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Abstract

Joint models with shared Gaussian random effects have been conventionally used in analysis of 

longitudinal outcome and survival endpoint in biomedical or public health research. However, 

misspecifying the normality assumption of random effects can lead to serious bias in parameter 

estimation and future prediction. In this paper, we study joint models of general longitudinal 

outcomes and survival endpoint but allow the underlying distribution of shared random effect to be 

completely unknown. For inference, we propose to use a mixture of Gaussian distributions as an 

approximation to this unknown distribution and adopt an Expectation-Maximization (EM) 

algorithm for computation. Either AIC and BIC criteria are adopted for selecting the number of 

mixtures. We demonstrate the proposed method via a number of simulation studies. We illustrate 

our approach with the data from the Carolina Head and Neck Cancer Study (CHANCE).
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1 Introduction

In biomedical or public health research, it is common that both longitudinal outcomes over 

time and survival endpoint are collected for the same subject along with the subject’s 

characteristics or risk factors. Investigators are interested in finding important variables 

which can predict both longitudinal outcomes and survival time. For this purpose, 

simultaneous modeling is needed since the two different types of outcomes are correlated 
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within the same subject. Dr. Jack Kalbeisch has done important and influential work in the 

area of joint modeling of longitudinal data and survival time.

Among the existing approaches for the joint analysis of longitudinal data and survival time, 

modeling survival time conditional on longitudinal data or vice versa was more widely 

considered, compared to simultaneous modeling. Estimating the distribution of survival time 

given longitudinal data was studied by numerous authors, for example, Tsiatis, De Gruttola, 

and Wulfsohn (1995), Wulfsohn and Tsiatis (1997), Henderson, Diggle and Dobson (2000), 

Tsiatis and Davidian (2001), Xu and Zeger (2001a,b), Song, Davidian and Tsiatis (2002), 

Larsen (2004), Tseng, Hsieh and Wang (2005), Hsieh, Tseng and Wang (2006), Song and 

Wang (2007), Ye, Lin and Taylor (2008), Huang, Stefanski and Davidian (2009) and 

Chakraborty and Das (2010) among others. The trend of longitudinal outcomes conditional 

on survival time was studied by Wu and Carroll (1988), Hogan and Laird (1997), Wang, 

Wang and Wang (2000), Albert and Follmann (2000, 2007), Liu, Wolfe and Kalbeisch 

(2007), and Ding and Wang (2008) among others. On the other hand, simultaneous models 

of longitudinal outcome and survival time were proposed by Xu and Zeger (2001b) and 

Zeng and Cai (2005a, 2005b) and further studied by Elashfoff, Li and Ni (2007, 2008), Liu, 

Ma and O’Quigley (2008), Rizopoulos, Verbeke and Molenberghs (2008), Rizopoulos, 

Verbeke, Lesaffre and Vanrenterghem (2008), Choi, Cai, Zeng, and Olshan (2015), and 

Choi, Cai, and Zeng (2017). Wang and Taylor (2001), Brown and Ibrahim (2003), Dunson 

and Herring (2005), Chen, Ghosh, Raghunathan, and Sargent (2009), Hu, Li and Li (2009), 

Ghosh, Ghosh and Tiwari (2011), Huang, Li, Elashfoff and Pan (2011) and Baghfalaki, 

Ganjali and Verbeke (2016) studied simultaneous modeling from the Bayesian perspective.

In most of existing methods, random effects are incorporated to accommodate latent 

dependence between survival time and longitudinal data. Furthermore, random effects are 

conventionally assumed to be normally distributed and this assumption plays a vital role in 

parameter estimation and inference. However, the latter is not testable using observed data 

and moreover, it is well documented that misspecifying normality assumption can lead to 

serious bias in estimation (Neuhaus, Hauck, and Kalbeisch, 1992; Kleinman and Ibrahim, 

1998; Heagerty and Kurland, 2001; Agresti, Caffo, and Ohman-Strickland, 2004). This 

concern was also noted in joint models (Wulfsohn and Tsiatis, 1997; Wang, Wang and 

Wang, 2000) and the assumption was relaxed by Song, Davidian and Tsiatis (2002) in a 

proportional hazard model depending on longitudinal process requiring only that random 

effects have density belonging to a class of smooth densities studied by Gallant and Nychka 

(1987) who suggested a seminonparametric (SNP) density estimator. In a similar setting of 

joint models for a time-to-event endpoint, Tsiatis and Davidian (2001) proposed conditional 

score estimators (CSEs) that require no assumption on the distribution of the random effects. 

Li, Zhang, and Davidian (2004) also considered CSEs in joint models for a simple endpoint 

of a generalized linear model with covariates that are subject-specific random effects in a 

linear mixed effect model for measurements. The issue of robustness of joint models to the 

distributional assumption on random effects was further discussed by some authors. Hsieh, 

Tseng and Wang (2006) suggested that the maximum likelihood estimators (MLEs) in joint 

models with a primary time-to-event endpoint and a longitudinal covariate process are robust 

to the violation of the random effect model assumption when there is rich enough 

information available from the longitudinal data (i.e. the longitudinal data should not be too 
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sparse or carry too large measurement errors). Rizopoulos, Verbeke, and Molenberghs 

(2008) concluded that the effect of misspecifying the random effects distribution in joint 

models of survival and longitudinal processes becomes minimal (converging to zero) as the 

number of repeated longitudinal measurements per individual increases. Huang, Stefanski 

and Davidian (2009) presented diagnostic tools that can reveal adverse effects of random 

effect model misspecification in joint models of a primary endpoint and a longitudinal 

process by improving the remeasurement method for structural measurement error models 

(Huang, Stefanski and Davidian, 2006) which was derived from the simulation-extrapolation 

(SIMEX) method developed by Cook and Stefanski (1994) and Stefanski and Cook (1995). 

