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Abstract
Pathogens are recognized as major drivers of local adaptation in wildlife systems. By 
determining which gene variants are favored in local interactions among populations 
with and without disease, spatially explicit adaptive responses to pathogens can be 
elucidated. Much of our current understanding of host responses to disease comes 
from a small number of genes associated with an immune response. High-throughput 
sequencing (HTS) technologies, such as genotype-by-sequencing (GBS), facilitate 
expanded explorations of genomic variation among populations. Hybridization-based 
GBS techniques can be leveraged in systems not well characterized for specific vari-
ants associated with disease outcome to “capture” specific genes and regulatory 
regions known to influence expression and disease outcome. We developed a multi-
plexed, sequence capture assay for red foxes to simultaneously assess ~300-kbp of 
genomic sequence from 116 adaptive, intrinsic, and innate immunity genes of pre-
dicted adaptive significance and their putative upstream regulatory regions along with 
23 neutral microsatellite regions to control for demographic effects. The assay was 
applied to 45 fox DNA samples from Alaska, where three arctic rabies strains are geo-
graphically restricted and endemic to coastal tundra regions, yet absent from the 
boreal interior. The assay provided 61.5% on-target enrichment with relatively even 
sequence coverage across all targeted loci and samples (mean = 50×), which allowed 
us to elucidate genetic variation across introns, exons, and potential regulatory regions 
(4,819 SNPs). Challenges remained in accurately describing microsatellite variation 
using this technique; however, longer-read HTS technologies should overcome these 
issues. We used these data to conduct preliminary analyses and detected genetic 
structure in a subset of red fox immune-related genes between regions with and with-
out endemic arctic rabies. This assay provides a template to assess immunogenetic 
variation in wildlife disease systems.
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1  | INTRODUCTION

Populations are exposed to spatially heterogeneous selective pres-
sures that often lead to localized patterns of adaptation, where local 
individuals are expected to have higher fitness than those from other 
populations from different environments (Thompson, 2005). In this 
context, characterizing patterns of local adaptation illustrates the 
spatial and temporal interactions of species with their environment, 
describes processes that generate and maintain biodiversity, and iden-
tifies evolutionary forces shaping populations (Carlson, Cunningham, & 
Westley, 2016; Harrisson, Pavlova, Telonis-Scott, & Sunnucks, 2014).

Pathogens can exert strong selective pressures on populations 
and are recognized as major drivers of adaptive divergence (Fumagalli 
et al., 2011). Clarifying adaptive patterns becomes ever more import-
ant as disease dynamics are rapidly altered by climatic changes and 
anthropogenetic influences, with pathogens colonizing previously 
inaccessible environments, as evidenced by several emerging dis-
eases (Gallana, Ryser-Degiorgis, Wahli, & Segner, 2013; Kim et al., 
2014; Smith et al., 2012). The spatial patterns of local adaptation 
to selective pressure from disease can be discovered by assessing 
which gene variants are favored in local interactions among popu-
lations (Acevedo-Whitehouse & Cunningham, 2006; Beldomenico 
& Begon, 2016; Bonneaud, Balenger, Zhang, Edwards, & Hill, 2012; 
Eizaguirre, Lenz, Kalbe, & Milinski, 2012; Hansen, Olivieri, Waller, & 
Nielsen, 2012; Hess, Campbell, Close, Docker, & Narum, 2013; Kyle 
et al., 2014; Orsini, Andrew, & Eizaguirre, 2013; Rico, Morris-Pocock, 
Zigouris, Nocera, & Kyle, 2015; Schoville et al., 2012). These data are 
critical to understanding the capacity for natural populations to adapt 
to changing selective pressures and revealing spatially explicit adap-
tive responses to altered disease dynamics.

Host responses to pathogens are largely influenced by immune 
genes, where genetic diversity influences population-level resistance 
to disease via pathogen-mediated directional or balancing selection 
(Eizaguirre et al., 2012; Rico et al., 2015). Studies of wild populations 
generally focus on adaptive immunity, assessed via a small number of 
major histocompatibility complex (MHC) loci, due to their role in patho-
gen recognition and pathogen susceptibility (Acevedo-Whitehouse & 
Cunningham, 2006; Eizaguirre et al., 2012; Kyle et al., 2014). A grow-
ing number of studies also examine key receptor genes associated with 
innate immunity (e.g., toll-like receptors and interleukins) to clarify 
patterns of resistance to emerging infectious diseases (e.g., Bonneaud 
et al., 2012). The aforementioned loci, however, provide insight into 
only a small fraction of the genes associated with mounting an im-
mune response, disease resistance, and adaptation. Overall, a more 
holistic assessment of immunogenetic variation is required to under-
stand the capacity for adaptation to disease (Harrisson et al., 2014; 
Morris, Wright, Grueber, Hogg, & Belov, 2015; Ng et al., 2009).

