
Abstract. Background/Aim: Oral cancer has been reported
to be one of the major cancer-related diseases in human
populations and the treatment of oral cancer is still
unsatisfied. Fisetin, is a flavonoid from plants and has several
biological activities such as antioxidant, anti-inflammatory
and anticancer function, but its cytotoxicity in human oral
cancer cells is unknown. In the present study, we investigated
fisetin-induced cytotoxic effects on HSC3 human oral cancer
cells in vitro. Materials and Methods/Results: We used flow
cytometric assay to show fisetin induced apoptotic cell death

through increased reactive oxygen species and Ca2+, but
reduced the mitochondrial membrane potential and increased
caspase-8, -9 and -3 activities in HSC3 cells. Furthermore,
we also used 4’ 6-diamidino-2-phenylindole staining to show
that fisetin induced chromatin condensation (apoptotic cell
death), and Comet assay to show that fisetin induced DNA
damage in HSC3 cells. Western blotting was used to examine
the levels of apoptotic-associated protein and results
indicated that fisetin increased expression of pro-apoptotic
proteins such as B-cell lymphoma 2 (BCL2) antagonist/killer
(BAK) and BCL2-associated X (BAX) but reduced that of
anti-apoptotic protein such as BCL2 and BCL-x, and
increased the cleaved forms of caspase-3, -8 and -9, and
cytochrome c, apoptosis-inducing factor (AIF) and
endonuclease G (ENDO G) in HSC3 cells. Confocal
microscopy showed that fisetin increased the release of
cytochrome c, AIF and ENDO G from mitochondria into the
cytoplasm. Conclusion: Based on these observations, we
suggest that fisetin induces apoptotic cell death through
endoplasmic reticulum stress- and mitochondria-dependent
pathways.

Oral cancer is a subtype of head and neck squamous cell
carcinoma. Oral squamous cell carcinoma (OSCC) comprises
of a large proportion of head and neck SCC (1). In men, oral
cancer constitutes approximately 3% of all malignant
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neoplasms, but in females about 2%. The incidence in the
past decade has increased up to almost five-fold in those
younger than 40 years old (2). Oral cancer is the fifth
common cancer in males in Taiwan and around 13
individuals per 100,000 die annually from oral cancer based
on a report in 2017 from the Department of Health, R.O.C.
(Taiwan) (3). Currently, primary surgery, definitive radiation
therapy and chemotherapy or combination of chemo- and
radiotherapy are options for patients with oral cancer.
However, these therapies can have a profound effect on the
quality of life of survivors (4, 5). Thus, dose-limiting
toxicities in patients with cancer restrict the clinical utility
of such therapies. Many studies have focused on compounds
from natural products for treating patients with oral cancer.
Cell cycle progression occurs through multiple cascades
regulated by cyclins and cyclin-dependent kinases (CDKs)
(6); and the formation of complex of cyclin with CDKs can
lead to phosphorylation of substrates involved in cell-cycle
progression. Therefore, many anticancer drugs affect cyclins
or CDKs, leading to cell-cycle arrest. Apoptosis is a type of
programmed cell death with characteristics such as
cytoplasmic shrinkage, nuclear chromatin condensation, and
DNA fragmentation and apoptotic body in cells after
exposure anticancer chemotherapeutic drugs (7-9). Thus, a
good strategy for anticancer agent activity is to induce cancer
cell apoptosis.