As an effort to resolve the issue, instead of using Gaussian random effects and errors, 

Dirichlet process (DP) priors were assumed to model the distribution of individual random 

effects and error distribution in a fully Bayesian approach by Ghosh, Ghosh and Tiwari 

(2011) who considered a multiple-changepoint model for longitudinal process and a 

proportional hazards model for dropout time.

Alternatively, some studies considered latent class memberships to be shared between 

longitudinal marker trajectory and risk of event under the structure of assuming a 

heterogeneous population of subjects who can be divided into latent homogenous subgroups 

and modeling an individual’s probability of belonging to a latent class via a multinomial 

logistic regression. The joint latent class model for a longitudinal biomarker and an event-

time outcome subject to censoring was proposed by Lin, Turnbull, McCulloch and Slate 

(2002) who generalized the latent class models of Muthén and Shedden (1999) and Lin, 

McCulloch, Turnbull, Slate and Clark (2000) for a longitudinal biomarker and a binary 

outcome in the setting of complete follow-up. Garre, Zwinderman, Geskus and Sijpkens 

(2008) used a Bayesian approach to fit a joint latent class changepoint model for survival 

prediction with longitudinal biomarker readings. Recently, Proust-Lima, Séne, Taylor and 

Jacqmin-Gadda (2014) studied the joint latent class models in details in comparison with the 

joint shared random effects models. On the other hand, to allow the heterogeneous 

population in joint shared random effects models of continuous longitudinal measurements 

and event time data, Rizopoulos, Verbeke and Molenberghs (2008) and Huang, Li and 

Elashoff (2010) proposed parameterizations of normal random effects and most recently 

Baghfalaki, Ganjali and Verbeke (2016) considered a finite mixture of normal distributions 

as the distribution for random effects. Heterogeneity of the shared random effects was also 

assessed in Baghfalaki, Ganjali and Verbeke (2016) by adopting the graphical method of 

Verbeke and Molenberghs (2013) which presented the gradient function as an exploratory 

diagnostic tool for the assumed distribution of random effects in mixed models.

In this paper, we seek to alleviate the problems due to violation of normality of random 

effects when considering simultaneous models in the joint analysis of general longitudinal 

outcomes (continuous or categorical) and survival time, by assuming the underlying 

distribution of random effects is completely unknown. For estimating model parameters, we 

propose to use a mixture of Gaussian distributions as an approximation for the unknown 

random effect distribution. Using a finite mixture of parametric distributions to approximate 

an unknown distribution has been mostly studied in other context, including linear mixed 

effect models (Verbeke and Lesaffre, 1996; Verbeke and Molenberghs, 2000; Xu and 

Hedeker, 2001; Zhang and Davidian, 2001; Lemenuel-Diot, Mallet, Laveille, and Bruno, 
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2005; Cheon, Albert, and Zhang, 2012) and generalized linear mixed effect models 

(Komárek and Verbeke, 2002; Verbeke and Lesaffre, 1996; Fieuws, Spiessens, Draney, 

2004; Caffo, Ming-Wen and Rohde, 2007; Cagnone and Viroli, 2012). Also, finite normal 

mixture models were studied by many authors and in particular the work by Dr. Kalbeisch 

and his colleagues includes Lesperance and Kalbeisch (1992), Neuhaus, Hauck and 

Kalbeisch (1992) and Chen and Kalbeisch (1996, 2005). In the joint modeling framework, 

Baghfalaki, Ganjali and Verbeke (2016) used a finite mixture of normal distributions for the 

shared random effects in survival time and continuous longitudinal data processes and 

developed a Bayesian procedure for estimation and inference. Therefore, this is the first time 

we extend this method to joint models of general longitudinal data – incorporating both 

continuous and categorical types – and survival time. With the approximation, an 

expectation-maximization (EM) algorithm can be used for parameter estimation in the joint 

models. We also adopt the Akaike’s information criterion (AIC) (Akaike, 1973) and the 

Bayesian information criterion (BIC) (Schwarz, 1978) in this paper for selecting the number 

of mixtures.

The outline of this paper is as follows. In Section 2, we present a simultaneous modeling for 

longitudinal outcomes and survival time with random effects from an unknown distribution, 

and describe the inference procedure. Asymptotic properties of the proposed estimators are 

investigated in Section 3, and numerical results from simulation studies are given in Section 

4. Our proposed method is illustrated with the data from the Carolina Head and Neck Cancer 

Study (CHANCE) in Section 5. In Section 6, we discuss some further consideration.

2 Models and Inference Procedure

2.1 Model Formulation and Notation

We use Y(t) to denote the value of a longitudinal marker process at time t. Suppose Y(t) is 

from a distribution belonging to exponential family in order to incorporate both continuous 

and categorical measurements. Let T denote survival time, and suppose that the survival time 

T is possibly right censored. Suppose a set of n subjects are followed over an interval [0, τ], 

where τ is the study end time. Denote , i = 1, …, n, as a vector of subject-specific random 

effects of dimension db and  ’s are mutually independent. Different from the traditional 

joint models, we assume the underlying distribution of  is completely unknown and denote 

its density as .

