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ABSTRACT
Since the development of human-induced pluripotent stem cells (hiPSCs), various
types of hiPSC-derived cells have been established for regenerative medicine and drug
development. Neural stem/progenitor cells (NSPCs) derived from hiPSCs (hiPSC-
NSPCs) have shown benefits for regenerative therapy of the central nervous system.
However, owing to their intrinsic proliferative potential, therapies using transplanted
hiPSC-NSPCs carry an inherent risk of undesired growth in vivo. Therefore, it is
important to find cytotoxic drugs that can specifically target overproliferative trans-
planted hiPSC-NSPCs without damaging the intrinsic in vivo stem-cell system. Here,
we examined the chemosensitivity of hiPSC-NSPCs and human neural tissue—derived
NSPCs (hN-NSPCs) to the general anticancer drugs cisplatin, etoposide, mercaptop-
urine, and methotrexate. A time-course analysis of neurospheres in a microsphere
array identified cisplatin and etoposide as fast-acting drugs, and mercaptopurine and
methotrexate as slow-acting drugs. Notably, the slow-acting drugs were eventually
cytotoxic to hiPSC-NSPCs but not to hN-NSPCs, a phenomenon not evident in the
conventional endpoint assay on day 2 of treatment. Our results indicate that slow-acting
drugs can distinguish hiPSC-NSPCs from hN-NSPCs and may provide an effective
backup safety measure in stem-cell transplant therapies.

Subjects Neuroscience, Toxicology
Keywords Microsphere array, Time-course cytotoxicity test, Endpoint assay, ATP assay, Human
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INTRODUCTION
Since the development of human-induced pluripotent stem cells (hiPSCs) (Takahashi et al.,
2007; Yu et al., 2007), various types of hiPSC-derived cells have been established that can be
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used in regenerative medicine and drug development, while avoiding many of the ethical
issues and technical difficulties involved with human tissue–derived cells. Human iPSC-
derived neural stem/progenitor cells (hiPSC-NSPCs) (Fujimoto et al., 2012; Kobayashi
et al., 2012; Oki et al., 2012; Tornero et al., 2013) and human fetal neural tissue–derived
NSPCs (hN-NSPCs) (Ishibashi et al., 2004; Iwanami et al., 2005; Ogawa et al., 2002) have
proven beneficial in treating various central nervous system diseases and injuries. However,
the intrinsic proliferative potential of hiPSC-NSPCs, which makes them promising sources
for large numbers of cells in vitro, can be a double-edged sword in vivo: transplanted cells
can proliferate excessively before terminal differentiation in specific microenvironments.
Although such undesired proliferation has not generally produced teratomas, malignant
carcinogenesis, or other serious adverse events (Nori et al., 2015; Sugai et al., 2016), this
inherent potential suggests the need for backup safety measures for stem cell–based
therapies.

One strategy for reducing the risk of overgrowth is to transduce a gene that can
induce apoptosis, such as herpes simplex virus truncated thymidine kinase (HSV-tk)
activated by ganciclovir (Cao et al., 2007) or a caspase-based artificial cell-death switch
(iCaspase-9) activated by AP20187 (Krishnamurthy et al., 2010), into the stem-cell genome.
However, inserting exogenous genes into the donor-cell genome contradicts the purpose of
integration-free hiPSCs, which are generated to minimize the risk of genetic modification
or transgene re-activation, and transgenic strategies may create new risks despite the use
of ‘genomic safe harbors’ for insertions in the human genome. Another strategy is to use
drugs to suppress the in vivo overgrowth of transplanted cells; for instance, pretreating
hiPSC-NSPCs with a γ-secretase inhibitor inhibits Notch signaling, which is required for
maintaining NSPC stemness (Okubo et al., 2016). However, a single treatment prior to
transplantation may not be sufficient to overcome the cells’ growth potential, and cannot
regulate cell growth after transplantation. Therefore, a useful backup safety measure would
be a method to chemically ablate transplanted cells, preferably with a cytotoxic drug that
specifically acts on transplanted hiPSC-NSPCs but not tissue-resident NSPCs.

In this study, we assessed four approved anticancer drugs, two cytotoxic (cisplatin
and etoposide) and two cytostatic (mercaptopurine and methotrexate), as candidates for
suppressing the overgrowth of non-transgenic stem cells in vivo.

