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Abstract

Objective—We aimed to determine updated conversion factors (k-factors) enabling accurate
estimation of radiation effective dose (ED) for coronary computed tomographic angiography
(CCTA) and calcium scoring performed on 12 contemporary scanner models and current clinical
cardiac protocols, and compare these to the standard chest 4-factor of 0.014mSv-mGy~lcm™1,

Background—Accurate estimation of ED from cardiac CT scans is essential to meaningfully
compare the benefits and risks of different cardiac imaging strategies, and optimize test and
protocol selection. Presently, ED from cardiac CT is generally estimated by multiplying a scanner-
reported parameter, the dose-length product (DLP), by a A-factor which was determined for non-
cardiac chest CT using single-slice scanners and a superseded definition of ED.

Methods—Metal-oxide-semiconductor field-effect transistor radiation detectors were positioned
in organs of anthropomorphic phantoms, which were scanned using all cardiac protocols-120
clinical protocols in total-on 12 CT scanners representing the spectrum of scanners for 5
manufacturers (GE, Hitachi, Philips, Siemens, Toshiba). Organ doses were determined for each
protocol, and ED calculated as defined in International Commission on Radiological Protection
Publication 103. EDs and scanner-reported DLPs were used to determine 4-factors for each
scanner model and protocol.

Results—k-factors averaged 0.026 mSv-mGy~lem=1 (95% confidence interval: 0.0258-0.0266)
and ranged between 0.020-0.035mSv-mGy~1cm™1. The standard chest A-factor underestimates ED
by an average of 46%, ranging from 30-60%, depending on scanner, mode, and tube potential.
Factors were higher for prospective axial vs. retrospective helical scan modes, calcium scoring vs.
CCTA, and higher (100-120kV) vs. lower (80 kV) tube potential, and varied between scanner
models (range of average -factors 0.0229-0.0277mSv-mGy~1cm™1).

Conclusions—Cardiac A-factors for all scanners and protocols are considerably higher than the
currently used value, suggesting that radiation doses from cardiac CT have been significantly and
systematically underestimated. Using cardiac-specific factors can more accurately inform the
benefit-risk calculus of cardiac imaging strategies.

Keywords
Cardiac computed tomography; radiation dose; conversion factors

Introduction

Cardiac CT has experienced tremendous advances in the past decade. A growing evidence
base supports the role of coronary artery calcium scoring for risk stratification, and some
guidelines now recommend it as a reasonable test to perform for asymptomatic adults at
intermediate risk (1). Coronary CT angiography (CCTA) has demonstrated high accuracy for
diagnosing obstructive coronary artery disease (2), the ability to improve prognostication
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(3), and in some settings, capability to more rapidly and cost-effectively diagnose chest pain
patients (4). In many clinical contexts, CCTA now stands as an option that can be selected to
guide optimal patient management and incorporated into clinical pathways.(5, 6)

Each cardiac imaging modality has strengths and weaknesses, and optimizing management
requires a weighting of these features for each option in the context of the patient and
clinical question. One particular concern for CCTA is its associated radiation burden. While
initial studies found high radiation dose and risk (7), numerous technical advances such as
prospectively-triggered axial scan modes, lower tube potentials, and iterative image
reconstruction now enable, in the best-case scenario, for CTA to be performed with
extremely low radiation burden, comparable to that of several chest x-rays (8). However,
such low CCTA doses require a confluence of several factors: availability of these technical
advances which are not all implemented on entry-level scanners, operator expertise,
favorable patient heart rate/rhythm and habitus, and willingness to tolerate some image noise
and limitation in the number of phases of the cardiac cycle available for interpretation. Thus,
despite some patients receiving extremely low doses, many still receive considerably higher
doses. Indeed, contemporary CTA practice is characterized by a wide range of radiation
doses between laboratories and between patients (9), and thus the benefit-risk calculus of
CTA and its comparison to other modalities may vary depending on the particular radiation
dose. In particular, when taking care of patients with chest pain, the physician’s choice
between CTA and nuclear myocardial perfusion imaging may depend in part on radiation
burden. Such comparison is predicated on accurate radiation dosimetry for both exams.