Herbal medicines have been used to treat a variety of
human cancer types (10) and some of these herbal medicines
and natural plants contain flavonoids (11, 12). These
flavonoids are recognized to have anticancer and
chemopreventive functions via antioxidant activity, inhibition
of cell proliferation and angiogenesis, and induction of cell-
cycle arrest and apoptosis (13). Fisetin (3,7,3’,4’-
tetrahydroxyflavone), a naturally-occurring flavonoid, is
widely distributed among edible vegetables and fruits such as
apple, cucumber, grapes, kiwis, onion, persimmon and
strawberry, the highest level of fisetin (160 μg/g wet food)
being found in strawberries (14). Numerous studies have
shown that fisetin has pharmacological activities such as
antioxidant (15), anti-inflammatory (16), anti-invasive (17,
18), anti-angiogenesis (19, 20), anti-proliferation (21, 22) and
anticancer effects in several cancer types, such as prostate
cancer (22, 23), lung adenocarcinoma (20, 24), pancreatic
cancer (25), colon cancer (26), cervical cancer (27),
melanoma (28) and acute monocytic leukemia cells (29).
Recently, it was reported that combination treatment of fisetin
and sorafenib effectively inhibited B-Raf proto-oncogene
serine/threonine-protein kinase (BRAF)-mutated melanoma
cell growth, induced apoptosis, and down-regulated mitogen-
activated protein kinase (MAPK) and phosphoinositide 3-
kinase (PI3K) signaling pathways in vitro and in vivo. 

Although numerous studies have shown that fisetin
induces cell apoptosis in many human cancer cell lines, there

is no information available on the effects of fisetin on human
oral cancer cell lines. The present study was designed to
analyze the anticancer potential of fisetin against human oral
cancer HSC3 cells in vitro.

Materials and Methods
Chemicals and reagents. Fisetin of 99% purity, 4’ 6-diamidino-2-
phenylindole (DAPI), dimethyl sulfoxide (DMSO), propidium
iodide (PI) and trypsin-EDTA were obtained from Sigma Chemical
Co. (St. Louis, MO, USA). Minimum essential medium (MEM),
fetal bovine serum (FBS), L-glutamine and penicillin-streptomycin
were purchased from GIBCO®/Invitrogen Life Technologies
(Carlsbad, CA, USA). Fisetin was dissolved in DMSO.

Cell culture. HSC3 human oral cancer cell line was purchased from
the Food Industry Research and Development Institute (Hsinchu,
Taiwan, ROC). These cells were placed in MEM supplemented with
10% FBS, 100 units/ml penicillin, 100 μg/ml streptomycin, and 2
mM glutamine and were growth at 37˚C in a humidified atmosphere
consisting of 5% CO2 (30). 

Cell viability assays. HSC3 cells (5×104 cells/ml) were seeded and
cultured in 12-well plates with MEM for 24 h and then fisetin was
added to each well at final concentrations of 0, 20, 40, 60, 80 and 100
μM. After incubation for 24 and 48 hours, cells were harvested, counted
and stained with PI (5 μg/ml) followed by immediately analysis by
flow cytometry (FACSCalibur; BD Biosciences, San Jose, CA, USA)
for total percentage of viable cells as previously described (30). 

DAPI staining. Cells (5×104 cells/ml) were plated in a 12-well plate
and treated with fisetin (40 μM) for 0, 12, 24 and 48 hours and then
fixed in 3% methanol in PBS at room temperature for 20 min. Cells
were stained with DAPI solution (2 μg/ml) and photographed under
fluorescence microscopy as described previously (31). Nuclear
condensation of cells relative to total cells was evaluated, with a
minimum of 150 cells/field and at least three fields in each well
being counted.

DNA damage measurement. HSC3 cells (5×104 cells/ml) were
cultured in 12-well plates for 24 hours and were then treated with
fisetin (40 μM) for 0, 12, 24 and 48 hours. Cells were then collected
for comet assay as described previously (32).