High-throughput sequencing (HTS) technologies allow for ex-
panded explorations of genomic variation associated with local adap-
tation; however, for population-level assessments of genetic variation 
in wildlife with larger genomes, full-genome processing is generally 
not yet feasible (Ekblom & Wolf, 2014). For most non-model organ-
isms, large chip arrays of single-nucleotide polymorphisms (SNP) 

are not available, and those are maybe prone to ascertainment bias 
when applied to new populations (Albrechtsen, Nielsen, & Nielsen, 
2010; Lachance & Tishkoff, 2013). As an alternative, genotype-by-
sequencing (GBS) assays can be employed to obtain genomic subsets 
of population variation. GBS largely falls into three categories: restric-
tion enzyme-, amplicon-, and hybridization-based models, each com-
ing with important considerations for implementation (Jones & Good, 
2016). For example, restriction site associated DNA (RAD) markers 
are well-suited for detecting neutral sequence variation across the 
genome to develop models of genetic population structure (Catchen 
et al., 2017), but there are some controversies as to their applicability 
in detecting patterns of local adaptation (Lowry et al., 2017). In more 
targeted GBS approaches, amplicon-based and target hybridization-
based methods have been shown to be highly effective in enriching 
for subsets of genomic sequence. Amplicon-based methods rely on 
the ability to PCR amplify large numbers of targeted, overlapping 
short-sequences, using multiple sets of PCR primers in a single PCR 
(Samorodnitsky et al., 2015). Target capture utilizes overlapping bioti-
nylated DNA or RNA probes, which bind to complementary targeted 
regions of DNA that are then selectively pulled down by magnetic 
streptavidin beads to enrich for target DNA (Chilamakuri et al., 2014; 
Ng et al., 2009). Both techniques, when coupled with HTS, enable the 
identification of genetic variation across specific loci in the genome.

Targeted sequence capture approaches have only recently been 
applied to wildlife systems. For example, Morris et al. (2015) used 
genome-level information from ten Tasmanian devils to identify SNPs 
within the “immunome,” consisting of the coding and regulatory re-
gions of 167 immune genes. Using this information, they developed 
an amplicon-based assay for nine immune genes with nonsynonymous 
SNPs, and then, genotypes were generated for 220 Tasmanian devils 
in the context of a transmissible facial cancer decimating the species. 
Similarly, Schweizer, Robinson et al. (2016) employed an RNA-bait 
version of target capture to enrich for 1,040 candidate genes and their 
regulatory regions, as well as 5,000 1-kbp nongenic neutral regions, 
to determine genetic variation in 107 gray wolves from diverse eco-
types. In light of recent technological advances, multiple GBS-based 
strategies have emerged with the potential to study nonmodel wildlife 
species under various selective pressures.

Rabies viruses cause fatal encephalopathies in mammals with 
strains adapted to infect different primary hosts (Jackson & Wunner, 
2007). In Alaska, arctic rabies (AR) is typically restricted to arctic 
coastal areas following arctic fox (Vulpes lagopus) distributions, where 
AR variants have discrete spatial distributions (Kuzmin, Hughes, 
Botvinkin, Gribencha, & Rupprecht, 2008; Nadin-Davis, Sheen, & 
Wandeler, 2012). Distinct phylogeographic patterns have been ob-
served between AR variants (Kuzmin et al., 2008; Nadin-Davis et al., 
2012), suggesting variable disease resistance may influence the spread 
of rabies. Three AR variants occur in Alaska that are isolated to regions 
with tundra red foxes (Vulpes vulpes) and arctic foxes, with nonover-
lapping, temporally stable distributions, although there are no data re-
garding the relative virulence of these strains. The AR variants occur on 
the North Slope (NS; AR variant 3), Seward Peninsula (SP; AR variant 
2), and southwestern (SW; AR variant 4) regions of Alaska (Figure 1). 
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Conversely, in interior and southcentral (SC) Alaska, only boreal red 
foxes are found, and AR is not endemic (Goldsmith et al., 2016). Red 
fox, a highly susceptible AR host, has been associated with AR spread-
ing from Arctic regions to southern Canada (Kuzmin et al., 2008). In 
the Canadian Arctic, one AR variant predominates, including in regions 
where arctic foxes are absent and red fox are present. Therefore, it 
is unclear why rabies has not spread via red fox into central Alaska 
given the patterns observed across Canada (Mørk & Prestrud, 2004; 
Nadin-Davis et al., 2012). In red fox, recent experiments detected 
weak genetic structure in Alaska between tundra and boreal regions 
consistent with spatial distributions of AR variant presence and gene 
flow between those populations (Goldsmith et al., 2016). Questions 
remain, as to how DNA sequence diversity at functionally important 
immune-related loci for red fox is spatially structured in these regions, 
and if geographic patterns of diversity are correlated with AR strain 
distribution.