Given the random effects , the observed covariates, and the observed outcome history till 

time t, we assume that the longitudinal outcome Yi(t) at time t for subject i follows a 

distribution from the exponential family with density,

(1)

with  and , 

satisfying
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and υi(t) = υ(μi(t))A(Di(t; ϕ)), where g(·) and υ(·) are known link and variance functions 

respectively, Xi(t) and X̃
i(t) are the row vectors of the observed covariates for subject i and 

may include external time-dependent covariates, and β is a column vector of coefficients for 

Xi(t). Xi(t) does not include intercept and it does not contain any covariates in X̃
i(t) because 

the intercept and any potential common covariates for fixed effects are combined with the 

corresponding random effects in X̃
i(t) so that mean of random effects does not have any 

restriction. The random effect  is allowed to differ for different individuals.

Given the random effects , the observed covariates, and the observed survival history 

before time t, the conditional hazard rate function for the survival time Ti of subject i is 

assumed to follow a Stratified multiplicative hazards model,

(2)

where, for any vectors a1 and a2 of the same dimension, a1◦a2 denotes the component-wise 

product; Zi(t) and Z̃
i(t) are the row vectors of the observed covariates and may share some 

components; ψ is a vector of parameters of the coefficients for random effects; γ is a 

column vector of coefficients for Zi(t); and λs(t) is the s-th stratum baseline hazard rate 

function so that the baseline hazard rate is allowed to vary across levels of the stratification 

variable. Note that Zi(t) and Z̃
i(t) do not include dummy variables for strata since baseline 

hazard rate is stratum-specific. For notation, we use common fixed effects and random 

effects across strata in both hazard and longitudinal models. However, the model is flexible 

and allows for possibly different covariate effects for different strata, which can be 

accommodated by including interaction terms of the covariates with the indicator variables 

for the stratification variable. Subjects in different strata are assumed to be independent. In 

addition, X̃
i(t) and Z̃

i(t) have the same dimensions as  ’s.

Under models (1) and (2), the two outcomes Y(t) and T are independent conditional on the 

covariates and the random effects. The parameter ψ in model (2) characterizes the 

dependence between the longitudinal outcomes and the survival time due to latent random 

effect: When the m-th component of ψ is 0 (i.e. ψm = 0), it implies that the dependence 

between the survival time and longitudinal responses is not due to the corresponding latent 

variable ; ψm ≠ 0 implies that such dependence may be due to the corresponding latent 

variable .

Let ni be the number of observed longitudinal measurements for subject i, and assume that 

the distributions of ni and the observation times for longitudinal measurements are 

independent of the parameters of interest conditional on  in this joint model. We also 

assume ni is bounded, which is a reasonable assumption in many biomedical studies. The 

observed data from n subjects are (ni, Yij, Xij, Xĩj), j=1, …, ni, i=1, …, n, and (Vi, Δi, Si, 

{(Zi(t), Z̃
i(t)) : t≤Vi}), i=1, …, n, where for subject i, (Yij, Xij, X̃

ij) is the j-th observation of 
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(Yi(t), Xi(t), X̃
i(t)), Ci is the right-censoring time and assumed to be independent of Ti, Yi(t), 

and random effects conditional on all covariates, Vi = min(Ti, Ci), Si denotes the stratum, 

and Δi = I(Ti ≤ Ci). For all n subjects, we write , Yi = (Yi1, …, Yini)
T, V 

= (V1, …, Vn)T, and . Then, the likelihood function of the complete data 

(Y, V, b*) has the form,

(3)

and the full likelihood function of the observed data (Y, V) is expressed as

(4)

2.2 Inference Procedure

Since the distribution of the random effects is completely unknown, it is necessary to 

estimate this distribution nonparametrically. However, since there are no observations 

associated with such latent random effects, a fully nonparametric estimation can be 

numerically unstable. Instead, we propose to estimate this unknown distribution via an 

approximation by a series of parametric distributions. Particulary, we choose to use a finite 

mixture of normal distributions to approximate this unknown distribution where the number 

of mixtures will be chosen based on data.

For the subject-specific random effects  in Section 2.1, we approximate the distribution of 

 with a mixture of a finite number of db-dimensional multivariate normal distributions. 

That is, the distribution of  is approximated by , where K is the 

number of mixture components. We denote the probability of belonging to component k by 

wk, such that . μk is the mean of the k-th component and it is assumed that each 

component has the same covariance matrix Σb. This constraint is needed to avoid infinite 

likelihoods (Böhning, 1999). We write w = (w1, …, wK−1)T, the vector of K − 1 component 

probabilities, and , the vector of all component means which are ordered 

from the largest to the smallest (μ1 > μ2 > ⋯ > μK) for identifiability of component labels. 
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We introduce bi and αi = k, (k = 1, …, K), as the i-th subject’s random effects following the 

mixture distribution and the k-th component of the mixture from which bi is sampled, 

respectively. The distribution of αi is then described by P(αi = k) = wk and, given αi = k, bik 

~ (μk, Σb). Thus, , where I(αi = k) is the indicator of belonging to 

component k. For n subjects,  and α = (α1, …, αn)T.

