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Abstract

Purpose—To enable highly accelerated distortion-free MRI near metal by separating on-and off-

resonance to exploit the redundancy of slice-phase encoding for the dominant on-resonance 

component.

Methods—Multispectral MRI techniques resolve off-resonance distortions by a combination of 

limited excitation bins and additional encoding. Inspired by robust principal component analysis, a 

novel compact representation of multispectral images as a sum of rank-one and sparse matrices 

corresponding to on- and off-resonance respectively is described. This representation is used in a 

calibration-free and model-free reconstruction for data with an undersampling pattern that varies 

between bins. Retrospective undersampling was used to compare the proposed reconstruction and 

bin-by-bin compressed sensing. Hip images were acquired in 8 patients with standard and 

prospectively undersampled 3D MSI, and image quality was evaluated by two radiologists on a 5-

point scale.

Results—Experiments with retrospective undersampling showed that the enhanced sparsity 

afforded by the separation greatly reduces reconstruction errors and artifacts. Images from 

prospectively undersampled MSI offered 2.6–3.4-fold (18–24-fold overall) acceleration compared 

to standard MSI with parallel imaging and partial-Fourier acceleration with equivalence in all 

qualitative assessments within a tolerance of one point (P < 0.004).

Conclusion—3D MSI can be highly accelerated by varying undersampling between bins and 

separating on- and off-resonance.

Keywords

metallic implants; metal artifacts; compressed sensing; low rank

Introduction

3D multispectral imaging (MSI) techniques that use slice phase encoding correct most 

distortion in MRI near metallic implants. In slice encoding for metal artifact correction 

(SEMAC) (1), 2D slices are excited and imaged with 3D phase encoding to resolve slice 
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distortion induced by off-resonance, while in-plane distortion is corrected using a view-

angle tilting (VAT) technique (2). Although a frequency-selective approach, multi-

acquisition variable-resonance image combination (MAVRIC) (3), can also provide 

distortion-free images near metal, SEMAC and the MAVRIC-SEMAC hybrid (4), use 

spatially-selective excitation to limit the required amount of phase encoding and reduce scan 

time (5). In 3D MSI, a bin refers to one of multiple excited volumes (e.g. 2D slices or 

frequency offsets) that are encoded in 3D and combined to form a volumetric image with 

reduced distortion. The additional bin dimension required to resolve metal-induced slice 

distortion results in significantly longer scan times than 2D or 3D fast spin echo techniques 

not offering metal artifact suppression.

Most existing methods for constrained 3D MSI offer approximately twofold acceleration and 

are limited as they do not exploit the redundancy between bins (6–9). One approach has 

been proposed to exploit the redundancy between bins in 3D MSI methods based on slice 

phase encoding, and it explicitly represents the nonlinear relationship between quantitative 

parameters (e.g. magnetization, field map, profile width) and undersampled k-space data 

(10). However, model-based reconstruction can be less robust due to modeling errors that are 

specific to sequence parameters and faces a challenging non-convex optimization problem. 

Existing methods also do not exploit the redundancy of slice phase encoding associated with 

the dominant on-resonance signal. Other work has exploited the spatial distribution of off-

resonance in MAVRIC using a calibration procedure across bins but has limited generality 

(11).

A second challenge is to effectively combine complementary acceleration methods. Signal 

loss from field-inhomogeneity-related dephasing is reduced in 3D MSI with spin echo 

sequences (FSE, TSE, RARE), which produce images with slow phase variation and thus are 

typically accelerated with partial Fourier. Parallel imaging offers additional acceleration, but 

estimating coil sensitivities in 3D MSI is challenging, and robust data-driven parallel 

imaging is generally required (12). However, the required calibration for parallel imaging 

and partial Fourier introduces significant overhead (≈ 6.5% of fully-sampled scan time), as 

through-plane resolution is often limited (e.g. 24 slices), and to reduce these requirements, 

methods have been proposed using external calibration (13). Existing acceleration methods 

have not demonstrated their efficacy in combination with both parallel imaging and partial 

Fourier reconstruction.

This work first addresses the challenges of partial Fourier and parallel imaging with the use 

of a novel calibration-free technique and a flexible optimization framework. With these 

tools, a novel calibration-free and model-free technique to accelerate 3D MSI is proposed to 

exploit the redundancy of slice-phase encoding for the dominant on-resonance signal. 