Herein, we describe the development of an immunogenetic assay 
designed to test the hypothesis that selective pressure from disease 
alters the spatial distribution of genetic variants among populations. 
Our goals were to (1) develop an assay capable of elucidating genetic 
variation at red fox immunogenic loci and (2) use the resulting SNPs 
to apply preliminary tests for genetic structure and FST outliers. We 
predicted that even with low sample sizes, we would be able to de-
tect specific genetic variants based on AR presence/absence because 
AR exerts a strong selective pressure on fox populations. To develop 
the assay, we annotated immune-related red fox gene sequences and 
then applied high-throughput targeted sequence capture to enrich for 
300-kbp of preselected genomic regions (per individual) that could be 
used to identify SNPs in a wide range of key immune genes and their 
regulatory regions, which can influence the expression of immune sys-
tem genes and disease outcome (Fraser, 2013). To test how robust our 

assay was, we assessed whether 1 ng DNA/sample could be used for 
target capture-based GBS to evaluate the potential of this technique 
for noninvasive samples with less DNA (such as from hair or feces), 
and whether the red fox hybridization probes could also be used to 
enrich for similar targets from an arctic fox DNA sample for future 
AR research. To address our hypothesis and elucidate patterns of local 
adaptation, we required an understanding of the underlying patterns 
of gene flow and genetic drift that may influence the presence/ab-
sence of genes beyond selective pressures. As such, we also included 
23 neutral microsatellite loci and amelogenin (for sex determination) 
in this assay to provide insight into the demographic processes of the 
populations under investigation, thus providing an “all-in-one” test to 
generate data for our research aims. This study provides a template for 
future experiments aimed at identifying immunogenetic variants and 
genetic patterns of local adaptation to disease.

2  | METHODS

2.1 | Sample collection, DNA extraction, and 
quantification

We obtained red fox tissue (n = 33) or extracted DNA samples from 
rabies-positive red fox (n = 8) as described by Goldsmith et al. (2016) 
from a variety of organizations and individual trappers. The rabies-
negative red fox tissue samples have voucher specimens in the 
University of Alaska Museum of the North, and accession numbers 
are provided, where applicable (Table S1). Rabies-positive red fox 
tissue was confirmed at the Alaska government health laboratories 
by serology (ELISA) and then at the Centres for Disease Control by 
sequencing. The arctic fox DNA sample (n = 1) was obtained from 
Terry Spraker (Colorado State University, USA). We dissolved all 

F IGURE  1 Schematic of Alaska arctic 
fox and red fox samples analyzed using 
immunogenetic profiling. Approximate 
arctic rabies variant (ARV) distribution was 
modified from Goldsmith et al. (2016). 
Arctic rabies and arctic rabies-free zones 
are indicated by blue and white background 
colors, respectively. Arctic fox and red 
fox sample locations are denoted by an 
open-green circle or open-red circles, 
respectively. Red fox sample size (n) for 
each location used in the genetic structure 
analyses is indicated. SW, Southwest; SP, 
Seward Peninsula; NS, North Slope
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tissue samples in 1× lysis buffer (4 mol/L urea, 0.2 mol/L NaCl, 0.5% 
n-lauroyl sarcosine, 10 mmol/L 1,2-cyclohexanediaminetetraacetic 
acid, 0.1 mmol/L Tris-HCl pH 8.0) containing 600 U/ml proteinase 
K (time and temperature) at 56°C for two hours and extracted DNA 
using either the automated 96-well MagneSil Blood Genomic Max 
Yield System (Promega) or the DNeasy Blood and Tissue Kit (Qiagen). 
We quantified DNA extractions using the Quant-iTPicoGreen dsDNA 
Assay Kit (ThermoFisher Scientific). These DNA extractions yielded 
starting material for 45 target-enriched DNA libraries, which included 
31 tundra red fox (11 SW, 15 SP, 5 NS), 10 boreal red fox (SC), addi-
tional replicates from the DNA dilution series (1, 10, 100 ng each), and 
one arctic fox (Figure 1; Table S1).

2.2 | Identification of red fox immune genes, neutral 
markers, and probe development

We compiled a list of candidate immune genes (Table S2) using those 
listed in The Dog Innate & Adaptive Immune Responses RT2 Profiler 
PCR Array (Qiagen) and in the overview of key mediators of innate 
and adaptive immunity, development, and signaling (Knight, 2013). 
Using this candidate gene list, we downloaded genomic sequences 
(covering an entire locus), individual exon sequences, and protein 
sequences from the CanFam3.1 dog (Canis lupus familiaris) genome 
assembly (Hoeppner et al., 2014) using Ensembl release version 79 
(Cunningham et al., 2015).