Although the efficacy of candidate drugs has conventionally been evaluated by cell-
destructive methods, such as MTT or ATP assays, these methods cannot assess the effects
of a drug on the same cell population over time. To address this, previous studies have
assessed the time-course of pharmacological effects using cell-nondestructive methods,
such as measurement of changes in impedance in two-dimensional (2D) adherent cell
cultures (Caviglia et al., 2015) and image-based measurement of the spheroid size in
three-dimensional (3D) cultures of various cell types, including glioma cells (Vinci et
al., 2012), hepatocytes (Bell et al., 2016), and cardiomyocytes (Beauchamp et al., 2015). It
is known that 3D culture systems mimic the in vivo environment more effectively than
2D culture systems (Achilli, Meyer & Morgan, 2012; Pampaloni, Reynaud & Stelzer, 2007).
Therefore, the present study used a conventional endpoint assay on day 2 of the treatment
and a 7-day time-course cytotoxicity test to determine the effects of cisplatin, etoposide,
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mercaptopurine, and methotrexate on 3D neurospheres derived from hiPSC-NSPCs and
hN-NSPCs, which are considered to mimic the in vivo stem cell system.

MATERIALS AND METHODS
Ethics statement
This study was conducted in accordance with the principles of the Declaration of Helsinki.
The use of hN-NSPCs and hiPSCs was approved by the OsakaNational Hospital hN-NSPCs
and hiPSCs ethics committee (Nos. 110, 120, and 146).

Cell lines
We used two hN-NSPC lines (oh-NSC-3-fb and oh-NSC-7-fb) (Kanemura et al., 2002)
and two hiPSC (201B7)-derived NSPC lines: the DSM line, which was established using
the single SMAD-inhibition method with the Noggin alternative dorsomorphin (DSM)
(Shofuda et al., 2013), and the dSMAD line, which was established by the dual SMAD-
inhibition method with DSM and SB431542 (Fukusumi et al., 2016).

Cell culture
The hN-NSPCs and hiPSC-NSPCs were propagated as neurospheres in Dulbecco’s
Modified Eagle’s Medium (DMEM)/F12 (D8062; Sigma-Aldrich, St. Louis, MO, USA) with
15 mM HEPES (Sigma-Aldrich), epidermal growth factor (EGF, 20 ng/mL; PeproTech,
Rocky Hill, NJ, USA), fibroblast growth factor 2 (FGF2, 20 ng/mL; PeproTech), leukemia
inhibitory factor (LIF, 10 ng/mL; Millipore, Billerica, MA, USA), B27 supplement (B27,
2%; Thermo Fisher Scientific,Waltham,MA, USA), and heparin (5µg/mL; Sigma-Aldrich)
(Fukusumi et al., 2016; Kanemura et al., 2002; Shofuda et al., 2013). For hN-NSPCs, half of
the medium was changed once a week. The neurospheres were dissociated into single cells
every 14 days by incubating them with 0.05% trypsin/EDTA (Thermo Fisher Scientific) at
37 ◦C for 20 min, after which soybean trypsin inhibitor (Roche, Basel, Switzerland) was
added to stop the enzyme activity. The cells were then resuspended in 50% fresh medium
plus 50% conditioned medium at a density of 1 ×105 cells/mL (Kanemura et al., 2002).
For hiPSC-NSPCs, the medium was changed every 3–5 days. The cells were passaged every
10–12 days using Accutase (Innovative Cell Technologies, San Diego, CA, USA) at 37 ◦C
for 10 min for single-cell dissociation, after which the cells were resuspended in 100% fresh
medium at a density of 1 ×105 cells/mL (Fukusumi et al., 2016; Shofuda et al., 2013).

Drug preparation
Cisplatin (Sigma-Aldrich), etoposide (Sigma-Aldrich), mercaptopurine (Sigma-Aldrich),
and methotrexate (LKT Laboratories, St. Paul, MN, USA) were dissolved in dimethyl
sulfoxide (DMSO) to generate 100 mM stock solutions.