The single parameter most commonly used to compare ionizing radiation burden between
different imaging modalities, scanners, and protocols is the effective dose (ED), in units of
millisieverts (mSv). ED characterizes whole-body exposure from a non-uniform radiation
exposure as a weighted average of organ absorbed doses. It is presently defined in
accordance with a formulation specified by the International Commission on Radiological
Protection (ICRP) in its Publication 103 (10), as the sum over all specified organs of doubly
weighted organ absorbed doses, where weights reflect both the relative sensitivity of each
organ to radiation, and the radiation source. ED is not without limitations (11, 12); for
example, the organ weights are averages for all ages and both genders, thus precluding a
gender-specific ED, and ED is not patient-size dependent. Accordingly, ED is not designed
for patient-specific radiation risk assessment. Nevertheless it remains the only metric that
can be easily used to compare whole body radiation exposure across modalities and
protocols. This has led to its great popularity in the clinical literature and clinical practice.
ICRP Publication 103 (10) updated the radiation weighting factors for each organ, based on
a comprehensive, updated review of the radioepidemiologic and radiobiologic evidence, and
refined methodology, in comparison to the previous specification of ED in ICRP Publication
60 (13).

By far, the simplest and most commonly used method to estimate the ED for CT scans is by
multiplying another radiation parameter, the dose-length-product (DLP), by a conversion
factor, often referred to as a 4-factor. DLP, which is limited to CT, is reported on the scanner
console after each CT scan, and reflects both the intensity of the radiation exposure (in
mGy) and the craniocaudal length irradiated (in cm). The Afactor that is conventionally
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used for cardiac scans, 0.014 mSv-mGy~1.cm™1, was introduced in European Commission
guidelines for chest CT scans (14) and later adopted by the American Association of
Physicists in Medicine (15). Using this chest A-factor to estimate ED from cardiac CT has
numerous limitations that potentially compromise the accuracy of ED estimates. The chest
k-factor was: i) never designed for cardiac studies, but rather for thoracic CT; ii) based on
the older, now superseded ICRP 60 definition of ED; and iii) determined using three single-
slice scanners, which technologically are markedly different from the CT scanners currently
in use for cardiac CT. Moreover, the European Commission guidelines document (14) had in
fact provided two different chest A-factors: 0.019 mSv-mGy~1.cm~1 in its Appendix A and
0.014 mSv-mGy~L.cm™1 in its Appendix C.

Thus, updated dosimetry is essential to ensure accurate estimation of ED from cardiac CT.
Heretofore, there has been no systematic attempt to determine A-factors for the diversity of
scanner models and protocols used in cardiac CT practice, and the &-factors in the literature
covering a limited combination of scanners and modes have not been widely adopted. In this
study, we systematically determined A-factors for all contemporary cardiac CTA scanner
designs and protocols, to provide a single source of data that can be used to more accurately
estimate ED of cardiac CT. Our approach was to estimate EDs from measurements
performed using solid-state metal-oxide—semiconductor field-effect transistor (MOSFET)
dosimeters placed in a physical anthropomorphic phantom, and to determine A-factors
relating these EDs to scanner-reported DLPs.

A whole-body adult anthropomorphic dosimetry verification phantom (Figure 1) was used
for all experiments (ATOM 701; CIRS, Norfolk, VVA). The phantom weighs 73 kg with
thoracic dimensions of 23x32 cm without breasts. It is constructed from tissue-equivalent
resins and polymers that represent the body’s anatomy and radiation attenuation
characteristics at diagnostic photon energies, and thus it not only physically but also
radiographically simulates an adult patient. The phantom is composed of a stack of 25-mm-
thick contiguous transverse sections, each containing several 5-mm-diameter holes through
which detectors can be placed for organ dose measurements. In these holes, tissue-equivalent
MOSFET holders were employed to place the MOSFET detectors. Holes in which
MOSFETs were not placed were filled with tissue-equivalent plugs. For female scans,
medium-sized tissue-equivalent breast phantoms were constructed from actual CT data of a
female lying in the supine position and affixed to the body phantom. Further methodologic
details for all sections are provided in the Online Appendix.