Now we estimate and make inferences on the parameters θ = (βT, ϕT, Vech(Σb)T, μT, wT, 
ψT, γT)T, where Vech(·) operator creates a column vector from a matrix by stacking the 

diagonal and upper-triangle elements of the matrix, and the baseline cumulative hazard 

functions with S strata, Λ(t) = (Λ1(t), …, ΛS(t))T, where , s = 1, … S. The 

parameters β and ϕ are from the longitudinal model, ψ and γ are from the hazard model, 

and μ, w, and Σb are associated with the random effects. The likelihood function (3) of the 

complete data (Y, V, b, α) and the full likelihood function (4) of the observed data (Y, V) for 

(θ, Λ) have the following forms respectively,

and

The proposed estimation method is to calculate the maximum likelihood estimates for (θ, 
Λ(t)) over a set of θ and Λ(t). We let each Λs(t) of Λ(t), s = 1, …, S, be a non-decreasing 

and right-continuous step function with jumps only at the observed failure times belonging 

to stratum s.

EM-algorithm is used for calculating the maximum likelihood estimates. In the EM-

algorithm, bi and αi are considered as missing data for i = 1, …, n. Therefore, the M-step 

solves the conditional score equations from complete data given observations, where the 

conditional expectation can be evaluated in E-step. The procedure involves iterating between 

the following two steps until convergence is achieved: at the m-th iteration,

(1) E-step Calculate the conditional expectations of some known functions of bi and 

αi, needed in the next M-step, for subject i with Si = s given observations and the 

current estimate . The conditional expectation is calculated using the 

Gauss-Hermite Quadrature numerical approximation, denoted as 

 for a known function q(bi, αi).

(2) M-step After differentiating the conditional expectation of complete data log-

likelihood function given observations and the current estimate (θ(m), Λ(m)), the 

updated estimator (θ(m+1), Λ(m+1)) can be obtained as follows: (β(m+1), ϕ(m+1)) solves 
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the conditional expectation of complete data log-likelihood score equation using one-

step Newton-Raphson iteration; For the covariance matrix of random effects,

For the k-th mixture component (k = 1, …, K),

and

(ψ(m+1), γ(m+1)) solves the partial likelihood score equation from the full data using 

one-step Newton-Raphson iteration,

 is obtained as an empirical function with jumps only at the observed failure 

time,

The expressions of the conditional expectation and the conditional score equations 

calculated in the E- and M-steps for continuous longitudinal outcomes following a 

normal distribution and for binary longitudinal outcomes with survival time are given 

in Supplementary Materials (Web Appendix A).

The observed information matrix via Louis (1982) formula is adopted to obtain the variance 

estimate for (θ̂, Λ̂(t)). The variance of  θ̂ is asymptotically equal to the corresponding 

sub-matrix of the inverse of the calculated observed information matrix.
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3 Asymptotic Properties

In this section, we provide asymptotic properties of the proposed estimator (θ̂, Λ̂(t)) with θ̂ 

= (β̂T, ϕ̂T, Vech(Σ̂b)T, μT, wT, ψ̂T, γ̂T)T and Λ̂(t) = (Λ̂1(t), …, Λ̂S(t))T, when assuming that 

random effects bi follow a finite mixture of normal distributions. We need the following 

conditions.

(A1)
The true parameter  belongs to a 

known compact set Θ which lies in the interior of the domain for θ.

(A2) The distribution of random effects bi is a mixture of a finite number of db-

dimensional multivariate normal distributions with means  and 

a common covariance matrix Σb. i.e. , where K is the 

number of mixture components.

(A3) The true baseline hazard rate function λ0(t) = (λ10(t), …, λS0(t)) is continuous 

and positive in [0, τ], where τ is the time of study end.

(A4) For the censoring time C, P(C ≥ τ|Z, Z ̃, X, X̃) = P(C = τ|Z, Z ̃, X, X̃) > 0.

(A5) For the number of observed longitudinal measurements per subject nN, P(nN > 

db|X, X̃) > 0 with probability one, and P(nN ≤ n0) = 1 for some integer n0.

(A6) Both XTX and X̃TX̃ are full rank with positive probability. Moreover, if there 

exist constant vectors c1 and c2 such that, with positive probability, for any t, 
Z(t)c1 = α0(t) and Z̃(t)◦c2 = 0 for a deterministic function α0(t), then c1 = 0, c2 = 

0, and α0(t) = 0.

Assumption (A4) means that, by the end of the study, some proportion of the subjects will 

still be alive and censored at the study end time τ, and thus the maximum right censoring 

time is equal to τ. Assumption (A5) implies that some proportion of the subjects have at 

least db longitudinal observations, and there exists an integer n0 such that all subjects have a 

finite number of longitudinal observations which are not larger than n0. Consistency and 

asymptotic distribution of the proposed estimator are summarized in the following two 

theorems.

Theorem 1

Under the assumptions (A1)~(A6), as n → ∞, the maximum likelihood estimator (θ̂, Λ̂(t)) 
is consistent under the product norm of the Euclidean distance and the supremum norm on 

[0, τ]. That is, ‖θ̂ − θ0‖ + supt∈[0,τ] ‖ Λ̂(t) − Λ0(t)‖ → 0, a.s., where 

.

Theorem 2

Under the assumptions (A1)~(A6), as, n → ∞,  weakly 

converges to a Gaussian random element in Rdθ × ℓ∞[0, τ] × ⋯ × ℓ∞[0, τ], and the estimator 
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θ̂ is asymptotically efficient, where dθ is the dimension of θ and ℓ∞[0, τ] is the normed 

space containing all the bounded functions in [0, τ].

The proofs of Theorems 1 and 2 follow similar steps as in Choi et al. (2013) and Zeng and 

Cai (2005b). However, since the distribution for random effects in our method is a finite 

mixture of normal distributions, some regularity conditions such as parameter identifiability 

and invertibility of information operators need treatment specific to our models. The latter 

are non-trivially different from Choi et al. (2013) and Zeng and Cai (2005b). The technical 

proofs are provided in the Supplementary Materials (Web Appendix B).