Inspired by robust principal component analysis (14) (RPCA), our technique is based on a 

compact representation of multispectral images as a sum of rank-one and sparse matrices 

corresponding to on- and off-resonance signals. The representation is data-dependent, 

making it independent of many sequence parameters, and it relies only on the sparsity of off-

resonance and signal separability of the on-resonance signal. It is also built on an 

optimization framework that enables integration with other constraints such as parallel 

imaging and partial Fourier acceleration.
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Theory

Image model

We first describe the MRI signal in 3D MSI based on slice phase encoding. We refer to 

excited slices as “bins.” The excited signal in a voxel x, y, z and bin b can be written

(1)

where s0(x, y, z) is the signal at voxel (x, y, z), and  is the RF profile 

weighting for bin b with frequency offset fb, Gz is the slice select gradient strength, and γ is 

the Larmor frequency.

Consider a decomposition of the RF profile as a linear combination of the bin-profile from 

on-resonance and a residual from off-resonance terms of the form

(2)

For δRF to represent only off-resonance, additional constraints must be specified that make 

the decomposition unique. Multiple choices such as sparsity constraints on δRF are possible 

and will be described subsequently. Substituting this into Eq. 1 and defining e(x, y, z, b) = 

δRF(x, y, z, b)s0(x, y, z) yields

(3)

At a fixed z, the on-resonance signal can be expressed as the product of a function of b and a 

function of x, y. On-resonance bin profiles are spanned by RF0, and in the presence of metal, 

off-resonance induces a sparse error. Rather than explicitly representing RF0, our approach 

will be to model only the separability expressed by the first term in Eq. 3 and effectively 

derive the on-resonance bin profile from the data.

We now describe Eq. 3 in terms of matrix constructions. For a spatial location z ∈ {1, 2, … , 
Nz}, define the Casorati matrix

(4)
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where sz,b denotes a column vector consisting of all elements of the array s extracted at slice 

z and bin b ∈ {1, 2, … , Nb}. Due to the separability of Eq. 3 at each z, each Cz is a rank 1 

matrix in the absence of off-resonance, which corresponds to no out-of-slice excitation. 

Metal implants only affect a small region of space in the overall imaging volume, and thus 

only a small subset of the rows of Cz. Under the assumption that Cz is rank 1, on- and off-

resonance can be separated by solving the following minimization problem

(5)

where JL and JS are penalties encoding properties of the on-resonance and off-resonance 

signals. One choice of JL is a nonconvex regularizer encoding the z-dependent rank-one 

constraint:

(6)

Alternatively, the rank constraint can be replaced by its convex envelope, the nuclear norm. 

Another choice of JS is a sparsity-inducing penalty such as an ℓ1-norm, which is used in 

robust principal component analysis (RPCA) (14, 15).

Although computing the decomposition via Eq. 5 necessitates an iterative optimization 

procedure in general, one exception is the combination of JL given by Eq. 6 and the choice 

of , the Frobenius norm. In this case, classical Principal Component Analysis 

(PCA) solves Eq. 5 exactly using the singular value decomposition. The result from PCA is 

shown for an MSI dataset in Figure 1. The first principal component contains 93% of the 

energy, which appears away from metal, and the residual appears near the metal where the 

off-resonance is present.

The energy compaction provided by PCA can also be seen from rate-distortions plots 

showing root-mean-squared-error vs. compression ratio. Plots were generated with the 

method of (16) to the images in Figure 1. To perform data compression of Cz matrices with 

Lz + Sz at a compression ratio of C, Lz matrices were obtained by truncating the SVD to 

rank 1, as in Figure 1, 2, and 3, and Sz were obtained from subtracting Lz from Cz and 

retaining only the largest n/C−nL voxels, where n is the number of voxels in the image, nL = 

Nzr(Nb+Ny−r) and r is the rank of all Cz matrices. Compression using the sparse model was 

performed with r = 0 (i.e. thresholding the image). The improved rate-distortion 

performance of a rank-one-plus-sparse model shown in Figure 2 suggests that it most 

compactly represents the images and has potential to allow acceleration factors.

Although classical PCA shows that the sparsity of off-resonance can be observed in images, 

its extension to reconstruction from undersampled data must make the a priori assumption 

sparsity of the off-resonance with the use of a sparsity-inducing penalty for JS. These 
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assumptions must also be coupled with parallel imaging and partial Fourier acceleration, and 

to provide the necessary framework, a calibration-free approach is first introduced.