MOSFET Dosimeters and Organ Dose Determination

Organ dosimetry was performed using a mobileMOSFET dose verification system (TN-
RD-70W; Best Medical, Ottawa, Canada), associated with high-sensitivity MOSFETs
(TN-1002RD-H; Best Medical, Ottawa, Canada). Voltage (in mV) readings were translated
to dose (in mGy) by calibration of the MOSFETS using an ion chamber (10x6-3CT; Radcal,
Monrovia, California) with a control unit (Accu-Dose 2186; Radcal), and a standard 32cm
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diameter cylinder polymethylmethacrylate phantom (West Physics Consulting, Atlanta, GA),
according to the calibration scheme of Trattner et al. (16) Separate calibration factors were
determined for each x-ray tube potential used for cardiac scan modes, due to MOSFET
sensitivity to energy spectrum. MOSFETS were positioned within the phantom in all 27
internal organs contributing to ED determination (10). The MOSFET voltage reading Xpsse
in a given tissue was translated to dose Dy;sse in that tissue by

Dtissuc:ftissuc -CF - Xtissuc»

where the calibration factor, CF, is in units of mGy/mV, and 7, iS a scaling factor which
converts dose-in-air to dose-in-tissue at the effective energy E.z0f x-rays used and is
defined as:

1. (Men/p)tissue

ftissue (Ee ): (Nen/p) .

i.e. the ratio of the mass energy-absorption coefficient u/p of the specific tissue to that of
air (15). Mass energy-absorption coefficients were obtained from data tabulated by the
National Institute of Standards and Technology at the appropriate effective energy which
was determined based on information obtained from the CT manufacturers (17), or if not
available, simulations using the Monte Carlo radiation transport program MCNP/MCNPX
(Los Alamos National Laboratory) to obtain effective energies. These simulations were
validated with known values of effective energy.

To characterize doses to the 27 organs, we used 44 and 41 MOSFETSs for female and male
phantoms, respectively. Doses in larger or highly radiosensitive organs such as lungs and
female breasts were determined based on measurements in multiple MOSFETSs (Table 2) and
an average was used to estimate the organ absorbed dose. For lung, a weighted average was
taken, in which the weight for each MOSFET reading was determined by the percentage of
the lung’s volume surrounding the relevant MOSFET. Bone surface and bone marrow doses
were measured in eight different MOSFET locations and a weighted average was determined
according to their mass as specified by Eckerman et al (18).

CT Scanners

Twelve contemporary CT scanner models representing all five major CT manufacturers were
studied. These scanner models were chosen based on their use in the PROspective
Multicenter Imaging Study for Evaluation of Chest Pain (PROMISE) trial, a 193 site,
pragmatic comparative effectiveness trial which randomized outpatients with chest pain to
initial testing with either CCTA or functional testing (5), performed in local laboratories, and
thus the CT scanner models used are reflective of those used in current clinical practice. All
models have either single or dual x-ray sources, and between 32 and 320 detector-rows
available for cardiac imaging. We performed medical physics experiments in physical
anthropomorphic phantoms using one scanner of each model. Experiments were performed
on multiple scanners at New York-Presbyterian Hospital/Columbia University Medical
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Center and at the Cleveland Clinic, in Cleveland, Ohio, and on single scanners at several
additional facilities (Table 3).

Protocols scanned

A variety of protocols are used for cardiac imaging in contemporary scanners, with the
particular protocol options differing among scanners. Components of a protocol include the
scan mode, tube potential, and other scan parameters. Almost all scanners have a
retrospectively-gated low-pitch helical mode, generally with an option for ECG-controlled
tube current modulation which lowers the x-ray tube current to <20% of its maximum except
during a designated portion of the cardiac cycle. Most newer and all higher-end scanners
have in addition at least one prospectively-triggered scan mode which turns the x-ray beam
off except during a designated portion of the cardiac cycle, most commonly diastasis.
Additional “padding” of x-ray exposure time may be performed enabling reconstruction of
additional phases of the cardiac cycle. Prospectively ECG-triggered scanning is most
commonly axial, but may be helical, sometimes with a high pitch, or a volume scan with no
movement of the patient couch.