4 Simulation Studies

In this section, we present the results from our simulation studies. First, to assess finite 

sample properties of the proposed maximum likelihood estimators, two sets of simulations 

with different generalized linear mixed models for the longitudinal outcomes are performed. 

Continuous and binary data are considered for longitudinal process in the simulations in 

Sections 4.1 and 4.2, respectively. Then, we conduct simulation studies for examining the 

robustness of the assumed mixture distribution in Section 4.3. Selection procedures for the 

number of mixtures by AIC and BIC criteria are assessed through simulation studies in 

Section 4.4.

4.1 Continuous Longitudinal Outcomes and Survival Time

In this section, we assume Yij follow a Gaussian distribution given a subject-specific random 

intercept. Specifically we have

for j = 1, …, ni, where , and

where , K is the number of mixture components, and K = 2 and K = 

3 are simulated. X1i ≡ Z1i are generated from a Bernoulli distribution with success 

probability being 0.5, and X2i ≡ Z2i are simulated from the uniform distribution between 0 

and 1. They are included in both hazard and longitudinal models. There is one additional 

covariate denoted as X3ij, the time at measurement, which is a time-dependent variable 

included in the longitudinal model. We suppose the longitudinal data are observed for every 

0.1 unit of time, and thus X3ij has the value of every 0.1 unit ranging over 0 through 2.4. The 

average number of longitudinal observations (ni) per subject is 7–8 with the range of 1 to 24. 

To generate the survival time, we first generate ui from uniform (0,1) distribution. For a 

given hazard function λ, the survival time is then generated by ti = −log(ui) × exp{−

(ψbi+γ1Z1i+γ2Z2i)}/λ. Censoring time is generated from the uniform distribution between 

0.4 and 2.4 so that the censoring proportion is around 25~35%. The observed survival time 

is obtained by the minimum of the generated survival and censoring times. For summarizing 
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the performance of the estimated baseline cumulative hazards over simulations, we consider 

three time points: 0.9, 1.4, and 1.9, which correspond to the quartiles of the true survival 

distribution.

We consider ψ = −0.1 indicating negative dependency between longitudinal process and 

survival time model. The parameters in the longitudinal and hazard models are chosen as β1 

= 1, β2 = −0.5, β3 = −0.2, , ψ = −0.1, γ1 = −0.1, γ2 = 0.1, and λ(t) = 1. The 

parameters in the mixture distribution for random effects are μ1 = −1.5, μ2 = 1.5, and w1 = 

0.4 for K = 2 and μ1 = −3, μ2 = 0, μ3 = 3, w1 = 0.4, and w2 = 0.3 for K = 3. The weight of 

the last mixture component (w2 and w3 for K = 2 and K = 3 respectively) is determined from 

the restriction . The variance of random effects  is chosen as 0.3. Different 

sample sizes (n=400, 800) are simulated with 1000 replications. The results of the maximum 

likelihood estimates for  and the baseline cumulative 

hazards at the three time points and their respective standard error estimates are reported in 

Table 1. The simulation study is conducted using R. In Table 1, “True” gives the true values 

of parameters; the averages of the maximum likelihood estimates from the EM algorithm are 

in “Est.”; the sample standard deviations from 1000 simulations are reported in “SSD”; 

“ESE” is the average of 1000 standard error estimates based on the observed information 

matrix; “CP” is the coverage proportion of 95% confidence intervals based on the estimated 

standard error “ESE”. Satterthwaite (1946) method is used for the coverage probabilities of 

 and .

From Table 1, we can see that even for the smaller sample size (n=400), the bias of the 

estimates from EM algorithm is negligible for most cases. The estimated standard errors 

calculated from the observed information matrix are close to the sample standard deviations 

from the 1000 estimates, and the 95% confidence interval coverage rates are close to 0.95 

except for weights of the mixture components. The coverage rates of weights are improved 

for larger sample size in both 2 and 3 mixtures. The estimates for the parameters in the 

longitudinal and hazards models (β, , ψ, γ and Λ(t)) perform well for different mixtures.

4.2 Binary Longitudinal Outcomes and Survival Time

In this section, we assume that Yij is a binary outcome following

with ηij = Xijβ+bi = β1X1i+β2X2i+β3X3ij+bi for j = 1, …, ni, and we consider the same 

hazards model and simulation setting as those used in Section 4.1 except the followings. The 

parameters in the mixture distribution for random effects are μ1 = −3, μ2 = 3, and w1 = 0.4 

for K = 2 and μ1 = −6, μ2 = 0, μ3 = 6, w1 = 0.4, and w2 = 0.3 for K = 3. The binary 

longitudinal data are generated for every 0.1 and 0.05 units of time for the mixture of 2 and 

3 normal distributions, respectively, and X3ij, the time at measurement, has the values of 

every 0.1 and 0.05 units corresponding to the mixture distributions ranging over 0 through 

2.4. Thus, the average numbers of longitudinal observations (ni) are 7–8 with the range of 1 
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to 24 and 15–16 with the range of 1 to 48 for the mixture of 2 and 3 distributions, 

respectively.

The results of the maximum likelihood estimates for  and 

baseline cumulative hazards at the given three time points and their respective standard error 

estimates are reported in Table 2. Similar to the results for the continuous longitudinal 

outcomes, Table 2 shows that overall the estimates perform well even for the smaller sample 

size n = 400 with small biases. The parameters of interest in longitudinal and hazards 

models have the estimated standard errors which are close to the sample standard deviations. 

