrain the classifier in each experiment. The classification accuracy and Kappa (κ) test

results are significantly improved as we can see from Figs 2 to 9. Tables 1, 2 and 3 present the

average statistical test results on predicted samples, which show the model’s ability to correctly

classify the unseen samples from each class.

To experimentally observe a sufficient quantity of training samples for each classifier, we

evaluated the hypothesis as explained earlier. Based on the experimental results, we conclude

that the 10% samples obtained by the proposed FALF framework are good enough to produce

the acceptable accuracy for hyperspectral image classification with minimum computational

cost.

Fig 9. Specificity for each class classification analysis on Indian Pines, Pavia University, and Pavia Centre, for both PFKNN and PSVM for all

three datasets.

https://doi.org/10.1371/journal.pone.0188996.g009
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Table 4. Indian Pines dataset.

Technique Overall kappa (κ)

State-of-the-Art

SF1 78.14% 75.17%

SS2 78.78% 71.51%

SFS3 82.77% 80.55%

MLL4 92.72% 91.66%

MLL-Seg5 94.76% 93.99%

MLR-RS6 75.01% 71.49%

MLR-MI7 72.14% 68.27%

MLR-BT8 75.75% 72.27%

MLR-MBT9 75.73% 72.22%

OS10 81.68% 79.25%

RS11 81.54% 79.89%

MPM12 85.42% 83.31%

LBP13 95.92% 95.34%

RS14 85.33% 83.26%

MBT15 91.98% 90.84%

BT16 92.16% 91.08%

MI17 87.02% 85.23%

LORSAL18 82.60% 80.14%

Proposed Framework

FKNN19 67.62% 60.57%

SVM20 78.51% 75.44%

PFKNN21 95.94% 95.36%

PSVM22 98.88% 98.73%

1Adseg-AddFeat (SF),
2Adseg-Addsamp (SS),
33Adseg-AddFeat + AddSamp (SFS),
4Multilevel Logistic (MLL),
5Multilevel Logistic over Segmentation Maps (MLL-Seg),
6Multinomial Logistic Regression for Random Selection (MLL-RS),
7Multinomial Logistic Regression for Mutual Information (MLR-MI),
8Multinomial Logistic Regression for Breaking Ties (MLR-BT),
9Multinomial Logistic Regression for Modified Breaking Ties (MLR-MBT),
10Over Segmentation Maps (OS),
11Redefined Segmentation Maps (RS),
12Maximum Posteriori Marginal (MPM),
13Maximum Posteriori Marginal based Loopy Belief Propagation (LBP),
14Maximum Posteriori Marginal and Loopy Belief Propagation based Random Selection (RS),
15Maximum Posteriori Marginal and Loopy Belief Propagation based Modified Breaking Ties (MBT),
16Maximum Posteriori Marginal and Loopy Belief Propagation based Breaking Ties (BT),
17Maximum Posteriori Marginal and Loopy Belief Propagation based Mutual Information (MT),
18Logistic Regression via Variable Splitting and Augmented Lagrangian Algorithm (LORSAL),
19Random Selection (FKNN),
20Random Selection (SVM),
21Hardly predicted (PFKNN), and
22Hardly predicted (PSVM).

https://doi.org/10.1371/journal.pone.0188996.t004
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Table 5. Pavia University dataset.

Technique Overall kappa (κ)