Typical protocols for each cardiac mode were determined for each scanner studied, based on
discussion with physicists and applications specialists from the vendor, as well as
experienced radiologists, cardiologists, and technologists at each collaborating site. Since A-
factors may vary based on photon energy (19), scans were generally performed for each
scanner and scan mode at tube potentials of 80, 100, and 120 kVp, unless a tube potential
was not available on the scanner or the scan mode was not typically used at a particular tube
potential. In addition, for a few scanners, scans for A-factor determination were performed
using less-commonly used tube potentials of 70, 135, and 140 kVp. In some cases, S0 as to
optimize MOSFET statistics, scans were performed at a tube current higher than that which
would be used in clinical practice. The choice of tube current does not affect A-factors since
both DLP and MOSFET voltages scale linearly with tube current. In all other respects, scans
were performed with parameters mimicking those typically used clinically for that protocol.
In addition to CCTA protocols, coronary artery calcium scoring scans were performed for
most scanners. A simulator was used to generate the ECG signal (“chicken heart”) for all
studies. Most scans were performed using a signal simulating normal sinus rhythm at
60bpm; in a few cases, where a protocol is intended for patients with higher heart rates, the
simulated heart rate was increased to 80bpm.

Dosimetry measurements were performed for the female and male phantoms, separately. For
each protocol, MOSFET readings were recorded for multiple scans, equally divided between
male and female phantoms, with the phantom in the identical position for each repetition.
The number of scans performed was determined according to the approach of Trattner et al
(20) to ensure that the ED estimate was within £10% of its true value with >90%
confidence. The number of scans ranged from 4 to 10; for most protocols (84/120; 70%) ten
scans were performed. Scan numbers as well as additional details for each protocol are
found in Online Supplemental Table 1.
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ED and Conversion Coefficient Calculation

Results

We determined ED for each combination of scanner, scan mode, and voltage according to
the ICRP Publication 103 definition (10) as

F
+Dtissue

D
ED= Z Wtissue L 9 )

T

where pM_ and DE_ are the average absorbed doses determined for each organ or tissue,
7, for male and female phantoms, respectively. These averages were obtained over the
repeated scans for each protocol. We also determined ED according to the superseded ICRP
Publication 60 definition (13) which included fewer organs and some differences in tissue
weightings. Actual DLP values, as reported on the scanner console, were recorded after each
scan performed. For each combination of scanner and protocol, all DLPs of repeated scans
for both female and male were averaged. Each A-factor was determined as the ratio of the

ED to the averaged DLP.

Cardiac A-factors of 12 scanners and 120 cardiac protocols (each protocol incorporating a
scan mode, tube potential, and other parameter selections), calculated using the up-to-date
(10) definition of ED, are presented in Table 4. A detailed description of each protocol is
available in the Supplemental Table 1, as are additional protocols and 4-factors at 70, 135,
and 140 kVp tube potential. K-factor mean and median was 0.026 mSv-mGy~1 cm~1 ranging
between 0.020-0.035mSv-mGy~1 cm~ (95% confidence interval: 0.0258-0.0266;
coefficient of variation 8.9%). Thus, using the European Guidelines chest Afactor of 0.014
mSv-mGy~lecm~1 underestimates ED by 46%, in comparison to using an average cardiac A-
factor, and by 30%-60%, in comparison to using a scanner- and protocol-specific cardiac 4
factor.