Meanwhile, the estimated standard errors of the parameters of mixture components which 

are means of random effects and weights appear to be overestimated being larger than their 

sample standard deviations, which leads to the wide confidence interval.

4.3 Sensitivity for Model-Misspecification

In this section, we conduct simulation studies to examine the sensitivity of the assumed 

mixture distribution. We consider continuous longitudinal outcomes and survival time with 

the same setting used in Section 4.1 except for the true distribution of random effects. 

Random effects are generated from a mixture of a t-distribution with 10 degrees of freedom 

and non-centrality of −1 and a Gamma distribution with shape and scale parameters of 7 and 

1/8 respectively. We assume equal probability for the two distributions. We fit 5 sets of 

simultaneous models assuming different mixtures for random effects which are 1 normal 

distribution without mixture and the mixtures of 2, 3, 4 and 5 normal distributions, and we 

compare the results for the parameters of interest in longitudinal and hazards models and the 

estimated density plots of random effects. Table 3 shows the results of longitudinal and 

hazards models from assuming the 5 different models for random effects. As the number of 

mixtures increases, the changes in bias and coverage rate are more pronounced in the 

longitudinal model than in the hazards model; it is clear that bias gets smaller and coverage 

rates become closer to the 95% nominal level in the longitudinal model while biases are 

similarly small and coverage rates are close to the nominal level over all assumed 

distributions. From the table, we also find that bigger number of mixtures produces 

estimates that are closer to the true values in the longitudinal model while estimates in 

hazards model are less sensitive to the number of distributions in mixture. In other words, 

when the true distribution of random effects is not a Gaussian distribution, the use of 

mixture is effective in longitudinal model while the inference on hazards model is 

reasonable regardless of mixture.

Figure 1 shows the true and estimated density plots of random effects. From these density 

plots, all the mixture models of 2, 3, 4 and 5 normal distributions produces similar shapes to 

the true distribution while one normal distribution does not. The mixture of 5 normal 

distribution appears to be close to the true density. Figure 2 shows the relative bias plot of 

the parameters in longitudinal and hazard models which are denoted with thin and thick 

lines respectively. The relative biases are calculated from the median absolute biases divided 

by their absolute true values. Figure 2 confirms what we observe in Table 3.
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For further investigation of the sensitivity to model-misspecification, we conducted 

additional simulations under another true mixture distribution of random effects – the 

mixture of non-central t20(−2) and Gamma(7, 1/8) – which is more deviated from normal 

distribution, with heavier tailed and more left-shifted t-distribution in mixture. We fit the 

same 5 sets of simultaneous models assuming different mixtures for random effects which 

are 1 normal distribution with no mixture and the mixtures of 2, 3, 4 and 5 normal 

distributions. Their results, density plots and relative bias plots are provided in the 

Supplementary Materials (Table 1 and Figures 1 and 2 of Web Appendix D.1). Although the 

results show slightly bigger biases and inconsistent coverage rates when compared to those 

for the original true mixture, overall trends appear to be similar. The overall conclusion 

appears to be similar.

4.4 Selection of the Number of Mixture Distributions

We adopt AIC and BIC for selection of the number of normal distribution in mixture and 

assess these selection procedures through simulation studies in this section. AIC gives a 

penalty to a model with more parameters and BIC gives a penalty to a model with more 

parameters and larger sample size. Given a data set, competing models are ranked according 

to their AIC (or BIC), with the one having the lowest AIC (or BIC) being the best. Chen and 

Kalbeisch (1996), who proposed a method for consistent estimation for the mixing 

distribution and the number of mixture components, mentioned that different penalty 

methods will provide similar results in many instances and also the application results by 

their method were consistent to those by AIC and BIC. Thus, the use of AIC and BIC will 

be a reasonable choice.

Continuous longitudinal outcomes and survival time are considered with the same setting 

used in Section 4.1. Random effects are generated from a mixture of 3 normal distributions. 

We fit 5 sets of simultaneous models with different mixtures for random effects which are 1 

normal distribution without mixture and the mixtures of 2, 3, 4 and 5 normal distributions. 

AIC and BIC values are calculated for all 5 fitted mixture models in each data set and we 

report frequencies of mixture models selected as best by AIC and BIC among 1000 data 

sets. Sample sizes of 200 and 800 are considered.

The result shows that for the sample size of 200 both AIC and BIC mostly select the true 

distribution of a mixture of 3 normal distributions as best – 969 and 990 out of 1000 

simulated data sets, respectively. For the large sample size of 800, the mixture of 3 normal 

distributions is selected by both AIC and BIC for all 1000 simulated data sets. This 

demonstrates that the number of mixture distributions is properly selected by AIC and BIC 

even for small sample sizes.

