
Abstract. Background/Aim: Neurogenesis is a complex
process to generate new neurons from neural progenitor
cells. Neural progenitor cells are observed in two principal
neurogenic regions of the forebrain, the subventricular zone
and the subgranular zone of the hippocampal dentate gyrus.
The cerebral cortex also plays a role as the neurogenic zone
under hypoxic conditions. Hypoxia has many effects on
neurogenesis, but the effect of chronic prenatal hypoxia on
paired box 6 (Pax6), a protein that plays an important role
in neurogenesis, has not been studied in vivo. In the present
study, we used a rat model to evaluate the effect of hypoxia
on Pax6 immunoreactivity. Materials and Methods: Hypoxia
status was induced by unilateral uterine-artery ligation in
pregnant rats. The fetuses were obtained from the uterine
horn on the twenty-first day of pregnancy and
immunohistochemistry of the fetal brain was examined
regarding anti-hypoxia-induced factor 1α and Pax6
antibody. Results: The density of HIF1α-IR cells in the
hypoxia group was greater than the density of HIF1α-IR
cells in the control group in the subventricular zone,
subgranular zone, and cerebral cortex. The density of 
Pax6-IR cells in the hypoxic group was higher in both the
subventricular zone and the subgranular zone than in the
control group. However, the density of Pax6-IR cells in the
cerebral cortex was lower in fetuses that experienced
hypoxia than in control fetuses. Conclusion: These results
suggest that Pax6 immunoreactivity showed diverse patterns

in the neurogenic zone after prenatal hypoxia and Pax6 has
important effects on neurogenesis.

Neurogenesis is a complex process by which new neurons
are generated from neural progenitor cells. Neural progenitor
cells exist in two principal neurogenic regions of the
forebrain, the subventricular zone (SVZ) and the subgranular
zone (SGZ) of the hippocampal dentate gyrus (1, 2).
Multipotent neural progenitor cells in those regions can give
rise to neurons, astrocytes, and oligodendrocytes (3).
Progenitor cells in the SGZ of the dentate gyrus proliferate
and migrate to the dentate gyrus to differentiate into neuron
cells (4). Neural stem cells located in the SVZ move to the
olfactory bulb and cortex via the rostral migratory stream
(RMS) (5).

The protein paired box 6 (Pax6) plays an important role
in neurogenesis, affecting cell proliferation, differentiation,
and survival during the development of the central nervous
system (6, 7). Pax6 is expressed in early progenitor cells and
has a spatiotemporal pattern that is involved in brain
patterning (8, 9). Pax6 is in the paired box family of proteins
and is cloned on the basis of its homology to the Drosophila
gene (10). Pax6 is a conserved transcription factor containing
two DNA-binding domains, a paired domain and a paired-
type homeodomain (11). Pax6 was found in the nucleus of
the ventricular zone cells, which are most likely radial glial
cells (12). Pax6 was also observed in the embryonic
neuroepithelium in the adult brain, including the SGZ and
the SVZ (13).

Hypoxia has many effects on neurogenesis. Intriguingly,
it appears to promote rather than repress neurogenesis. For
example, after transient hypoxic injury, neurogenesis was
promoted in prenatal rat brain (14). After neonatal ischemic
injury, neurogenesis was triggered in the SVZ (15).
However, acute hypoxic injury caused cell death and
apoptosis (16). In the SVZ, neural stem cells and
oligodendrocyte progenitors are susceptible to hypoxia
(17). Some studies have suggested that neuronal loss by
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hypoxic insults was improved by the neurotrophic factor or
erythropoietin (18, 19).

Some studies have reported a correlation between Pax6
expression and hypoxic conditions (20). However, the effect
of chronic prenatal hypoxia on Pax6 in vivo has not been
studied. The present study exposed a rat model to hypoxia to
evaluate the effect of hypoxia on Pax6 immunoreactivity (IR).

Materials and Methods

Animals and surgery to induce hypoxia. Sprague-Dawley (SD) rats
were supplied from a certified breeder (Damul Laboratory Animals,
Daejeon, Republic of Korea) and were fed ad libitum. Rats were
mated and confirmed pregnant by checking the vaginal plug. Hypoxic
status was created by unilateral uterine-artery ligation in pregnant SD
rats, as described in a previous study (21). Briefly, the animals were
anesthetized with Zoletil (10 mg/kg; Virbac, Nice, France) and
xylazine (0.15 mg/kg; Bayer, Leverkusen, Germany) on the sixteenth
day of pregnancy. Each rat’s lower abdomen was shaved and a
midline incision was performed below the umbilicus, applying aseptic
technique. Uterine arteries were located in the fat pad of the uterine
horns. The ligation was performed with silk sutures (4/0) on one of
the uterine arteries at the cervical end of the site. After ligation, the
abdomen was sutured with nylon and disinfected using povidone–
iodine solution. This protocol was demonstrated in a previous study
to significantly decrease uterine blood flow and fetal body weight,
inducing growth retardation in the fetal rat (22). All animal
experiments were performed according to the guidelines of Chosun
University Institutional Animal Care and Use Committee. 

Tissue preparation. The animals were sacrificed on the twenty-first
day of pregnancy. The fetuses were obtained from the uterine horn
and post-fixed with 4% paraformaldehyde (PFA) solution. Fetuses
removed from the artery ligation horn were categorized as the
hypoxia group (n=10) and fetuses removed from opposite horn were
categorized as control group (n=10). The fetal brains were separated
from the bodies and kept in fresh 4% PFA at 4˚C overnight. The
cerebrums were washed with distilled water. Dehydration was
performed with a series of ethanol solutions. The brains were
embedded in paraffin. Sagittal sections of cerebrum were cut
serially and three sections which were separated by 300 μm were
selected from each animal. These sections were put on gelatin-
coated slides (Fisher Scientific, USA).