The average A-factor for prospectively ECG-triggered axial CCTA protocols was 0.0272
mSv-mGy~lecm™1, slightly higher than the average A-factor of retrospectively ECG-gated
helical CCTA protocols of 0.0252 mSv-mGy~lem~1. Calcium scoring scans had an average
k-factor of 0.0289 mSv-mGy~tcm™1, higher than that for CCTAs which averaged 0.0260
mSv-mGy~lem~1. CCTA 80 kVp protocols averaged 0.0250 mSv-mGy~1cm=2, lower than
100-120 kVp protocols, which averaged 0.0264 mSv-mGy~tcm~1. Average A-factors for
scanner models varied between 0.0229-0.0277 mSv-mGy~tcm™2, a range of 20%. As seen
in Supplemental Table 1, 72% of the Afactors determined had 5% precision at a 95%
confidence level, whereas 98% had 10% precision at this level. At a 90% confidence level,
80% of A-factors had 5% precision and all had 10% precision.

K-factors based on the older ICRP 60 definition of ED (13) are shown in Online
Supplemental Table 2, with an average &-factor of 0.021 mSv-mGy~tcm™1. Thus, even when
the same superseded definition of ED is used, calculation of ED with the chest 4-factor of
0.014 mSv-mGy~Lecm~1 underestimates ED by 33% in comparison to using the average
cardiac 4-factor.
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Discussion

The proposed cardiac k-factors determined for 12 contemporary scanners and over 120
contemporary cardiac CT protocols, using the current definition of ED, are all greater than
the chest k-factor that is widely used to estimate ED from cardiac scans, and is incorporated
into professional society guidelines (14, 15). Use of this chest A-factor to estimate ED results
in an underestimation of ED by 46% compared to the average cardiac A-factor we
determined and by 30-60%, depending on the specific scanner and protocol.

Our findings are consistent with recent findings from several other studies, each
investigating a limited number of protocols (Table 1). All studies, including one (21) led by
a member of the European Commission group which introduced the chest &-factor of 0.014
mSv-mGy~1.cm™1, found considerably higher A-factors, also varying between scanners and
protocols and ranging from 0.020 to 0.043 mSv-mGy~1.cm~1. Given our findings, together
with this supportive data, we believe that the use of the European Commission chest A-factor
to estimate ED in cardiac CT, a practice never endorsed by the European Commission or
American Association of Physicists in Medicine, should be reconsidered. For a better
estimation of ED we propose that ideally, a scanner- and protocol-specific factor be used,
and if one is not easily available, then we recommend use of our mean (as well as median) A
factor of 0.026 mSv-mGy~1.cm™1. Several factors contribute to this difference between
cardiac and chest 4-factors. One is a fundamental distinction between cardiac scans, which
typically involve approximately 12—14 cm of craniocaudal coverage, and thoracic scans
covering the entire chest, which spans approximately 27 cm craniocaudally. While all or
most of the breast tissue is typically irradiated in both cardiac and chest CT scans, chest
scans extend both cranially and caudally to include areas without breast tissue, and thus
there is more breast irradiation per length scanned in cardiac CT. Since the breasts are a
highly radiosensitive organ, one should expect a higher A-factor for a cardiac scan(22, 23).
Additionally, most vendors of CT scanners used in this study report using different bow-tie
filters for cardiac and chest scans, which is another factor which contributes to the difference
between cardiac and chest A-factors.

Another contributor to the difference between our cardiac Afactors and the European chest
scan k-factor is the definition of ED used. The older definition resulted, for cardiac scans, in
a k-factor that is 21% lower than in the current ED definition. The primary driver of this
difference is the updated tissue weighting factors, determining each organ’s contribution to
the whole-body ED, which are incorporated in the ICRP 103 ED definition, to better reflect
the current state of radiation epidemiologic data. In particular, the tissue weighting factor for
the breast increased from 0.05 to 0.12. Since the breast is directly irradiated by the x-ray
beam in cardiac scans, it has a high organ radiation dose, and together with lung dose is the
main organ contributing to the ED from cardiac CT. Additionally, in the ICRP 103
formulation of ED, the heart is included among the “remainder organs”, whereas previously
the heart had not been assigned a tissue weighting factor and thus did not contribute to ED.
The update in the tissue weighting factors, which is not reflected in the European
Commission chest &factor, is another source for ED underestimation using this factor.
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An additional limitation of the European guidelines chest conversion factor of 0.014
mSv-mGy~1.cm™1 is that it was determined based on modeling three now-antiquated single-
slice scanners, none of which were capable of performing CCTA (Siemens DRH, GE 9800,
and Philips LX). The use of these old scanners for contemporary cardiac CT dosimetry
should no longer be considered applicable. Moreover, as noted above, the very same
European guidelines document, in another appendix which considered some more recent
scanners (up to 16-slice), already suggested a higher (non-cardiac) chest conversion factor of
0.019 mSv-mGy~l.cm™.