Calibration-free Phase-constrained Parallel Imaging

Calibration-free parallel imaging has potential to overcome limitations on the sampling 

patterns required for highly accelerated 3D MSI and the challenge of accurately estimating 

coil sensitivity maps from different bins. CLEAR offers computationally inexpensive image-

domain-based calibration-free parallel imaging (17).

The partial Fourier acquisitions used in 3D MSI conventionally require low-resolution 

calibration to demodulate a slowly-varying image phase. Due to the nature of the image-

domain approach of CLEAR and lack of calibration data, it is necessary to encourage slow 

phase variation in the solution while maintaining low computational expense. To achieve 

this, we modify the matrix construtions in CLEAR as follows.

Let an image at channel c ∈ {1, … , NC} be represented by the vector Xc and concatenate 

these vectors in the matrix

(7)

Let Sc be the vectorized sensitivity of channel c and S be the concatenation

(8)

X can be written as X = S diag |X0|ei∠X0, where |X0| and ∠X0 are the magnitude and phase 

of some underlying magnetization X0. Let Rb be an operator that extracts a small B × B 
block from a set that uniformly tile the image. Consider the matrix

(9)

(10)

Analogous to the original CLEAR method, Eq. 9 is shown to be the product of a fullrank 

matrix and a low-rank matrix , which can be 

viewed as 2NC real-valued channel sensitivities. A modifed regularizer is
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(11)

The regularizer is very similar and perhaps equivalent to applying a CLEAR reconstruction 

to the original and virtual conjugate coils (18), which offers the convenience of working 

only with complex variables in optimization methods.

To reduce the computation required, a joint coil compression procedure can be used prior to 

the reconstruction (Supporting Figure S1).

Robust PCA for Accelerated 3D MSI

Taking inspiration from other low-rank-plus-sparse models used in MRI (16, 19), we extend 

the 3D MSI image model in Eq. 5 to enable reconstruction from undersampled data. Our 

strategy couples the redundancy associated with on-resonance with calibration-free parallel 

imaging and partial Fourier with the use of the term given by Eq. 11.

Rank-one and sparse components can be reconstructed from undersampled k-space data Y 
by solving

(12)

where Rz is the linear operator extracting slice z from the multi-bin image (Lz in Eq. 5), D is 

a diagonal operator with 1 and 0 on the diagonal at acquired and non-aquired k-space 

locations respectively, ℱis a Fourier transform, T is a sparsifying transform (e.g. wavelet) 

applied coil-by-coil, JL is given by Eq. 6, and the fourth term is the penalty term for phase-

constrained parallel imaging described subsequently, and || · ||2,1 is the mixed ℓ1 − ℓ2 norm 

exploiting joint multicoil sparsity.

Equation 12 couples phase-constrained parallel imaging and the separation into rank-one 

and sparse components through the use of the fourth term, which requires that L+S satisfy 

the a priori assumptions of parallel imaging.

If JL were convex, a globally optimal solution could be obtained with a constrained convex 

optimization method such as the Alternating Direction Method of Multipliers (ADMM) 

(20). Here, we take the approach of incorporating the nonconvex regularizer in Eq. 6, which 

eliminates a regularization parameter for the rank constraint and incorporates knowledge of 

the rank of Cz. This strategy is described in the Appendix. Although it is closely associated 

with a convex optimization problem, ADMM can be considered a local optimization method 

in this case.

Robust PCA for 3D MSI has the advantage of making minimal assumptions. In particular, 

the separability (rank-one property) of the signal holds independent of the RF slice profiles 

and value of RF0. Given that a large number of on-resonance voxels are present at each z-
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location, exactly knowing RF0 is not expected to be critical, even in the presence of off-

resonance. A simple model is imposed in the spatial and spectral domain for the on-

resonance, but not for the off-resonance, which is considerably more challenging to model 

accurately due to rapid spatial variations of frequency near metal.