Measurement of reactive oxygen species (ROS), intracellular Ca2+
and mitochondrial membrane potential (Ψm). The measurement of
ROS, Ca2+ and ΔΨm in HSC3 cells after exposure to fisetin were
performed by flow cytometric assay. In brief, HSC3 cells (5×104
cells/ml) in 12-well plate were treated with fisetin (40 μM) for 0,
6, 24 and 48 hours. For ROS (H2O2) measurement, cells were
isolated and re-suspended with 500 μl of 2’,7’-dichlorfluorescein-
diacetate (DCFH-DA) (Sigma Chemical Co.) (10 μM) and kept in
the dark for 30 minutes. For intracellular Ca2+ measurement, cells
were isolated and re-suspended with 500 μl of fluo-3-
acetomethoxyester (Fluo-3/AM) (Invitrogen) (2.5 μg/ml) maintained
in the dark for 30 min. For ΔΨm measurement, cells were isolated
and re-suspended with 500 μl of 3,3’-dihexyloxacarbocyanine
iodide (DiOC6) (Sigma Chemical Co.) (4 μmol/l) and maintained in
the dark for 30 minutes. After incubation, all samples were analyzed
by flow cytometry as described previously (33-35). 
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Measurements of caspase activities. Flow cytometry was used for
measuring caspase-3, -8 and -9 activities. In brief, HSC3 cells
(5×104 cells/ml) were plated in a 12-well plate and treated with 40
μM of fisetin for 0, 6, 24 and 48 h then cells were harvested and
re-suspended in 25 μl of 10 μM substrate solution containing
PhiPhiLux-G1D1 for caspase-3, or CaspaLux8-L1D2 for caspase-8
or CaspaLux9-M1D2 (both from OncoImmunin, Gaithersburg, MD,
USA) for caspase-9 determination before being incubated at 37˚C
for 60 min. After incubation, all samples were washed with PBS and
caspase activities were analyzed by flow cytometry as described
previously (31, 32, 36).

Western blotting analysis. HSC3 cells (1.5×106 cells/dish) were
placed in a 10 cm dish for 24 hours and then were incubated with
40 μM fisetin for 0, 12, 24 and 48 hours. Cells were collected and
lysed and total protein was determined by Bio-Rad protein assay kit
(Bio-Rad Laboratories, Inc., Hercules, CA, USA). Equal amounts of
protein extracts were separated by 8-14% (v/v) sodium dodecyl
sulfate-polyacrylamide gel electrophoresis and transferred onto
polyvinylidene difluoride membranes (EMD Millipore, Billerica,
MA, USA). After blocking, the membranes were hybridized with
primary antibodies against myeloid cell leukemia-1 (MCL1), B-cell
lymphoma 2 (BCL2), apoptosis regulator Bcl-X (BCLX), BH3-
interacting domain death agonist (BID), BCL2-associated agonist of
cell death (BAD), BCL2 antagonist/killer (BAK), BCL2-associated
X (BAX), apoptosis-inducing factor (AIF), endonuclease G (ENDO
G), cytochrome c, apoptotic peptidase activating factor 1 (APAF1),
caspase-9, X-linked inhibitor of apoptosis (XIAP), caspase-3,
caspase-6, poly-(ADP-ribose) polymerase (PARP), Fas cell surface
death receptor (FAS), FAS-ligand, caspase-8, activating transcription
factor 6-beta (ATF-6β), calpain 1, caspase-4, glucose-regulated
protein 78 (GRP78) and β-Actin at 4˚C overnight. After washing,
secondary antibodies supplied by GeneTex (Irvine, CA, USA) were
used at a 1:10,000 dilution for horseradish peroxidase (HRP)-
conjugated goat anti-rabbit IgG (GTX213110), HRP-conjugated
donkey anti-goat IgG (GTX26885) and HRP-conjugated rabbit anti-
mouse IgG (GTX213112) for 1 h at room temperature (25˚C).
Subsequently, proteins were visualized via chemiluminescence
signals enhanced using electrochemiluminescence detection

(Amersham ECL™; GE Healthcare, Chicago, IL, USA). ImageJ
version 1.49o software (National Institutes of Health, Bethesda, MD,
USA) was used to quantify changes in protein expression by
densitometric analysis using β-actin as the loading control (37). 

Confocal laser scanning microscopy assay. HSC3 cells (5×104
cells/ml) were kept on 12-well chamber slides and were treated with
fisetin (0 and 40 μM) for 24 hours, then fixed with 4%
formaldehyde in PBS for 15 min. Cells were incubated 0.3% Triton-
×100 in PBS for 1 h to permeable the cells for blocking non-specific
binding sites by using 2% bovine serum albumin. Cells were stained
by primary antibodies to cytochrome c, AIF and ENDO G (all in
green fluorescence) overnight followed by secondary antibody
[fluorescein isothyocyanate-conjugated goat anti-mouse (or rabbit
or goat) IgG] and PI (red fluorescence) staining for examination of
nuclei. Slides were mounted, examined and photo-micrographed
under a Leica TCS SP2 Confocal Spectral Microscope (Leica
Microsystems, Bannockburn, IL, USA) (38).