We used the dog genomic sequences to perform blastn (Altschul, 
Gish, Miller, Myers, & Lipman, 1990) against the V. vulpes draft ge-
nome (Kukekova et al., in review) to identify segments of the red fox 
genome assembly (NCBI BioProject PRJNA378561) with sequence 
similarity. The red fox genome assembly consists of 2,495,544,672 
assembled bp and 676,878 scaffolds (N50 = 11.5 Mb). We extracted 
red fox immune-gene sequences (2,229,152 bp) from the red fox ge-
nome assembly that included upstream and downstream sequences 
(±1,500 bp). We annotated the red fox immune-gene structures (in-
trons and exons) using dog exon sequences by performing blastn 
(Altschul et al., 1990) against the red fox DNA sequences with a word-
size parameter set to 7 to include short sequence hits. We input the red 
fox immune-gene sequences and dog peptide sequences into fgenesh+ 
(Solovyev, 2007) on the softberry online portal (http://www.softberry.
com/berry.phtml) to resolve cases where blastn did not properly an-
notate the red fox intron/exon boundaries, which led to incomplete 
open reading frames (start codon to stop codon). We performed blastp 
(Altschul et al., 1990) against the NCBI refseq_protin database to ver-
ify all red fox protein-coding sequences. The red fox gene annotations 
and predicted red fox immune-related protein sequences are available 
in Appendices S1 and S2, respectively.

We also generated a list of canine and red fox microsatellite 
markers from previous studies (An et al., 2010; Fredholm & Winterø, 
1995; Mellersh et al., 1997; Ostrander, Sprague, & Rine, 1993). We 
downloaded the red fox microsatellite region from NCBI when 
available. Otherwise, we extracted the genomic sequences from the 
CanFam3.1 dog assembly and used blastn to identify and extract 
regions of putative sequence similarity in the red fox genome. This 

yielded another set of red fox DNA sequence targets (Table S3) that 
were included in the custom NimbleGen SeqCap EZ probe design 
(Roche).

We added 100-bp “padding” to each of the red fox DNA se-
quence targets (primary targets) to increase the efficiency of se-
quence capture. The custom NimbleGen SeqCap EZ probes were 
produced using the red fox DNA sequence targets. We only had 
limited access to the red fox genome assembly (Kukekova et al., 
in review); therefore, the probe set was compared to the dog ge-
nome reference sequence to test probe specificity. We finalized a 
“relaxed” probe design that allowed up to 20 close matches to the 
reference dog genome; however, 91.5% of the probes had only one 
match to the reference dog genome sequence, and 95.8% had five 
or fewer matches (not including zero) to the reference dog genome 
sequence, indicating a low likelihood for “off-target” sequence 
capture.

2.3 | Library preparation, sequence capture, and 
high-throughput sequencing

We prepared DNA libraries using the Kapa HTP Lib Prep Kit (Roche). 
Forty-two DNA libraries were prepared using 1 μg DNA, and an ad-
ditional three DNA libraries were prepared for the dilution series using 
1, 10, and 100 ng DNA from sample KH1354. Special considerations 
were required during library preparation based on the quantity of DNA 
put into the reaction (Table S4). Additional modifications to the KAPA 
DNA library protocol included the following: (i) TruSeq HT Dual-Index 
Adapters (Integrated DNA Technologies) resuspended in Nuclease 
Free Duplex Buffer (Integrated DNA technologies) were used instead 
of the SeqCap Adapter Kits A and B (Roche) during adapter ligation, 
and (ii) Illumina P5 and Illumina P7 primers (Integrated DNA technol-
ogies) were used instead of the Pre LM-PCR Oligos 1 & 2 (Roche) 
during Pre-Capture LM-PCR. We assessed library quality by ethidium 
bromide-stained gel electrophoresis using a 2% E-Gel (ThermoFisher 
Scientific).

Prior to target capture, we measured the concentration of the 
45 DNA library preparations using a NanoDrop 8000 spectropho-
tometer (ThermoFisher Scientific). We pooled these DNA libraries 
in equimolar amounts to a final mass of 1 μg DNA. We performed 
target capture using the designed DNA oligos contained in the 
NimbleGen SeqCap EZ Developer Library (Roche) according to 
the manufacturer’s recommended protocol outlined in the SeqCap 
EZ Library SR User Guide v 5.0 (Roche) with the following modi-
fications: (i) 1 μl of the xGen Universal Blocking Oligo TS HT-i5 
(Integrated DNA Technologies) and 1 μl xGen Universal Blocking 
Oligo TS HT-i7 (Integrated DNA Technologies) were used instead 
of the NimbleGen Multiplex Hybridization Enhancing Oligo Pool 
(Roche), and (ii) NimbleGen SeqCap EZ Developer Reagent (Roche) 
was used instead of NimbleGen COT Human DNA (Roche) during 
hybridization sample preparation where the hybridization was car-
ried out at 47°C for 72 hr. We assessed target-enriched DNA quality 
using a bioanalyzer (Agilent Technologies), and we performed HTS 
on a MiSeq run using 2 × 150-bp reads (Illumina).

http://www.genecards.org
http://www.genecards.org
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2.4 | Sequence alignment and variant annotation

We used the bwa-mem command in the burrows-wheeler aligner 
v0.7.12 (bwa; Li, 2013) to align the paired-end reads to the red fox 
immune-gene sequences. We compiled sequence alignment metrics 
using samtools v1.2 (Li et al., 2009). We used the genome analysis 
toolkit v3.5 (gatk; McKenna et al., 2010) for base quality score re-
calibration, INDEL realignment, duplicate removal, depth of coverage 
calculations, SNP/INDEL discovery, and genotyping across all samples 
using standard hard filtering parameters or variant quality score recali-
bration according to gatk best practices recommendations (DePristo 
et al., 2011; Van der Auwera et al., 2013).