Variable density Complementary Poisson-disc sampling

An appropriate sampling strategy should allow partial Fourier acceleration, provide good 

conditioning for parallel imaging, and ensure that the aliasing pattern varies along bins with 

noise-like properties. Poisson-disc sampling is one sampling strategy that provides both 

uniform and random sample distributions and has empirically performed well in joint CS 

parallel imaging reconstruction. In multispectral imaging, minimum spacing of samples in 

the bin dimension should be imposed due to overlap in the RF profiles for adjacent bins, 

similar to dynamic imaging. Here, we use the complementary Poisson-disc (CPD) sampling 

approach previously proposed for dynamic MRI to segment k-space into sampling patterns 

that have a minimum distance between samples in ky − kz–bin space (21). This approach, 

illustrated in Figure 3, also allows a flexible choice of sampling density as a function of k-
space radius. Other approaches based on minimum inter-sample distance criteria may also 

be well-suited to 3D MSI (22).

Methods

Initial experiments with retrospective undersampling were used to show the impact of 

modifying CLEAR for partial-Fourier acquisitions and to compare RPCA-accelerated MSI 

to a bin-by-bin CS reconstruction. Next, prospectively undersampled 3D MSI was compared 

to standard MSI in 8 patients, and evaluated by two musculoskeletal radiologists using four 

image quality criteria.

Calibration-free Parallel Imaging

To demonstrate the impact of extending CLEAR to reconstructing images with slow phase 

variation, experiments with retrospective undersampling were performed. Images were 

reconstructed by solving

(13)

where J(X) was substituted for Eq. 11 and the penalty from CLEAR unmodified for partial 

Fourier to evaluate the impact of separating real and imaginary parts in a partial Fourier 

acquisition. The sharpness and spatial frequency content of the two reconstructions were 

compared to determine if the smooth phase could be demodulated.

Experiments with Retrospective Undersampling

To compare the accuracy of RPCA and bin-by-bin CS and the impact of the additional 

regularization term used in RPCA to induce the separation, initial experiments with 

retrospective undersampling were performed with a range of reduction factors. A subject 
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with a hip implant was scanned with standard MSI. Scan parameters were 3T; Coronal; 

FOV=40×40cm2; TE=14.1ms; TR=4 seconds; radial echo-train ordering; echo-train length 

(ETL) 20; matrix size = 512×256×24; 2×2 uniform subsampling for autocalibrating parallel 

imaging; half Fourier; elliptical k-space coverage. Data accelerated with 2 × 2 uniform 

subsampling was reconstructed with an autocalibrating parallel imaging method (23) to 

provide a “fully-sampled” set of k-space data, which were retrospectively undersampled 

using variable density complementary Poisson-disc sampling patterns with partial ky 

acceleration. Although “fully-sampled” data had lower SNR due to autocalibrating parallel 

imaging, this was done to allow clinically feasible scan times.

Data was reconstructed with RPCA Eq. 12 and a bin-by-bin compressed sensing parallel 

imaging reconstruction performed by solving

(14)

which does not include the regularization term used in RPCA to induce the separation.

Non-overlapping 8 × 8 blocks with periodic boundary conditions were used in the penalty 

term Eq. 11 for both reconstructions. To allow fair comparison with the reference data, the 

nonacquired half of k-space was cropped after the optimization, and homodyne (24) was 

applied. Percentage root mean-square-error was used for quantitative image quality 

comparisons. Typical reconstruction times for bin-by-bin CS and RPCA in CPU-based 

implementations were 13 minutes and 14 minutes respectively.

Prospectively Undersampled Acquisition

8 patients with total hip replacements were examined using standard and prospectively 

undersampled MSI acquisitions with slice phase encoding. The same scan parameters were 

used in experiments with retrospective and prospective undersampling, with the exception of 

CPD undersampling instead of 2 × 2 autocalibrating parallel imaging for accelerated MSI. 

Prospectively undersampled MSI used variable density complementary Poisson-disc 

sampling. Acquisition times were 6–8.8min for standard MSI and 2–3.5 min for accelerated, 

a 2.6–3.4-fold reduction (18–24-fold overall).

Images from standard and accelerated 3D MSI reconstructed with RPCA and bin-by-bin CS 

(Eq. 14) were evaluated by two experienced musculoskeletal radiologists using a 5-point 

scale (1=nondiagnostic, 2=limited, 3=diagnostic, 4=good, 5=excellent) in five categories: 1) 

overall image quality, 2) sharpness near metal, 3) sharpness away from metal, 4) blockiness/

artificial appearance (5=not blocky), 5) signal loss artifacts near metal. A paired Wilcoxon 

test was used to assess the null hypothesis that accelerated MSI images reconstructed with 

each method were one point worse than standard MSI images. A P-value of 0.05 used as a 

criterion of statistical significance. Rejecting the null hypothesis indicates that accelerated 

images were the same or better than the original within a tolerance of one point.
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Interobserver agreement between the readers was analyzed for each criterion using weighted 

kappa coefficients. Weighted kappa coefficients were interpreted as almost perfect (0.8–1), 

substantial (0.6–0.8), moderate (0.4–0.6), fair (0.2–0.4), slight (0–0.2), and poor (<0).