State-of-the-Art

SF1 90.71% 88.05%

SS2 86.58% 82.73%

SFS3 92.23% 90.05%

MLL4 85.57% 81.80%

MLL-Seg5 85.78% 82.05%

MLR-RS6 86.61% 82.49%

MLR-MI7 85.88% 81.50%

MLR-BT8 85.63% 81.21%

MLR-MBT9 85.24% 80.70%

OS10 91.08% 91.21%

RS11 91.58% 91.62%

MPM12 85.78% 82.05%

LBP13 —–% —–%

RS14 93.45% 91.40%

MBT15 95.85% 94.61%

BT16 95.80% 94.54%

MI17 96.86% 95.87%

LORSAL18 94.02% 92.05%

Proposed Framework

FKNN19 86.26% 81.38%

SVM20 92.50% 90.04%

PFKNN21 95.94% 93.47%

PSVM22 98.32% 97.78%

1Adseg-AddFeat (SF),
2Adseg-Addsamp (SS),
33Adseg-AddFeat + AddSamp (SFS),
4Multilevel Logistic (MLL),
5Multilevel Logistic over Segmentation Maps (MLL-Seg),
6Multinomial Logistic Regression for Random Selection (MLL-RS),
7Multinomial Logistic Regression for Mutual Information (MLR-MI),
8Multinomial Logistic Regression for Breaking Ties (MLR-BT),
9Multinomial Logistic Regression for Modified Breaking Ties (MLR-MBT),
10Over Segmentation Maps (OS),
11Redefined Segmentation Maps (RS),
12Maximum Posteriori Marginal (MPM),
13Maximum Posteriori Marginal based Loopy Belief Propagation (LBP),
14Maximum Posteriori Marginal and Loopy Belief Propagation based Random Selection (RS),
15Maximum Posteriori Marginal and Loopy Belief Propagation based Modified Breaking Ties (MBT),
16Maximum Posteriori Marginal and Loopy Belief Propagation based Breaking Ties (BT),
17Maximum Posteriori Marginal and Loopy Belief Propagation based Mutual Information (MT),
18Logistic Regression via Variable Splitting and Augmented Lagrangian Algorithm (LORSAL),
19Random Selection (FKNN),
20Random Selection (SVM),
21Hardly predicted (PFKNN), and
22Hardly predicted (PSVM).

https://doi.org/10.1371/journal.pone.0188996.t005
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Conclusion

Hyperspectral image classification with a limited number of training samples is a challenging

problem. To improve the classification performance for such cases, this paper proposed the

idea of retraining the classifier using most informative samples. These samples are identified

by first estimating the boundary of each class and then calculating the fuzziness-based distance

between each sample and the estimated class boundaries. The hardest correctly classified sam-

ples with smaller distances and higher fuzziness are selected as appropriate candidates for the

training set to retrain the classifier.

Through several experiments, we show that for an image classification task we can start

with only 5% of the training samples and then use the proposed FALF framework to select

only a small amount of new samples to train the classifier from scratch, which significantly

boosts the classifier’s generalization performance on unseen samples.

It is worth noting is that the proposed method is not classifier sensitive, i.e. the derived rela-

tion holds if we change the classification model, such as locus approximation to an analytical

formula-based classifier.

Supporting information

S1 File. The Indian Pines (corrected) dataset, consisting of 145�145 samples and 220 spec-

tral bands with a spatial resolution of 20 m and a spectral range of 0.4–2.5 Î¼m. Twenty

noisy bands were removed prior to the analysis, whereas the remaining 200 bands were used

in our experimental setup. The removed bands are 104–108, 150–163, and 220. The original

Indian Pines dataset is available online at [47] [48].

(TXT)

S2 File. The original Indian Pines ground truths consist of 16 classes. The ground truth clas-

ses and the number of samples per class (class name-number of samples) are as follows:

““Alfalfa-46”, “Corn Notill-1428”, “Corn-Mintel-830”, “Corn-237”, “Grass Pasture-483”, “Grass
Trees-730”, “Grass Pasture Mowed-28”, “Hay Windrowed-478”, “Oats-20”, “Soybean Notill-
972”, “Soybean Mintel-2455”, “Soybean Clean-593”, “Wheat-205”, “Woods-1265”, “Buildings
Grass Trees Drives-386” and “Stone Steel Towers-93””. The ground truths are freely available at

[47] [48].

(TXT)

S3 File. This file contains MATLAB code for reshaping and rewriting of the original Indian

Pines dataset and ground truths into text files as per journal requirements.
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