2.5 | SNP/INDEL filtering and analyses

For SNP/INDEL analyses, we removed the arctic fox sample library 
(KH1527), the three “dilution” sample libraries (KH-1354-1, KH-
1354-10, KH-1354-100), and one sample library with <10× coverage 
(KH989). Further, we removed the eight rabies-positive samples be-
cause we did not have enough samples from any one area (3 SP, 1 NS, 
4 SW) to provide the sample size required for the preliminary down-
stream analyses presented in our study. We include the sequencing 
results from these rabies-positive samples as a future resource for re-
searchers that may be able to use these data. Therefore, SNP/INDEL 
data from the 32 remaining sample libraries (Figure 1; Table S1) were 
used in the preliminary downstream analyses to help inform future 
experiments. We generated separate SNP and INDEL subdatasets 
containing genetic variants for those 32 red fox using gatk.

We filtered the SNP subdataset further using vcftools v0.1.14 
(Danecek et al., 2011) to select for bi-allelic SNPs with a maximum 
missing genotype of 10% and a minor allele frequency of 5%. We 
reformatted the resulting variant call format file (.vcf) using pgdspider 
v2.0.9.2 (Lischer & Excoffier, 2012) for the structure v2.3.4 (Pritchard, 
Stephens, & Donnelly, 2000) and FST outlier analyses.

We used the tandem repeat finder trf v4.09b (Benson, 1999) to 
annotate the INDEL subdataset corresponding to microsatellites and 
amelogenin and then vcftools to extract the genotypes of each indi-
vidual for the microsatellite loci and amelogenin. We then used the 
python script “getgenosfromvcf” (De Wit et al., 2012) to extract mi-
crosatellite genotypes with a Phred quality score cutoff of 20, which 
yields genotypes with a 99% probability of being true. We created a 
filtered INDEL subdataset containing genetic variants for 15 microsat-
ellite regions by removing ambiguous microsatellite calls with multiple 
sequence alignments. We also tested for significant departures from 
Hardy–Weinberg equilibrium (HWE) for the filtered INDEL subdata-
set using a probability test in GENEPOP v.4.2 (Rousset, 2008) with a 
correction (p = 1.67E-03) to reject the null hypothesis that loci are in 
HWE.

FST-based outlier detection methods have high false-positive error 
rates when identifying SNPs under directional or balancing selection, 
and limited sensitivity in detecting SNPs under weak selection (Narum 
& Hess, 2011). Therefore, we used three different outlier detection 
programs to mitigate the number of false positives in the FST outlier 

subdataset we used for preliminary analyses. We used bayescan v2.1 
(Foll & Gaggiotti, 2008), lositan (Antao, Lopes, Lopes, Beja-Pereira, & 
Luikart, 2008; Beaumont & Nichols, 1996), and outFLANK (Whitlock 
& Lotterhos, 2015) to identify FST outliers putatively under selection 
from the filtered SNP subdataset. The three outlier detection pro-
grams do not rely on a set of “presumed” neutral loci to generate an 
empirical null distribution of FST. Rather, they simulate a null distri-
bution of FST for the sample sizes observed in the dataset and iden-
tify departures from neutrality using different analytical approaches 
(Antao et al., 2008; Beaumont & Nichols, 1996; Foll & Gaggiotti, 2008; 
Whitlock & Lotterhos, 2015). We ran bayescan using 1:10 prior odds 
for the neutral model and included 20 pilot runs consisting of 5,000 it-
erations each, followed by 550,000 iterations with a burn-in of 50,000 
iterations. We ran lositan for 1,000,000 iterations within a 99.5% 
confidence interval with the “Neutral mean FST” and “Force mean FST” 
options enabled under the infinite alleles model (IAM) and stepwise 
mutation model (SMM). We ran outFLANK using the default settings 
(LeftTrimFraction = 0.05, RightTrimFraction = 0.05, Hmin = 0.1) with 
NumberOfSamples = 2. We used false discovery rate (FDR) values of 
0.05 for all FST outlier analyses. We extracted a FST outlier subdataset 
containing the 15 common FST outliers identified by the lositan-AIM, 
lositan-SMM, and outFLANK analyses using vcftools.