5 Analysis of the CHANCE Study

The Carolina Head and Neck Cancer Study (CHANCE) is a population based epidemiologic 

study conducted at 60 hospitals in 46 counties in North Carolina from 2002 through 2006 

(Divaris et al. 2010). Patients were diagnosed with head and neck cancer (oral, pharynx, and 

larynx cancer) from 2002–2006. Their survival status was collected up to 2007 and their 

Quality of Life (QoL) was evaluated over time for three years after diagnosis. QoL 
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information was collected through questionnaires. Based on summary scores of the five 

domains of self-perceived quality of life including Physical Well-Being (PWB), Social/

Family Well-Being (SWB), Emotional Well-Being (EWB), Functional Well-Being (FWB) 

and Head and Neck Cancer Specific symptoms (HNCS), patient’s QoL information was 

classified into satisfaction or dissatisfaction with life. Survival time is defined as the time to 

death from diagnosis. Demographic and life style characteristics, medical histories and 

clinical factors are also collected. Ending in December 2007, information on QoL has been 

obtained from 554 head and neck cancer patients in the analysis. Based on the death 

information through 2007 available from the National Death Index (NDI), 85 of 554 patients 

died and the censoring rate is 85%. All censoring was due to the termination of study and 

thus the noninformative censoring assumption is appropriate for this study. The number of 

observations per patient ranges 1 to 3 with average of 1.93. It is of interest to elucidate the 

variables which are associated with both QoL satisfaction and survival time for patients with 

head and neck cancer. In particular, we are interested in the comparison between African-

Americans and Whites since it is known that African-Americans have a higher incidence of 

head and neck cancer and worse survival than Whites. The longitudinal QoL satisfaction 

outcomes and survival time are correlated within a patient, and this dependency should be 

taken into account in the analysis.

We apply our proposed method to Head and Neck Cancer Specific symptoms (HNCS) 

among QoL domains with survival time. Longitudinal HNCS QoL outcomes are binary 

measurements with 1 (“satisfied”) and 0 (“dissatisfied”). We are interested in investigating 

which factors are related to QoL satisfaction and the risk of death. In the full models for both 

longitudinal QoL and survival time, we consider race (African-Americans, Whites), the 

number of 12 oz. beers consumed per week (None, <1, 1–4, 5–14, 15–29, ≥ 30), household 

income (0–10K, 20–30K, 40–50K, ≤ 60K), surgery (Yes/No), radiation therapy (Yes/No), 

chemotherapy (Yes/No), primary tumor site (Oral & Pharyngeal, Laryngeal) and tumor stage 

(I, II, III, IV) as categorical, and age at diagnosis (range: 24–80), the number of persons 

supported by household income (range: 1–5), body mass index (BMI) (range: 15.66–56.28) 

and the total number of medical conditions reported (range: 0–6) as continuous. 

Additionally, 2 interactions with race, i.e. race × the total number of medical conditions 

reported and race × tumor site, are included in both models since we are particularly 

interested in the difference of QoL and survival between African American and White. Time 

at survey measurement is included as a time-dependent covariate for the longitudinal QoL 

outcome. A random intercept for the dependence between the QoL satisfaction and the risk 

of death is included in both models and assumed to follow an unknown distribution.

For the full model, we first considered 5 different distributions for random effects which are 

1 normal distribution without mixture and the mixtures of 2, 3, 4 and 5 normal distributions, 

and both AIC and BIC selected a mixture of 3 normal distributions with their lowest values 

as best. Then, we conducted backward variable selection based on the Likelihood Ratio Test 

(LRT) from the full model using a mixture of 3 normal distributions for approximating the 

random effect. Table 4 gives the results from the final models after removing non-significant 

covariates by LRT. From the “Simultaneous” columns, we see the number of 12 oz. beers 

consumed per week, household income and tumor stage are significantly associated with 

both patients’ HNCS QoL satisfaction and hazard of death. Using 30 or more of 12 oz. beers 
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consumed per week as the reference group, all categories of the smaller amount are in 

general associated with higher odds of being satisfied while the categories of ‘none’ and ‘5 

to 14’ of 12 oz. beers consumed per week are associated with lower risk of death. Higher 

household income is generally associated with higher odds of being satisfied and lower risk 

of death. Both patients’ HNCS QoL satisfaction and risk of death are significantly different 

for patients in different tumor stages. On the other hand, race (African-American), radiation 

therapy, the number of persons supported by household income, and BMI are selected only 

in the HNCS QoL longitudinal model while the number of medical conditions reported is 

significant only in the hazard model. The results indicate that African-Americans, patients 

not treated with radiation therapy, patients in the family with the smaller number of persons 

supported by household income, or patients with higher BMI are associated with higher 

odds of being satisfied, but the risk of death is not affected by these factors. On the other 

hand, higher number of reported medical conditions is associated with higher risk of death, 

but it is not associated with HNCS QoL satisfaction. Furthermore, time at survey 

measurement is statistically significant in the HNCS QoL longitudinal model implying that 

patients have higher odds to be satisfied over time. The parameter ψ for the dependence 

between longitudinal HNCS QoL and survival time is negative and is statistically significant 

with p-value as 0.008. This means the longitudinal HNCS QoL and survival time are 

correlated and some latent factors which increase HNCS QoL satisfaction also decrease the 

risk of death. Although not provided in Table 4, we have additional parameters of the 

mixture distribution for random effects in the simultaneous modeling. The obtained 

estimates of three means of random effects are −3.146, 0.376 and 1.730 with their estimated 

mixing probabilities of 0.147, 0.105 and 0.748, respectively, and the common variance 

estimate of random effects is 0.637. In particular, the mixing probabilities are significant at 

significance level 0.05, which strengthens the mixture of 3 normal distributions with the 

estimated 3 means of random effects.

For the purpose of comparison, we also conducted separate analyses for longitudinal HNCS 

QoL and survival time whose results are given in the last three columns of Table 4. 

Comparing the results from the simultaneous and separate analyses in Table 4, we can see 

our simultaneous analysis identifies two additional factors (the number of persons supported 

by household income and BMI) in the HNCS QoL longitudinal model and one additional 

factor (the number of 12 oz. beers consumed per week) in the hazard model.