Endpoint (ATP) assay
The neurospheres were dissociated into single cells and seeded into 96-well plates at a
density of 3×104 cells/well (day −1). On day 0, cisplatin, etoposide, and methotrexate
were applied at 0, 0.1, 0.3, 1, 3, 10, 30, and 100 µM, andmercaptopurine was applied at 0, 1,
3, 10, 30, 100, 300, and 1,000 µM (0 µM indicates DMSO only). ATP content was assayed
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Figure 1 Drug-screening strategies. (A) Schematic of endpoint assay (ATP assay) and time-course cy-
totoxicity test. Cells were cultured in a standard 96-well plate for the endpoint assay and in a microsphere
array (MSA) for the time-course cytotoxicity test. Same-colored circles indicate the same microwells in the
panels for days 0, 1, 2, 3, and 7. (B) Representative phase-contrast images taken on days 0, 1, 2, 3, and 7.
One field contains approximately 31 microwells. Same-colored circles indicate the same microwells dur-
ing the test. Black areas are the estimated areas of neurospheres, which consist of viable cells. The * on the
day-7 panel shows the locations of dead cells around the neurosphere. Scale bar, 500 µm.

Full-size DOI: 10.7717/peerj.4187/fig-1

after 48 h with CellTiter-Glo reagent (Promega, Madison, WI, USA) according to the
manufacturer’s instructions. Briefly, 50 µL of CellTiter-Glo was added to wells containing
50 µL of medium. The plates were shaken for 2 min and incubated for 20 min at room
temperature, and luminescence was determined on a Wallac 1420 ARVOsx (PerkinElmer,
Norwalk, CT, USA).

Time-course cytotoxicity test using a microsphere array (MSA)
The MSA (MSE24-CA300, 652 microwells/array; STEM Biomethod, Fukuoka, Japan)
was set into one well of a 24-well plate. The neurospheres were dissociated into single
cells and seeded into the MSA at a density of 200 cells/microwell (day −1). On day 0,
the pretreatment state was recorded by phase-contrast images of neurospheres in the
MSA microwells (Figs. 1A and 1B), and etoposide (0, 0.1, 1, and 10 µM) or cisplatin,
mercaptopurine, or methotrexate (0, 1, 10, and 100 µM) was applied (control, low,
middle, and high concentrations, respectively). This medium was not replaced during the
7-day experiment. Phase-contrast images were captured on days 1, 2, 3, and 7 to monitor
neurospheres in the microwells (Figs. 1A and 1B), and the projected areas of neurospheres
(Mori et al., 2006) were measured using a pen tablet (Intuos, CTH-480; Wacom, Saitama,
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Figure 2 Dose-response curves and IC50 values obtained from a conventional ATP assay on day 2. con-
trol (%). The x-axis indicates the drug concentration (µM) in log scale, and the y-axis indicates ATP lev-
els in the treated cells relative to the DMSO control (%). Colors indicate cell type. The log-logistic model
(LL2.4) was used. Error bars represent the 95% CI.

Full-size DOI: 10.7717/peerj.4187/fig-2

Japan) with the TrakEM2 plugin (Cardona et al., 2012) in ImageJ (Fiji package) (Schindelin
et al., 2012; Schindelin et al., 2015). Microwells containing multiple neurospheres on day 0
were excluded from analysis. Outliers in a boxplot of neurosphere sizes on day 0 were also
excluded. At each time-point, the neurosphere size in the presence of each treatment was
expressed as a percentage of the day 0 value. These data were then expressed as a percentage
of the respective DMSO control.

Statistical analysis
For the endpoint assay (Fig. 2), predicted dose–response curves and 50% inhibitory
concentration (IC50) values were obtained using the four-parameter log-logistic
(LL2.4) and ED functions, respectively, of the drc package (Ritz et al., 2015) in R
(R Core Team, 2015). For the time-course cytotoxicity test, changes in neurosphere
size relative to those in the DMSO controls (Fig. 3) and day 0 neurospheres
(Fig. S1) were analyzed with the four-parameter logisticmodel (L.4) and the Brain–Cousens
five-parameter model (BC.5) of the drc package in R, respectively. Data from the endpoint
assay (Fig. 2) and time-course cytotoxicity test (Figs. 3 and S1) were plotted with 95%
confidence intervals (95% CI).

RESULTS
The IC50 of cisplatin, etoposide, mercaptopurine, and methotrexate in the two hiPSC-
NSPC cell lines (DSM and dSMAD) and the two hN-NSPC cell lines (oh-NSC-3-fb and
oh-NSC-7-fb; Fig. 2 and Table 1) was determined by endpoint (ATP) assay. Cisplatin
and etoposide were preferentially toxic to hN-NSPCs and hiPSC-NSPCs, respectively.
Interestingly, the two hiPSC-NSPC lines differed in sensitivity to these drugs (Table 1).
Mercaptopurine was highly toxic to both types of NSPCs, while methotrexate had almost
no effect on either type even at high concentrations. Of the two hiPSC-NSPC lines, DSM
was significantly more resistant to the drugs.