Statistical analysis. All values are presented as the mean±standard
deviation of three independent experiments. Differences between
groups were analyzed by one-way analysis of variance and Dunnett
test for multiple comparisons (SigmaPlot for Windows version 12.0;
Systat Software, Inc., San Jose, CA). A value of p<0.05 was
considered to indicate a statistically significant difference.

Results
Fisetin reduced the total cell viability of HSC3 cells. The
cytotoxic effects were examined in HSC3 cells after
exposure to different concentrations of fisetin for 24 and 48
hours. The results showed that fisetin reduces HSC3 cell
viability dose- and time-dependently (Figure 1).

Fisetin induced chromatin condensation (apoptotic cell
death) in HSC3 cells. After HSC3 cells were exposed to
fisetin (40 μM) for 0, 12, 24 and 48 h, they were stained
with DAPI and photographed by using fluorescence
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Figure 1. Fisetin reduced HSC3 cell viability. HSC3 cells were treated with 0, 20, 40, 60, 80 and 100 μM of fisetin for 24 (A) and 48 (B) h and
then cells were collected to determine the total percentage of viable cells by flow cytometry as described in the Materials and Methods section.
***Significant differences at p<0.001 between fisetin-treated groups and the control as analyzed by Dunnett test.



microscopy. The results showed brighter fluorescence of
HSC3 cells after 24 and 48 h of treatment with 40 μM fisetin
(Figure 2A); the bright fluorescence represents nicked DNA
and chromatin condensation. These effects also occurred in
a time-dependent manner (Figure 2B). 

Fisetin induced DNA damage in HSC3 cells. The comet
assay measures DNA damage in cells after exposure to
chemicals. HSC3 cells were incubated with 40 μM fisetin for
0, 12, 24 and 48 h and were examined by comet assay. The
results showed that fisetin induced a typical comet tail (DNA
damage) (Figure 3A) and these effects were time-dependent

(Figure 3B). These results suggest that fisetin induces DNA
damage in HSC3 cells.

Fisetin induced ROS production and Ca2+ release, and
reduced the mitochondrial membrane potential (Ψm) in
HSC3 cells. In order to further understand whether fisetin
induces cell apoptosis in HSC3 cells through the production
of ROS and Ca2+ or dysfunction of mitochondria, cells were
treated with 40 μM fisetin for different time periods and cells
were collected and analyzed by flow cytometric assay. The
results show that after 6-48 hours of treatment, fisetin
increased ROS production (Figure 4A) and Ca2+ release

in vivo 31: 1103-1114 (2017)
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Figure 2. Fisetin induced chromatin condensation in HSC3 cells. Cells were treated with 40 μM of fisetin for 0, 12, 24 and 48 h then were stained
with 4’ 6-diamidino-2-phenylindole (DAPI) (A) and total head intensity (fold of control) was evaluated (B) as described in the Materials and
Methods section. *Significant differences at p<0.05 fisetin-treated groups and the control as analyzed by Dunnett test. 

Figure 3. Fisetin induced DNA damage in HSC3 cells. Cells were treated with 40 μM of fisetin for 0, 12, 24 and 48 h then the cells were measured
by comet assay (A) for comet tail length (B) as described in the Materials and Methods section. Significant differences at *p<0.05, and ***p<0.001
between fisetin-treated groups and the control as analyzed by Dunnett test.



(Figure 4B) but reduced Ψm (Figure 4C). These results
indicate that ROS, Ca2+ and ΔΨm are involved in fisetin-
induced cell apoptosis of HSC3 cells in vitro.