Figure 3(a) shows the estimated baseline cumulative hazard rates over follow-up time with 

95% confidence interval. The estimated baseline cumulative hazard rates look at at the very 

early time within a year, but soon appear to be linearly increasing. Figure 3(b) shows the 

predicted conditional longitudinal trend of HNCS QoL satisfaction probabilities based on 

the simultaneous models (solid line) and the empirical longitudinal trend of HNCS QoL 

satisfaction probabilities (dotted line) based on the empirical longitudinal HNCS QoL 

satisfaction probabilities (dots). The predicted conditional probability of HNCS QoL 

satisfaction is calculated as the conditional expectation of the conditional probability of 

HNCS QoL satisfaction given the subject is alive at time t. That is, Eb,α [P(Y(t) = 1|T > t) | 
θ̂, Λ̂] using model notations in Section 2. The empirical probability of HNCS QoL 

satisfaction is calculated for every 0.05 unit of time at survey measurements. From Figure 
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3(b), the longitudinal trend of HNCS QoL satisfaction probabilities appears to be increasing 

over time and the empirical probabilities also gradually increase over time.

We also applied the rest four unselected distributions for random effects – one normal 

distribution without mixture and the mixtures of 2, 4 and 5 normal distributions – to the final 

simultaneous models derived under the mixture of 3 normal distributions and compared their 

results (provided in the Supplementary Materials – Tables 2–5, respectively, of the Web 

Appendix D.2) to those in Table 4. Most of the covariates in the final models yielded same 

conclusions under different distributions assumed for random effects except one covariate. 

The detail is given in Paragraph 1 of the Web Appendix D.2. On the other hand, overall, the 

estimates for same variables are similar under all mixtures but slightly different from those 

under one normal distribution.

In addition, we conducted simulations under the settings similar to the CHANCE data with 

the high censoring rate = 85% and the low average number of longitudinal observations per 

patient (ni) = 1.93, and we compared the results to the simulation studies presented in 

Section 4.2. The results given in the Supplementary Materials (Table 6 of Web Appendix D.

2) are for the mixture of 2 distributions, sample size (n) of 400, and  from 1000 data 

sets. Due to very sparse events, about 17% of the simulated datasets did not converge or 

encountered problems with variance estimation. Thus, the table only reports the convergent 

cases and the results show that the bias is reasonably small and that the coverage 

probabilities are reasonable, although conservative for the coefficients in the longitudinal 

model. The numerical issues on convergence and variance estimation occurred more for the 

larger number of mixture components but were recovered for the increased n and ni and the 

decreased censoring rate,  and number of predictors included in the joint models.

6 Concluding Remarks

We have relaxed normality assumption of random effects in the simultaneous modeling of 

longitudinal outcomes and survival time. Assuming the underlying distribution of random 

effects to be unknown, we used a mixture of Gaussian distributions as an approximation for 

the random effect distribution. We developed a maximum likelihood estimation method for 

the proposed simultaneous models and presented asymptotic properties of the proposed 

estimators. The proposed estimation procedure using EM algorithm has been assessed via 

simulation studies for both continuous and binary longitudinal data with survival time. The 

proposed estimates performed well in finite samples. The variance estimates based on the 

observed information matrix approximate the true variance well in finite samples. 

Simulation studies indicated that, when the true distribution of random effects is not normal, 

mixture distributions yield less biased estimates than no mixture and all the estimated 

density plots of random effects based on mixture distributions appear to have similar shapes 

to the true distribution. Furthermore, simulation studies also showed that the number of 

mixture distributions is properly selected by AIC and BIC. The proposed method was 

applied to data from the CHANCE study.
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Consideration of general distributions other than normal distribution in joint modelling is 

novel. Our method demonstrates the better fit of the real data using 3 mixture distributions, 

as compared to existing approaches which rely on one single normal random effect.

Alternatively, one may consider the seminonparameteric (SNP) method which is another 

way to approximate non-normal distributions. However, using mixture normal distributions 

has a better computational advantage. As described in Section 2, we can treat random effects 

as a mixture of multiple independent normal variables so the EM algorithm can be easily 

coined to facilitate computation. In contrast, SNP density does not have this property so the 

computation has to directly maximize the likelihood function, which is highly nonlinear, 

over a large number of parameters. Developing the SNP method can be a worthwhile effort 

for future work.

One generalization of the proposed model is to allow both random intercept and random 

slope. In this case, we can consider a bivariate mixture normal distribution to approximate 

their joint distribution. However, the computation will be much more intense due to the 

higher dimensional numerical integration in the E-step and the increased number of the 

mixing components. Alleviating the computational intensity of the method for high 

dimensional random effects will be an interesting topic of investigation of further study.

When estimating variances by the Louis method (1982) as employed in this paper, the 

information matrix may not be positive definite. This could be due to relatively sparse events 

because of high censoring or large number of covariates in the model. When there is a 

problem in estimating the variance, one alternative approach is to use bootstrap method, 

although bootstrap method is computationally intensive.

7 Supplementary Materials

EM algorithm referenced in Sections 2.2 and technical proofs for Theorem 1 and Theorem 2 

referenced in Section 3 are provided in Electronic Supplementary Materials.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Density plots from simulation results of sensitivity for model-misspecification
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Fig. 2. 
Relative bias plot of parameters in longitudinal and hazard models (thin and thick lines 

respectively) from simulation results of sensitivity for model-misspecification
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Fig. 3. 
Plots of the CHANCE study analysis
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