Our study has a few potential limitations. There are several experimental and computational
components to the determination of a A-factor, each with associated uncertainty. These
include the scanner-reported DLP, effective energy calculation, energy dependent absorption
coefficients, and MOSFET measurement and calibration (16). However, we performed
repeated measurements to ensure that ED determination had high precision with high
confidence, using the scheme of Trattner et al (20). Additionally, we performed most scans
with a simulated heart rate of 60 bpm without heart rate variability. Fluctuations in heart rate
or higher rates that cannot be controlled have the potential to alter data acquisition and
impact the A-factor. However, in a recent MOSFET study in pediatric cardiac CT, Trattner et
al (23) found no impact of heart rate on 4-factor. The use of up to 46 MOSFETS
simultaneously raises a question of a potential impact of the wires on the measured dose
levels and hence on the A-factors. Yet, we have tested such impact using a pediatric phantom
with 50 MOSFETSs which were more densely placed than in the adult phantom here, and
found that individual A-factors typically varied by only £0.001 mSv-mGy~1.cm~ depending
on whether all 50 MOSFETS were placed simultaneously or not (23). The effective energy
values used to determine £factors above refer to the energy just upon entrance to the
phantom’s body and not at the exact location of the MOSFET. However, experiments we
performed using various protocols in one scanner demonstrated the difference in simulated
effective energy in the exact MOSFET location vs. simulated effective energy upon entrance
to the phantom body was approximately 1%, a sufficiently low error to justify the use of
body-entrance effective energy values. Finally, ED is more formally defined
computationally, and our approach was largely experimental. Our motivation was to avoid
the need to make assumptions regarding proprietary aspects of scanner design and protocols,
which would have been required for Monte Carlo simulation. Even so, for a single scanner
we have compared MOSFET to Monte Carlo estimation of effective dose and found
outstanding agreement (24).

In conclusion, we determined cardiac-specific conversion factors for contemporary scanners
and routinely-used clinical protocols to enable a more accurate estimation of ED, given a
scanner-reported DLP, as compared to the commonly-used factor of 0.014
mSv-mGy~1.cm™L. While mentioned in current guidelines, this latter factor was determined
for chest rather than cardiac CT, based on now-obsolete single-slice scanners, and using a
now-outdated definition of ED. The cardiac-specific factors we determined are, for all 12
scanners and 120 scan protocols used, considerably higher than the chest conversion factor,
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suggesting that radiation doses from cardiac CT have been significantly and systematically
underestimated. We suggest that ideally, a scanner- and protocol-specific conversion factor
should be used for estimating ED from cardiac CT, or if scanning information is unavailable
then one should use our mean and median conversion factor of 0.026 mSv-mGy~1.cm™1. The
use of cardiac-specific factors is critical to ensure more accurate dosimetry to inform the
benefit-risk calculus of cardiac imaging strategies, and optimize radiation safety of patients.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Abbreviations list

CCTA coronary computed tomographic angiography

CT computed tomography

CTA CT angiography

DLP dose-length-product

ED effective dose

ICRP International Commission on Radiological Protection
kVp kilovolt peak

MOSFET metal-oxide semiconductor field-effect transistor

mSv millisieverts
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Perspectives
COMPETENCY IN MEDICAL KNOWLEDGE

New methodology introduced here provides more accurate tools to estimate radiation
effective dose from cardiac CT scans.

COMPETENCY IN PATIENT CARE AND PROCEDURAL SKILLS

Updated methodology for determining radiation dose from cardiac CT should be used to
enhance the benefit-risk calculus of cardiac imaging strategies and optimize test and
protocol selection.