Immunohistochemistry. Deparaffinized sections were washed with
0.1 M phosphate-buffer saline (PBS; pH 7.4). Slides were cooked
in a microwave oven for 10 min and flooded in 0.01 M sodium
citrate buffer (pH 6.0). The slides underwent a process blocking
endogenous peroxidase activity with 0.3% hydrogen peroxide. After
the sections were rinsed with PBS, the slides were incubated with
primary antibodies overnight at 4˚C: rabbit anti-hypoxia-induced
factor 1α (HIF1α; 1:500, Abcam, Cambridge, UK) and rabbit
polyclonal Pax6 (1:500, Abcam, Cambridge, UK). On the following
day, appropriate secondary antibodies were used and the avidin-
biotin-peroxidase (ABC) detection system (Vectastain ABC Elite
Kit, Vector Laboratories, Burlingame, CA, USA) was used to
visualize immunoreactivity. Counterstain was achieved with thionin
and the slides were mounted with PolyMount mounting medium
(Polysciences, Warrington, PA, USA).

Quantification of IR cells. The sections were analyzed with the aid
of a light microscope (BX41, Olympus) connected to a digital CCD
camera. Each section was subdivided randomly into five areas in
the cerebral cortex, SVZ and SGZ. The density of HIF1α- and
Pax6- IR cells within a defined square region in each area were
measured manually by two investigators who were blinded to the
animal status.  

Statistical analysis. We analyzed all data using the Statistical
Package for Social Sciences (Information Analysis Systems, SPSS,
USA). All measurements were compared between the hypoxia group
and the control using Student’s t-test. The level of statistical
significance was set at p<0.05.

Results
HIF1α immunoreactivity. The density of HIF1α-IR cells in
the cerebral cortex was significantly greater in the hypoxia
group than in the control group (Figures 1 and 2).
Similarly, the densities of HIF1α-IR cells in the SVZ and
in the SGZ of the dentate gyrus, where the neurogenic zone
is located, differed between the hypoxia and control groups
(Figures 1 and 2).

Pax6 immunoreactivity. Interestingly, in the cerebral cortex,
the density of Pax6-IR cells was significantly lower in
fetuses that experienced hypoxia than in the control group
(Figures 3 and 4). However, the density of Pax6-IR cells was
greater in the SVZ in the hypoxia group than in the control
group. The results for the SGZ and the SVZ were similar
(Figures 3 and 4).

Discussion

The immunoreactivity of Pax6 was observed in three
regions, the SVZ and the SGZ of the dentate gyrus and the
cerebral cortex. Both the SVZ and the SGZ are neurogenic
zones, as is the cerebral cortex, particularly under hypoxic
conditions (23).

The density of HIF1α-IR cells was higher in all three
zones, the SVZ, the SGZ, and the cerebral cortex, than the
density of HIF1α-IR cells in the control. HIF1α consists of a
nuclear protein complex and can bind with hypoxia-
responsive enhancers (24). HIF1α exhibited striking
expression during conditions of hypoxia-ischemia (25).
However, HIF1α expression rapidly declined with return to
normoxia (26). These findings suggested that the increasing
density of HIF1α-IR cells was related to the hypoxic state of
the experimental group.

In the SVZ, the density of Pax6-IR cells was greater in the
hypoxic group than in the control group. One study observed
that neurological loss after hypoxic injury was improved by
the activation of the Wnt/β-catenin signaling pathway, which
was mediated by Pax6 (27). Pax6 expression was observed
in proliferating SVZ progenitors (28). Another study showed
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that hypoxic insult increased proliferation in SVZ-derived
neural progenitor cell cultures and also increased Pax6
expression in SVZ tissue (29). These findings suggest that
the increasing density of HIF1α-IR cells was correlated with
the induction of neurogenesis after hypoxia.

In the SGZ, the density of Pax6-IR cells was also greater
in the hypoxic group than in the control group. Some previous
studies have determined that Pax6 plays a role in hippocampal
neurogenesis. Pax6 is required to regulate the balance
progenitor cell maintenance and neuronal progression in adult
hippocampal neurogenesis (30). Overexpression of Pax6 led
neuronal precursor cells to early maturation (31). However,
there is insufficient evidence to explain the relationship
between Pax6 and hypoxia in the SGZ.

In the cerebral cortex, the density of Pax6-IR cells was
lower in the hypoxic group than in the control group. Low
Pax6 expression was associated with disruption of cell
migration, neuronal fate, and granule cell differentiation (32,
33). A previous study showed that chronic prenatal hypoxia
caused cortical neuronal loss (34). Regarding migration of
neural stem cells from the SVZ to the cerebral cortex, the
alteration of Pax6 expression is related to survival of
neuronal cells in the cerebral cortex.

Conclusion

Together, these results suggest that Pax6 immunoreactivity
demonstrates diverse patterns in the neurogenic zone after
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Figure 1. HIF1α immunoreactivity (brown color) in the cerebral parietal cortex, SVZ, and SGZ. HIF1α-IR cells in the hypoxia group were more in
density than in the control group. Scale bars=100 μm.

Figure 2. Densities of HIF1α-IR cells in the cerebral cortex, SVZ, and SGZ in control and hypoxia fetuses. Density of HIF1α-IR cells was higher
in hypoxia fetuses than in the controls in all three zones, the cerebral cortex, the SVZ, and the SGZ. *p<0.005.



prenatal hypoxia, due to the various effects of Pax6 on the
diverse processes of neurogenesis, including cell survival.
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