Results

Calibration-free reconstruction

Images reconstructed from undersampled, partial ky-accelerated data shown in Figure 4 

show that CLEAR does not recover both halves of k-space, resulting in blurring. Modifying 

matrices in the CLEAR penalty to separate real and imaginary parts imposes slow phase 

variation, resulting in a symmetric recovery.

Experiments with Retrospective Undersampling

Figure 5 shows coronal images reconstructed with RPCA and bin-by-bin CS from data 

retrospectively undersampled at reduction factors of 16.0, 23.8, and 38.2. At high 

acceleration factors, bin-by-bin CS show blurring and an artificial appearance, while RPCA 

images appear sharper and show SNR loss. Figure 6 quantifies the reconstruction errors, 

showing that RPCA reconstructions have much lower RMSE over a range of reduction 

factors, with large differences at high reduction factors.

Prospectively Undersampled Acquisition

Figure 7 shows images from standard MSI and prospectively undersampled 3D MSI 

acquisitions reconstructed with RCPA and L and S components. Table 1 shows results of the 

paired Wilcoxon test. All null hypotheses were rejected, indicating that bin-by-bin CS and 

RPCA images are both at equivalent to standard MSI images within the tolerance of one 

point for all qualitative assessments.

Bin-by-bin CS reconstructions had lower mean scores for all qualitative assessments 

compared to RPCA. Some CS reconstructions showed blocky artifacts that were not seen in 

RPCA reconstructions (Figure 8). Both RPCA and CS received slightly lower scores for 

sharpness very close to metal than standard MSI.

Table 2 shows the results of interobserver agreement based on weighted kappa coefficients 

for all evaluation criteria. The two readers had substantial or almost perfect agreement in all 

categories except for signal loss near metal (fair to moderate agreement). For RPCA, all 

images received scores of 4 for blockiness/articial appearance, which yields an undefined 

kappa value.

Discussion

Although 3D MSI methods using slice phase-encoding do not directly encode on and off-

resonance separately, this work describes on-resonance in terms of a low-rank property, 

which can be demonstrated using classical PCA (Figure 1). Off-resonance can be 

characterized as a sparse error. Effects such as flip angle modulation, T2 decay, and the 

presence of water and fat may not be represented by a single bin profile shape. However, a 

rank-one-plus-sparse representation may be accurate enough for acceleration.
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The theory of RPCA describes two situations under which it fails to separate the two 

components: 1) the low rank part is sparse in the basis where the sparse part is represented 

and 2) the sparsity pattern of the sparse part is contained in one column or not sufficiently 

spread out (14, 25). In the latter case, it may negate the corresponding column of the low 

rank part without changing its rank. In 3D MSI, Lz may be approximately sparse in the 

standard basis when there is little slice overlap. However, the separation still works due to 

the fact that Sz is not an arbitrary sparse matrix and has columns that are not correlated with 

RF0. Off-resonance shifts the bin profile relative to RF0, causing it to not correlate with RF0 

and be represented in Sz. Lz is expected to accurately recover RF0 as its singular vector, 

since it represents the majority of columns, resulting in the most sparse Sz. The second 

situation does not pose a problem, since for the nonzero columns in Sz corresponding to off-

resonance voxels, the corresponding columns in Lz should be negated as a voxel could not 

be both on- and off-resonance.

The rank-one-plus-sparse representation of RPCA is more compact than the sparse 

representation used in bin-by-bin CS, and this accounts for the reduction in reconstruction 

errors (Figure 6). The acceleration factors shown in this work are 18 − 24-fold overall and 

approximately 3-fold compared to standard MSI, which makes use of parallel imaging, 

partial Fourier, and elliptical k-space coverage to allow acceleration factors of approximately 

7 overall. In the absence of off-resonance, acceleration up to the number of bins should be 

possible. Hip implants have moderate amounts of off-resonance, limiting the achievable 

acceleration factors to about 3.