We performed principal component analysis (PCA) on the filtered 
SNP subdataset, INDEL subdataset, and FST outlier subdataset using 
adegenet v2.0.0 (Jombart & Ahmed, 2011). We obtained the required 
“genlight” objects for the adegenet analysis using a combination of 
vcftools and plink v1.07 (Purcell et al., 2007) to reformat the .vcf files 
to plink formatted files (.raw). We also tested for genetic structure 
using the FST outlier subdataset in structure. We used the strauto v1.0 
script (Chhatre & Emerson, 2017) to run structure over multiple pro-
cessors at the same time. We ran structure with a burn-in length of 
50,000 followed by 200,000 iterations for K = 1 through 8, and each 
run was performed 20 times. We calculated the ΔK statistic (Evanno, 
Regnaut, & Goudet, 2005) to help determine the number of inferred 
genetic clusters using structure harvester web v0.6.94 (Earl & von-
Holdt, 2011). We used the LargeKGreedy (10,000 repeats) algorithm 
in clumpp v1.1.2 (Jakobsson & Rosenberg, 2007) to combine the SNP 
results from the multiple structure runs, and we visualized those re-
sults using distruct v1.1 (Rosenberg, 2004).

3  | RESULTS

3.1 | Identification of red fox immune genes, neutral 
markers, and probe development

We extracted regions of genomic sequence corresponding to 116 
immune genes and their upstream regulatory regions (Table S2), 23 
microsatellite regions, and a portion of intron 1 in the amelogenin 
sex-determining marker (Table S3) from the red fox genome sequence 
assembly (Kukekova et al., unpublished data). Using the red fox 
immune-gene sequences, we annotated the immunity gene intron/
exon boundaries (Appendix S1). We validated the protein-coding 
annotations by translating all 116 nucleotide coding sequences to 
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proteins (Appendix S2) and performing BLASTp (Table S2). We gener-
ated full-length coding sequence information for 109 immunity-related 
genes (excluding: CD86, DLA-12, DLA-88, IL18, MAPK1, MAPK8, 
and MX1). We successfully extracted 1,500-bp of upstream genomic 
sequence representing putative regulatory regions for 93 genes and 
partial (<1,500-bp) regulatory region sequences for an additional 15 
genes. Our red fox immune-gene sequence database lacked the up-
stream sequence necessary to target the regulatory regions for CD28, 
CD86, DLA-12, HLA-DPB1, IKBKG, IL18, MAPK1, and MX1 (Table 
S2). Those regulatory regions were either missing from, or spanned, 
multiple scaffolds in the red fox genome assembly and could not be 
included in our immune-gene sequence database. Using these annota-
tions, the custom NimbleGen SeqCap EZ Developer Library probe set 
was synthesized.

3.2 | Library preparation, high-throughput 
sequencing, and sequence alignment

We obtained over 12.4 million paired-end reads from the HTS MiSeq 
run (Table S5). After the samples were demultiplexed, there was an 
average of 274,526 total reads per sample library and on average, 
93.5% of the reads mapped to the primary target regions. We applied 
filters to remove mapped reads identified by the gatk as having low 
mapping quality (MAPQ < 20; mean = 13.4% per sample), being PCR 
duplicates (mean = 4.3% per sample), or having secondary alignments 
(mean = 0.3% per sample). This removed an average of 18.0% of the 
mapped reads from our analysis, yielding an average of 212,135 total 
reads pass filter per sample (Table 1; Fig. S1; Table S5). The average 
on-target enrichment (defined as the proportion of mapped reads hit-
ting primary targets, out of the total reads obtained from sequencing) 
was 61.5%.

The sequence capture was successful in enriching for neutral 
microsatellite and functional immune-gene regions. Therefore, we 
considered two variables when deciding whether to proceed with 
preliminary downstream microsatellite and SNP analyses: sample size 
and sequencing depth of coverage. Current recommendations for the 
minimum depth of coverage to accurately determine genotypes and 
call SNPs vary. While Nielsen, Paul, Albrechtsen, and Song (2011) 
suggested >20× coverage to detect heterozygotes, ~40× coverage 
has also been reported for a 95% SNP detection sensitivity (Meynert, 
Ansari, FitzPatrick, & Taylor, 2014). We calculated depth of coverage 
on a per-sample basis (Fig. S2a; Table S6) and on a per-locus basis 
(Fig. S2b; Table S7) for the primary target regions corresponding to the 

regulatory regions and exons for the immune-gene panel, the microsat-
ellite markers, and amelogenin intron 1. The sample libraries and loci 
had an average depth of coverage of 49.8× (min = 10.4×, max = 93.6×) 
and 50.2× (min = 15.3× and max = 247.5×), respectively, which ex-
ceed suggested minimum standards. In future experiments, sequenc-
ing depth could be increased by increasing the number of MiSeq runs 
or by using a different platform (e.g., HiSeq 2500) to produce more 
reads. We decided to proceed with preliminary downstream analyses 
of the microsatellite and SNP markers to test for genetic structure and 
evidence of local adaptation.