Fisetin increased the activities of caspase-3, -8 and -9 in HSC3
cells. In order to further understand whether fisetin induces
apoptotic cell death in HSC3 cells through the activation of

caspases, cells were treated with 40 μM fisetin for different time
periods and cells were collected and analyzed by flow cytometric
assay. The results show that fisetin increased caspase-8 activation
at 24 h of treatment (Figure 5A), increased caspase-9 (Figure
5B), and caspase-3 activation (Figure 5C) from 6-48 h of
treatment. These results indicate that caspase-3, -8 and -9 are
involved in fisetin-induced cell apoptosis of HSC3 cells in vitro.
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Figure 4. Fisetin induced reactive oxygen species (ROS) and Ca2+ production and reduced the mitochondrial membrane potential (MMP) in HSC3
cells. Cells (5×104 cells/ml) were treated with fisetin (40 μM) for different time periods. Cells were isolated and then were re-suspended in 
500 μl of 2’,7’-dichlorfluorescein-diacetate (10 μM) for 30 min for determination of ROS (A), re-suspended in 500 μl of fluo-3 acetomethoxyester
(2.5 μg/ml) for 30 min for determination of intracellular Ca2+ concentration (B), and re-suspended in 500 μl of 3,3’-dihexyloxacarbocyanine iodide
(4 μmol/l) for 30 min for determination of MMP (C) as described in the Materials and Methods section. Significant differences at *p<0.05, **p<0.01,
and ***p<0.001 between fisetin-treated groups and the control as analyzed by Dunnett test.



Fisetin altered expression of apoptosis-associated proteins
in HSC3 cells. HSC3 cells were treated with 40 μM fisetin
for different time periods and then apoptosis-associated
proteins were examined and quantified with western blotting.
The results show that fisetin significantly increased the
expression of BID, BAD, BAK, BAX (Figure 6A), AIF,

ENDO G, cytochrome c, APAF1, cleaved form of caspase-9
(Figure 6B), cleaved form of caspase-3, caspase-6 and PARP
(Figure 6C), FAS, FAS-ligand and cleaved form of caspase-
8 (Figure 6D), cleaved form of ATF-6β, calpain 1, caspase-
4 and GRP78 (Figure 6E), but reduced the expression of
MCL1, BCL2, BCL-x (Figure 6A), and XIAP (Figure 6C).
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Figure 5. Fisetin induced the activity of caspase-3, caspase-8 and caspase-9 in HSC3 cells. HSC3 cells (5×104 cells/ml) were plated in a 12-well
plate and treated with 40 μM fisetin for 0, 6, 24 and 48 h then cells were harvested and re-suspended in 25 μl of 10 μM substrate solution containing
CaspaLux8-L1D2 for caspase-8 (A), CaspaLux9-M1D2 for caspase-9 (B) or PhiPhiLux-G1D1 for caspase-3 activity determinations (C) before being
incubated at 37˚C for 60 min. After incubation, all samples were washed with PBS and caspase activities were analyzed by flow cytometry as
described previously. Significant differences at *p<0.05, **p<0.01, and ***p<0.001 between fisetin-treated groups and the control as analyzed by
Dunnett test.



These results indicate that fisetin induces apoptotic cell death
of HSC3 cells through endoplasmic reticulum (ER) stress
and mitochondria-dependent pathways. 

Fisetin altered the translocation of apoptotic-associated
proteins in HSC3 cells. In order to further confirm fisetin
effects, we studied the translocation of cytochrome c, AIF,
and Endo G in HSC3 cells. Cells were treated with or
without 40 μM of fisetin for 24 h, and were then stained by
anti-cytochrome c, -AIF and -ENDO G and examined by
confocal laser microscopic systems and results. The results
showed that fisetin increased cytochrome c (Figure 7A), AIF
(Figure 7B) and ENDO G (Figure 7C) release from
mitochondria into the cytoplasm when compared to the
control group.