To follow the real-time effects of these drugs after treatment, we conducted a simple
time-course cytotoxicity test using an MSA (Figs. 1A and 1B). Similar to the ATP assay,
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Table 1 IC50 values (µM) of drugs against hiPSC-NSPCs and hN-NSPCs.

Drug hiPSC-NSPCs hN-NSPCs

DSM dSMAD oh-NSC-3-fb oh-NSC-7-fb

Cisplatin 100< 72.3 14.6 15.2
Etoposide 0.32 0.04 6.59 28.5
Mercaptopurine 120 17.3 17.3 47.0
Methotrexate 100< 100< 100< 100<
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we assessed the effect of cisplatin, etoposide, mercaptopurine, and methotrexate at four
dosage levels in the two hiPSC-NSPC and two hN-NSPCs lines, in this case by measuring
neurosphere size on each day for seven days (Fig. 3 and Table S1). Because neurosphere size
of the DMSO control increased during the 7-day assay (Fig. S1), smaller neurosphere sizes
of the drug treatment group than those of the DMSO control indicate cytotoxicity of drugs.

Compared to the DMSO control, cisplatin showed toxic effects in hiPSC-NSPCs at
low to high concentrations and in hN-NSPCs at middle and high concentrations (Fig. 3).
Notably, high concentrations of cisplatin killed hiPSC-NSPC neurospheres, as indicated by
their disappearance (Fig. S1 shows changes in neurosphere size relative to day 0), whereas
hN-NSPC neurospheres were present throughout the assay period (Fig. S1). Etoposide also
affected the neurosphere size in both hiPSC-NSPCs and hN-NSPCs, but it showed earlier
and stronger toxicity at lower concentrations compared to cisplatin (Fig. 3). However,
the hN-NSPC neurosphere size remained constant even at the highest concentration of
etoposide or cisplatin (Fig. S1). Thus, there was a clear difference between hiPSC-NSPCs
and hN-NSPCs at the highest concentrations of both cisplatin and etoposide.Moreover, low
concentrations of etoposide affected the neurosphere size in dSMAD and oh-NSC-7-fb cells
more strongly than that in DSM or oh-NSC-3-fb cells, respectively. Thus, the preferential
toxicity of the drug differed not only between the two types of NSPCs, but also between
two cell lines of the same type.

Mercaptopurine and methotrexate, even at the highest concentrations, were only mildly
toxic to hN-NSPCs and did not stop their growth (Fig. S1). However, hiPSC-NSPCs were
affected by both mercaptopurine and methotrexate. At low concentrations, methotrexate
was noticeably more toxic to hiPSC-NSPCs than was mercaptopurine (Fig. 3). Unlike
cisplatin and etoposide, mercaptopurine and methotrexate had only a limited effect at even
the highest concentrations until day 3, which allowed the growth of larger neurospheres
(Fig. S1). As with cisplatin and etoposide, mercaptopurine and methotrexate proved to
be highly cytotoxic by the end of the assay. From these results, cisplatin and etoposide
can be classified as fast-acting drugs with early cellular toxicity, while mercaptopurine and
methotrexate can be classified as slow-acting drugs with later toxicity.

DISCUSSION
Although hiPSC-NSPC transplantation is effective for treating spinal cord injury and
stroke, the use of stem cells poses certain risks due to their intrinsic proliferative potential.
In particular, the artificial generation of hiPSCs may cause genetic and epigenetic
abnormalities, which could potentially increase the risk of tumorigenesis (Nagoshi &
Okano, 2017). These risks can be reduced prior to transplantation by inserting a ‘suicide
gene’ into the donor cells, or by pretreating the donor cells with inhibitors that reduce their
stemness and direct differentiation. However, neither of these strategies is ideal. Transgenes
can potentially introduce new risks via genome modification. Although pretreatment can
reduce donor-cell stemness, we have not yet found a way to deal with the overgrowth of
grafted cells after transplantation. Thus, as a backup safety measure for stem-cell therapies,
it is essential to identify drugs that act specifically on the grafted cells, but not on resident
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stem cells. To this end, we conducted a small-scale screening of four anticancer drugs and
examined their effect on hiPSC-NSPCs and on hN-NSPCs, which are considered to mimic
the resident stem cells in the host body.