While image quality scores indicate equivalence of standard and both accelerated MSI 

reconstructions, RPCA reconstructions received higher mean scores than CS reconstructions 

in all categories by both readers and did not show blocky artifacts of ℓ1-wavelet 

regularization (Figure 8). Sharpness scores indicated slight blurring in RPCA and CS 

reconstructions very close to metal. Moderate acceleration factors with balanced sampling 

requirements for L and S images may be required with greater amounts of off-resonance. 

Some patients in the study had conventional hip arthroplasties that contain large amounts of 

off-resonance, and higher acceleration compared to CS is expected when imaging 

resurfacing hip arthroplasties, smaller implants, or at lower field strengths, where most 

energy is represented in the L component.

One advantage of the RPCA formulation is that it makes minimal assumptions. The low-

rank-plus-sparse image model is not dependent on the slice profiles or their support. 

Knowing RF0 and spatial support would not further reduce the number of degrees of 

freedom in the representation and thus is not expected to yield an improvement. Since S is 

sparse and L has limited spatial support, a solution with limited spatial support is 

guaranteed. No assumptions are made about the spatial smoothness in the L component, and 

so it does not introduce blocky or cartoon-like artifacts seen in ℓ1-wavelet-based 

reconstructions. Even near metal, these artifacts do not appear in the S component due to the 

enhanced sparsity.

The CPD sampling strategy attempts to achieve sampling requirements for L and S. In the 

absence of off-resonance, the S component is zero, leaving only one bin profile scaling per 
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spatial location, a reduction in dimensionality equal to the number of bins that could 

potentially be matched in acceleration. In the absence of on-resonance and with L = 0, the 

reconstruction of S is equivalent to bin-by-bin CS, which is then a natural approach. The 

additional acceleration in kz is roughly limited either by the support of S or the number of 

bins for L. The overall accelerations allow scan times comparable to those of 2D-FSE, 

suggesting that accelerated 3D MSI may be a competitive alternative.

The study has several limitations. Experiments used data accelerated with autocalibrating 

parallel imaging, which has lower SNR than prospectively undersampled data, but this was 

done to allow clinically feasible scan times. As a small pilot study, only 8 patients were 

included, and further studies in larger patients cohorts are warranted. Only hip replacements 

were imaged, and most had similar amounts of off-resonance. A variety of metallic implants 

would help to identify how limits of acceleration depend on the distribution of energy 

between L and S images. Performance at higher resolution with equivalent scan time should 

also be assessed and would require further development to overcome readout effects such as 

VAT-induced blurring.

Conclusion

This work shows that separation of on-resonance and off-resonance signals in 3D MSI can 

be achieved with a novel approach inspired by robust principal component analysis, allowing 

acceleration factors well beyond what were previously achievable. The dominant on-

resonance signal at each z location can be compactly represented by a rank-one matrix, and 

the remaining off-resonance signal are considered to be only a sparse error. These 

representations are independent of almost all sequence parameters, including slice profiles, 

and only depend on a separability property. The reconstruction allows the use of additional 

penalties, and we have introduced a calibration-free approach for parallel imaging and 

partial Fourier acceleration that enables all accelerations to be used simultaneously.
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Appendix: Optimization for RPCA

An Alternating Direction Method of Multipliers (ADMM) algorithm can be used to solve 

Eq. 12. For brevity of the algebraic manipulations performed in solving ADMM’s 

subproblems, all variables are complex-valued and it is assumed that virtual conjugate coils 

may be used instead of the term in Eq. 11.

Equation 12 can be rewritten

(15)

The Augmented Lagrangian for Eq. 15 is

(16)

(17)

An ADMM algorithm (Algorithm 1) can be used to minimize Eq. 15.

Algorithm 1

ADMM-RPCA

while stopping criteria false do

 Lk+1, Sk+1 ← argminLS ℒ_(L, S, Z1
k, Z2

k, Z3
k, U1

k, U2
k, U3

k)

 Z1
k+1 ← argminZ1 ℒ_(Lk+1, Sk+1, Z1, Z2

k, Z3
k, U1

k, U2
k, U3

k)

 Z2
k+1 ← argminZ2 ℒ_(Lk+1, Sk+1, Z1

k, Z2, Z3
k, U1

k, U2
k, U3

k)

 Z3
k+1 ← argminZ3 ℒ_(Lk+1, Sk+1, Z1

k, Z2
k, Z3, U1

k, U2
k, U3

k)