Discussion

It is well known that many flavonoids have antitumor or
growth-suppressive capacity against various human tumor
cell lines and fisetin is a flavonoid. Numerous reports have
shown that fisetin induced cytotoxic effects on many human
cancer cell lines through cell-cycle arrest and apoptosis (20,
22-29), however, there is no report demonstrating that fisetin
induces apoptosis of human oral cancer cells, therefore, we
investigated the cytotoxic effects of fisetin on HSC3 human
oral cancer cells in vitro. It is well documented that the best
strategy for anticancer drugs is to induce cancer cell
apoptosis. The induction of apoptosis in cancer cells by
fisetin may be one of its critical characteristics as a
chemopreventive agent. Herein, we found that fisetin i)
reduced the percentage of viable cells (Figure 1); ii) induced
chromatin condensation (Figure 2) and DNA damage
(apoptotic cell death) (Figure 3); iii) increased ROS and Ca2+
levels and reduced Ψm (Figure 4); iv) increased the
activities of caspase-3, -8 and -9 (Figure 5); v) increased
expression of pro-apoptotic proteins BAX, BAD and BAK,
AIF, ENDO G and cytochrome c, cleaved caspases and
reduced anti-apoptotic proteins BCL2 and BCL-x and XIAP
(Figure 6); vi) induced release of cytochrome c, AIF and
ENDO G from mitochondria into the cytoplasm (Figure 7). 

It is well known that apoptotic cell death play a role in
maintaining tissue homeostasis and eliminating unnecessary
cells. Furthermore, the dysregulation of apoptosis is pivotal
to tumorigenesis and cancer development. We used several
methods, including DAPI and comet staining, to show that
fisetin induced apoptosis of HSC3 cells. DAPI staining in
cancer cells has been used as a method to measure apoptotic
cell death (39, 40). We found that fisetin increased the
productions of ROS and Ca2+ in HSC3 cells (Figure 4A and
B). It was reported that chemotherapeutic agents induced
necrotic or apoptotic cell death in cancer cells via the
generation of ROS (41). But another report showed that

fisetin treatment of A375.S2 melanoma cells resulted in a
significant decrease in ROS level (28), while another reported
that fisetin stimulated generation of ROS in U266 multiple
myeloma cells and induced apoptosis through activation of
AMP-activated protein kinase pathways in a ROS-dependent
manner (42). Thus, based on these observations, fisetin-
induced modulation of ROS may be cell type-dependent. It
was reported that any stress negatively impacts upon the
intracellular calcium level, which can trigger ER stress (43);
ER stress sensor protein GRP78 can be useful therapeutic
target to enhance tumor cell death (43). Numerous evidence
has shown that anticancer drugs induce cell apoptosis through
dysfunction of mitochondria or reduction of Ψm (43-45). The
results from our flow cytometric assay showed that fisetin
reduced Ψm in HSC3 cells (Figure 4C). ROS and
mitochondria play an important role in the stimulation of
apoptosis, through a mechanism known as the intrinsic
signaling pathway (46, 47). It was reported that fisetin plays
a key role in the loss of Ψm leading to apoptosis and
inhibiting tumor growth (48). The accumulation of excessive
ROS leads to nuclear DNA damage, followed by disruption
of the Ψm and release of cytochrome c into the cytosol,
ultimately leading to apoptosis (47). Thus, we suggest that
fisetin induces apoptosis of HSC3 cells via a mitochondria-
dependent pathway. 

Caspases, cysteinyl aspartate-specific proteases, are
involved in anticancer drug-induced cancer cell apoptosis,
and can be activated during apoptosis in a self-amplifying
cascade (49, 50). Our results revealed that fisetin
significantly increased caspase-3, -8 and -9 expression
(Figure 5), showing the involve¬ment of caspases in
apoptosis of HSC3 cells. In HeLa human cervical
ade¬nocarcinoma cells, it was reported that fisetin exposure
led to both caspase-8 and caspase-3 activation (27). It is well
documented that activations of both caspase-8 and caspase-
9 trigger both the extrinsic and intrinsic cell apoptotic
pathways (51-53). Our findings were confirmed by western
blot analysis, showing the expression of cleaved caspase-3,
-8 and -9 (Figure 6B-D) proteins were significantly
increased. Activation of caspase-8 is closely related with
apoptosis signaling through the extrinsic pathway (54) and
activated caspase-8 links to the mitochondrial pathway
through cleavage of the BCL2 family members from BID to
the truncated p15 BID (tBID) (55). Overall, our findings
indicate that activation of the intrinsic apoptotic pathway in
HSC3 cells after exposed to fisetin as a result of unresolved
ER stress (GRP78 and cleaved form of ATF-6β; Figure 6E)
occurs through members of the BCL2 family which control
the release of cytochrome c from the mitochondria. 