TRANSLATIONAL OUTLOOK

The use of more accurate methodology for estimating radiation dose from CT may affect
the balance of benefits and risks of cardiac imaging strategies. Additional studies are
needed, incorporating this methodology as well as updated dosimetry methodology for
other modalities, to re-assess the comparative effectiveness of strategies for managing
patients with chest pain and other clinical scenarios requiring cardiovascular evaluation.
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Figure 1. Anthropomorphic phantom and axial CT image sample obtained in a cardiac CT scan
Anthropomorphic phantom assembled with MOSFETS in place and an axial image sample

obtained in a cardiac CT scan of the phantom.
Left: Male phantom; Middle: Female phantom; Right: cardiac CT image.
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Table 2

Organs and assigned MOSFETS for organ dosimetry in the phantom.

Weighting factor

Weighting factor

Organ” u%n;t'):eé%f Ilggl,?P Publication (ISSRP Publication
Brain 6 0.01 In remainder
Salivary gland 1 0.01 -

Red Bone Marrow (RBM) | 5 0.12 0.12

Bone surface 5 0.01 0.01
Thyroid 1 0.04 0.05

Lung 5 0.12 0.12
Esophagus 3 0.04 0.05

Breast Male:1 Female:2 | 0.12 0.05
Stomach 1 0.12 0.12

Liver 3 0.04 0.05

Colon 3 0.12 0.12
Bladder 1 0.04 0.05
Gonads 1 0.08 0.20
Remainder 1 0.12 0.05

Page 17

Organ list of the adult anthropomorphic phantom, with number of MOSFETS used for dosimetry experiments and tissue (organ) weighting factor as
defined in ICRP Publication 103 and in ICRP Publication 60.

*
Skin was not included.

7‘Remainder organs in ICRP 103 definition of effective dose: adrenals, extrathoracic region, gall bladder, heart, kidneys, oral mucosa, pancreas,
prostate, small intestine, spleen, thymus, uterus/cervix, without lymphatic nodes and muscle (each remainder organ with tissue weight of 0.12/11=

0.0109).

Remainder organs in ICRP 60 definition of effective dose: adrenals, brain, upper large intestine, small intestine, kidneys, muscle, pancreas, spleen,

thymus and uterus.

JACC Cardiovasc Imaging. Author manuscript; available in PMC 2019 January 01.



1duosnuey Joyiny 1duosnuen Joyiny 1duosnuey Joyiny

1duosnuep Joyiny

Trattner et al.

Table 3
Scanners used for deriving A-factors

Detector
Manufacturer | Scanner model Rows Source | Location

for Cardiac

Scanning
GE LightSpeed VCT XTe 64 Single New York-Presbyterian Hospital
GE Discovery CT750 HD 64 Single New York-Preshyterian Hospital
Hitachi Scenaria 64 Single Ocean Radiology, New York
Philips Brilliance 64 64 Single SUNY Downstate Medical Center, New York
Philips Brilliance iCT 256 128 Single | Cleveland Clinic, Cleveland
Siemens SOMATOM Sensation 64 32 Single Cleveland Clinic, Cleveland
Siemens SOMATOM Definition AS+ 64 Single Cleveland Clinic, Cleveland
Siemens SOMATOM Definition 2x32 Dual Cleveland Clinic, Cleveland
Siemens SOMATOM Definition FLASH | 2x64 Dual Cleveland Clinic, Cleveland
Siemens SOMATOM Force * 2x96 Dual NYU Langone Medical Center, New York
Toshiba Aquilion 64 64 Single New York Radiology Partners, New York
Toshiba Aquilion Prime 80 Single Carnegie Hill Radiology, New York
Toshiba Aquilion ONE 320 Single New York-Preshyterian Hospital

Page 18

List of the scanners used in this study, including details of the manufacturer, model, and number of detector rows of each scanner and the location
where dosimetry experiments took place for deriving the 4-factors.

Used only for 70 kVp protocols (Online Supplemental Table 1).
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