Based on ATP assay results, we classified the four drugs as follows: (1) more toxic to
hN-NSPCs than hiPSC-NSPCs (cisplatin), (2)more toxic to hiPSC-NSPCs than hN-NSPCs
(etoposide), (3) similar toxic effects on hiPSC-NSPCs and hN-NSPCs (mercaptopurine),
and (4) almost no effect on hiPSC-NSPCs or hN-NSPCs (methotrexate). These results
identified etoposide as a candidate backup safety measure for stem cell-based therapies,
since it was selectively toxic to hiPSC-NSPCs.However, the dosemay need to be adjusted for
individual cell lines, since different lines of the same type of NSPC differed in sensitivity to
etoposide. Although an ATP assay is useful for characterizing drugs based on dose-response
curves and IC50 values, the long-term monitoring of transplanted cells is necessary after
treatment in vivo.

In this study, we monitored the effects of anticancer drugs on neurosphere size in
vitro for a period of seven days after treatment. Based on these results, we classified
cisplatin and etoposide as fast-acting drugs with early cytotoxicity, and mercaptopurine
and methotrexate as slow-acting drugs with late cytotoxicity; this classification is consistent
with the drug categories. Cisplatin and etoposide are cytotoxic drugs that act directly
by alkylating DNA and inhibiting topoisomerase, respectively, whereas mercaptopurine
and methotrexate are cytostatic drugs that inhibit IMP dehydrogenase and dihydrofolate
reductase, respectively. Compared to hiPSC-NSPCs, the hN-NSPCs were more resistant
to high concentrations of cisplatin or etoposide; this difference might be due to the
different developmental stages of the cells. In fact, hiPSC-NSPCs recapitulate regular
neural development along with cell proliferation after transplantation (Sugai et al., 2016),
and this characteristic will likely be useful for developing drugs that specifically target
transplanted cells. The presence of mercaptopurine and methotrexate, which are cytostatic,
eventually induced death in hiPSC-NSPCs, but only mildly limited hN-NSPC growth
during the 7-day assay. Mercaptopurine and the cytotoxic drugs cisplatin and etoposide
decreased the ATP level in both hN-NSPCs and hiPSC-NSPCs on day 2 of treatment
(Fig. 2). Although ATP level is a useful index of cell viability, mercaptopurine-mediated
inhibition of de novo purine synthesis might also reduce the ATP level in the absence of
cell death, in contrast to other cytotoxic drugs. However, the effect of cytostatic drugs
distinguished hN-NSPCs and hiPSC-NSPCs in the time-course assay (Fig. 3). Therefore,
we need to reassess cytostatic drugs from the viewpoint of their time-dependent action.
Our findings indicate that methotrexate is preferable to mercaptopurine as a candidate
safety measure for hiPSC-NSPC transplantation because it was cytotoxic even at low
concentrations.

This study has certain limitations. First, the mechanisms underlying the late toxicity
of cytostatic drugs on hiPSC-NSPCs are unknown, although hN-NSPCs are reported to
express high levels of ABCB1 transporter (Islam et al., 2005; Yamamoto et al., 2009), which
may contribute to a development of tolerance to slow-acting drugs. Further studies are
needed to elucidate the mechanisms underlying the selective cytotoxic effects of cytostatic

Fukusumi et al. (2018), PeerJ, DOI 10.7717/peerj.4187 8/13

https://peerj.com
http://dx.doi.org/10.7717/peerj.4187


drugs on hiPSC-NSPCs. Second, these effects were obtained in vitro and therefore await
confirmation in vivo.

CONCLUSION
Based on a 7-day time-course cytotoxicity test, we classified four anticancer drugs as
fast-acting or slow-acting. We found that the slow-acting drugs affected hiPSC-NSPCs
and hN-NSPCs differently, which was not evident in a conventional ATP assay performed
on day 2. As hN-NSPCs were more tolerant of slow-acting drugs than hiPSC-NSPCs, we
propose that slow-acting drugs such as methotrexate may provide drug candidates for
backup safety measures to prevent the undesirable proliferation of hiPSC-NSPCs after
transplantation therapies.
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