3.3 | INDEL detection and microsatellite analysis

Of the 32 libraries processed for downstream analyses, we detected 
a single bi-allelic INDEL for the amelogenin sex-determining region 
and detected 25 males and seven females (Table S1). There was a 
skewed sex ratio and a peak in coverage for the amelogenin locus. 
Using independent field information (Table S1), we were only able 
to validate 15/21 of these calls; therefore, we cannot rule out the 
possibility that there are possible amelogenin paralogs in the red fox 
genome. In analyzing this filtered INDEL .vcf file, the microsatellite 
subdataset had a coverage of ~48× and 427/480 (~89%) of the possi-
ble genotypes were called with a 99% probability of being true (based 
on Phred scores). Our dataset partially overlapped the Goldsmith 
et al. (2016) dataset in having 21 of the same red foxes and six of 
the same loci (AHT121, AHTh171, CPH9, CPH15, REN105L03, 
REN247M23). We estimated concordance between the two studies 
of ~46.7% and noted a large difference in the percent of per-locus 
homozygote genotypes between our dataset (1.6%) and the previ-
ously published dataset (28.1%; Goldsmith et al., 2016). A PCA plot 
based on the microsatellite dataset did not reveal genetic structure 
between red fox from coastal tundra regions where arctic rabies is 
present and the boreal southcentral regions where rabies is absent 
(Fig. S3a).

3.4 | SNP detection and analysis

We used the mapped reads from 32 libraries to generate a hard-
filtered SNP dataset corresponding to the exon regions (932 SNPs), 
intron regions (2,829 SNPs), and upstream regulatory regions (1,058 
SNPs). We used the entire SNP dataset (4,819 SNPs) to conduct 
PCA and then to detect FST outliers. PCA revealed a lack of genetic 
structure between red fox from coastal tundra regions where arctic 

TABLE  1 Sequence alignment summary statistics reveal high numbers of mapped reads pass gatk filters for each sample

Reads
Mapped 

reads (%)

Mapped reads 
filtered (total) 
(%)

Mapped reads 
filtered (dupli-
cates) (%)

Mapped reads 
filtered (mapping 
quality) (%)

Mapped reads 
filtered (not primary 
alignment) (%)

Mapped reads 
passing filter

Median 253,908 93.4 16.9 3.2 13.6 0.2 199,258

Mean 274,526 93.5 18.0 4.3 13.4 0.3 212,135

Minimum 98,466 90.5 15.0 2.3 11.3 0.2 47,235

Maximum 502,068 95.1 47.0 32.6 15.3 0.5 388,871
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rabies is present and the boreal southcentral regions where rabies is 
absent (Fig. S3b). We identified FST outliers under directional selec-
tion using lositan and outFLANK (FDR < 0.05; Figure 2a; Table S8), 
but zero FST outliers were identified using bayescan (FDR < 0.05; data 
not shown). Furthermore, 1,195 SNPs were identified as candidates 
under balancing selection by both mutation models in lositan (Table 
S8). There were 15 FST outliers predicted by both mutation models in 
lositan and outFLANK (Table 2). We used the genotypes from these 
15 FST outliers to visualize genetic structure by PCA and structure 
(Figure 2b,c). Preliminary plots revealed genetic structure of red fox 
between coastal tundra regions where arctic rabies is present com-
pared to red fox from the boreal southcentral regions where rabies 
is absent.

4  | DISCUSSION

In this study, we annotated red fox immune genes and developed 
a GBS target capture protocol that can be used to elucidate spatial 
patterns of genetic variation at neutral and functional loci of red fox. 
For the functional loci, we targeted genes associated with an innate, 
intrinsic, or adaptive immune response, as well as their regulatory seg-
ments that have been implicated in variable responses to disease ex-
posure. We developed a system that accurately and evenly captured 
the targeted loci with sufficient coverage (mean = 50×; Fig. S2, Tables 
S5 and S6) for variant detection. Without a complete red fox genome 
assembly, we acknowledge the possibility of excess heterozygotes for 
a small proportion of our SNPs could be due to paralogous loci; how-
ever, our probe design tests suggested only one hit for most probes 
(91.5%). We used these data to perform a preliminary assessment 
of FST outliers. The vast majority of outliers were found to be under 
balancing selection, with a smaller subset under directional selection 
(Tables 2 and S8). Despite moderate sample sizes, our preliminary 
analyses found notable differences in the frequencies of the FST outli-
ers in regions with and without AR. This assay provides a means to 
elucidate genetic variation from a large portion of the immunome with 
even coverage across samples and loci while alleviating some of the 
ascertainment bias of other genotype-by-sequencing approaches.