 U1
k+1 ← U1

k + Lk+1 − Z1
k+1

 U2
k+1 ← U2

k + TSk+1 − Z2
k+1
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 U3
k+1 ← U3

k + Lk+1 + Sk+1 − Z3
k+1

end while

return L, S

The subproblem required to compute the L, S-update can be simplified to

(18)

(19)

where

(20)

(21)

When T is unitary,

(22)

Expressing the matrix D as a block matrix via the permutation P,

(23)

yields
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(24)

(25)

(26)

The block matrix in Eq. 26 can be expressed as a block diagonal matrix via a permutation

Inversion of the block matrix can be expressed in terms of Q as

(27)

The update is performed by applying one of the two 2×2 matrix inverses in Eq. 27 

depending on whether the phase encode location is acquired.

Updates for Zi reduce to application of the proximal operators:

Levine et al. Page 15

Magn Reson Med. Author manuscript; available in PMC 2019 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(28)

(29)

(30)

where proxf(·) denotes the proximal operator for the function f(·), Cz-by-Cz low rank 

approximation, element-wise soft thresholding and block-wise singular value soft 

thresholding for Z1, Z2, and Z3 respectively.
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Figure 1. 
3D MSI bin images can be analyzed at each z location by constructing matrices with bin 

profiles mapping to columns. The first principal component corresponds to onresonance 

signal (93% of the energy) spanned by the bin profile RF0, and the residual off-resonance 

signal exhibits sparsity.
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Figure 2. 
Rate-distortion curves showing RMSE vs compression ratio for a hip implant image using 

sparsity of the Cz matrices and low rank + sparse components. Low rank + sparse 

compression ratios were computed with trunction of 1, 2, and 3 singular values of Cz. The 

highest efficiency was achieved with rank 1, corresponding to a single dominant resonance 

frequency. This high compressibility is expected to allow higher undersampling factors.
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Figure 3. 
Variable-density complementary Poisson-disc sampling is used to segment annular regions 

of the phase encode plane into sample distributions with minimum spacing in ky-kz-bins 

space. a: Colored dots show sample locations acquired within an elliptical region, each color 

corresponding to a subset of bins in which the sample is acquired. Toward the outer annular 

regions of k-space, higher undersampling may be used by acquiring each sample in a smaller 

subset of the bins. b: block dots indicate acquired samples and the sizes of regions were 

chosen to achieve an overall reduction factor of 26.6. The shaded square indicates what 

would be a fully-sampled calibration region.
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Figure 4. 
Calibration-free parallel imaging reconstruction from partial k-space data does not impose 

smooth phase variation and does not recover both halves of k-space as seen in the ky−kz-

plane for the first coil (a), which results in blurring in the image, shown reformatted in the 

xy-plane (b). Modifying calibration-free parallel imaging to separate real and imaginary 

parts also imposes smooth phase variation, which allows recovery of both halves of k-space 

(c), resulting in sharper images (d).
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Figure 5. 
In vivo experiment with retrospective undersampling. Data was retrospectively 

undersampled by factors of 16.0, 23.8, and 38.2 and reconstructed with RPCA and bin-by-

bin CS to show the impact of the separation induced by the additional regularization term 

used in RPCA. RPCA images appear sharp and higher acceleration mostly degrades SNR 

without other artifacts, while bin-by-bin CS images show blurring and an artificial 

appearance (white arrows).
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Figure 6. 
The enhanced sparsity due to the separation of on- and off-resonance in RPCA greatly 

improves reconstruction accuracy.
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Figure 7. 
Images reconstructed with RPCA from k-space data with prospective undersampling (R = 

18–24).
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Figure 8. 
Standard and prospectively accelerated MSI with RPCA and bin-by-bin CS reconstructions 

are shown. Left (a) and right (b) hips from the same subject are shown. Bin-by-bin CS shows 

blocky artifacts due to wavelet-sparsity-based regularization of the entire image, while 

RPCA reconstructions assume only sparsity of the off-resonance.
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Table 2

Interobserver agreement using weighted kappa coefficients between readers 1 and 2 for all five image quality 

ratings

Standard MSI Bin-by-bin CS RPCA

Image Quality Substantial Almost perfect Substantial

Sharpness Away From Metal Substantial Substantial Almost perfect

Sharpness Near Metal Substantial Substantial Substantial

Blockiness/Artificial Appearance Substantial Almost perfect -

Signal Loss Near Metal Almost perfect Moderate Fair
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