It was reported that BCL2 family proteins are implicated
in the regulation of mitochondrial permeability transition
pore opening and release of cytochrome c from mitochondria
into the cytosol (56) followed by activation of caspase-3 and

Shih et al: Fisetin Effects on Human Oral Cancer Cells

1109



apoptosis (57-59). Our results indicated that fisetin up-
regulated the expression of BAX, BAD and BAK (Figure
6A), which are pro-apoptotic proteins, and caused down-
regulation of BCL2 and BCL-xL, which are anti-apoptotic

proteins (Figure 6A). Therefore, alterations of BAX/BCL2
lead to dysfunction of mitochondria causing them to release
cytochrome c (Figure 6B), and increased the active form of
caspase-3 protein that led to apoptosis in HSC3 cells.
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Figure 6. Continued



Moreover, our data show that fisetin up-regulated GRP78
and cleaved form of ATF-6β that induced ER stress in HSC3
cells (Figure 6E). 

Our results shown in Figure 6B indicated that fisetin
increased the expression of cytochrome c, AIF and ENDO G
in HSC3 cells, and by confocal laser microscopy examination
we also found that fisetin promoted the release of cytochrome
c, AIF and ENDO G in HSC3 cells from mitochondria into
the cytoplasm (Figure 7-C). Based on these observations, we
suggesting fisetin-induced apoptotic cell death may also occur
through mitochondria-dependent pathway in HSC3 cells.

In conclusion, we examined the cytotoxic effects of fisetin
on human oral cancer HSC3 cells in vitro and found that
fisetin reduced viable cells through the induction of
apoptosis. Fisetin triggered apoptotic cell death via the
induction of ROS, ER stress and by disrupting the
mitochondria membrane potential, which caused cytochrome
c, AIF and ENDO G release from mitochondria into the
cytosol. Cytochrome c subsequently activated caspase-9 and

downstream executioner caspase-3, leading to apoptosis.
Apoptosis via the extrinsic pathway, which involves caspases
(caspase-8), and the intrinsic pathways leading to AIF and
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Figure 6. Fisetin affects expression of apoptosis-associated proteins in
HSC3 cells. Cells were treated with 40 μM fisetin for 0, 12, 24 and 48 h
and then total proteins were quantitated and apoptosis associated proteins
were measured by western blotting as described in the Materials and
Methods section. A: Myeloid cell leukemia-1 (MCL1), B-cell lymphoma
2 (BCL2), apoptosis regulator BCL-X (BCLX), BH3-interacting domain
death agonist (BID), BCL2-associated agonist of cell death (BAD), BCL2
antagonist/killer (BAK), BCL2-associated X (BAX). B: Apoptosis-inducing
factor (AIF), endonuclease G (ENDO G), cytochrome c, apoptotic
peptidase-activating factor 1 (APAF1), caspase-9. C: X-linked inhibitor
of apoptosis (XIAP), caspase-3, caspase-6 and poly-(ADP-ribose)
polymerase (PARP). D: Fas cell surface death receptor (FAS), FAS-ligand
and caspase-8. E: Activating transcription factor 6-beta (ATF-6β),
calpain 1, caspase-4 and glucose-regulated protein 78 (GRP78). 

Figure 7. Fisetin affects the translocation of apoptotic-associated proteins
in HSC3 cells. Cells were treated with 40 μM fisetin for 24 h and cells
were stained by antitobodies to cytochrome c (A), apoptosis-inducing
factor (AIF) (B) and endonuclease G (ENDO G) (C) and then were stained
with a secondary antibody and photographed by a Leica TCS SP2
confocal laser microscopic system as described in the Materials and
Methods section. 



ENDO G release from mitochondria causing apoptosis are
summarized in Figure 8.
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