4.1 | Development of the red fox target capture 
genotyping-by-sequencing assay

Arctic rabies variants in Alaska are restricted to the coastal tundra re-
gions coinhabited by arctic fox and red fox. Conversely, boreal interior 
regions inhabited by red fox, but not arctic fox, are devoid of endemic 
AR (Kuzmin et al., 2008; Nadin-Davis et al., 2012). Goldsmith et al. 
(2016) recently sequenced microsatellite markers from Alaska red 
fox. They observed high levels of admixture within populations and 
genetic structure between the coastal tundra regions and the boreal 
southcentral regions, consistent with the geographic distribution of 
AR. However, their study was limited to neutral marker analyses, and 
genetic diversity in arctic fox and red fox at functional loci that may be 
influenced by selective pressure from AR is unknown and the motiva-
tion to develop this GBS immunogenetic assay.

As the cost of HTS continues to decline, strategies have emerged 
to gain insight into the genetic diversity of regions of the genome 
that encode proteins, which are presumably functionally relevant for 
local adaptation of wildlife species. For example, to assess the genetic 
basis for adaptation of arctic foxes to a cold climate, a comparison of 
transcriptome sequences from two captive arctic fox and one red fox 
identified two fat metabolism genes under positive selection in the 
arctic fox transcriptome (Kumar, Kutschera, Nilsson, & Janke, 2015). 
However, isolating quality RNA from wildlife samples is problematic 
given the many environmental and individual variables associated with 
RNA expression, and the difficulty in obtaining fresh samples from a 
broad geographic range in regions that are difficult to access. Recently, 
GBS assays have emerged as a cost-effective alternative to whole-
genome sequencing that aims to detect a genomic basis for population 

F IGURE  2 FST outlier tests identify putative signatures of genetic 
structure in immune-related loci between red fox populations in 
arctic rabies zones and the arctic rabies-free zone. (a) Concordance 
between the results of FST outlier tests is visualized by the Venn 
diagram. Genetic structure was visualized by (b) principal component 
analysis and (c) structure plots for K = 2, using the 15 FST outlier SNPs 
identified by all three tests in (a). The percentage of variation for each 
principal component axis and a scatter plot of eigenvalues (inset) are 
included in the principal component analysis. IAM, infinite alleles 
model; SMM, stepwise mutation model; ARZ, arctic rabies zones 
(blue); SC, Southcentral (arctic rabies-free zone; black)
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variation and provide genetic signatures of local adaptation. For ex-
ample, RAD sequencing found extremely low genetic variation among 
populations of distinct subspecies of Island fox (Urocyon littoralis) in 
southern California, an observation that can be used to guide manage-
ment decisions (Funk et al., 2016). While useful in studies involving 
nonmodel species, RAD sequencing is not restricted to detecting FST 
outliers in protein-coding regions of the genome. Therefore, targeted 
GBS approaches using either amplicon- or hybridization-based work-
flows have been employed to identify phenotype-altering mutations in 
both regulatory and protein-coding regions.

While amplicon-based methods may require more straightforward 
sample preparation and have the ability to utilize smaller DNA inputs, 
hybridization-based approaches have performed slightly better in 
sequencing complexity and uniformity with respect to target enrich-
ment (Samorodnitsky et al., 2015). The decision to use either approach 
may be a matter of user preference, and both have been successful 
in wildlife applications. Using the amplicon-based approach, Morris 
et al. (2015) found low levels of polymorphism in the Tasmanian devil. 
However, it is noteworthy that their amplicon design relied on the 
whole-genome sequence comparison of ten Tasmanian devils, which 
may be cost-prohibitive as a model for other wildlife investigations. 
Moreover, sample bias may have affected their choice in amplicon gene 
targets. Target capture has been used to identify functional variation 
in gray wolf ecotypes in North America (Schweizer, Robinson et al., 
2016); however, the gene targets were first identified by supporting 
information from an established Affymetrix v2 Canine SNP array that 
included ~42K SNPs (Schweizer, Vonholdt et al., 2016). In this study, 
we designed a custom target capture assay for red fox to screen for 

genetic variation in functional immune genes (Table S2), including their 
regulatory regions, and in neutral microsatellite regions (Table S3). The 
immune-gene annotations and their corresponding protein sequences 
(Appendices S1 and S2) helped validate a portion of the red fox ge-
nome assembly draft and are a resource for future immunome studies 
in red fox and related fox species. Our goal was to use these probes to 
screen for genomic signatures of local adaptation between tundra and 
boreal red fox from different AR regions in Alaska.

4.2 | Target capture is successful with low copy 
number wildlife DNA and across species

For GBS, Samorodnitsky et al. (2015) suggested higher amounts of 
input DNA required for hybridization-based Nimblegen SeqCap (1 μg), 
relative to amplicon-based Illumina AmpliSeq (50 ng), is a limiting fac-
tor. The difference in the amount of template required for these re-
spective methods is of concern for wildlife studies, which can include 
low-quality or low-template DNA; however, our results indicated the 
NimbleGen SeqCap worked equally well for a dilution series of sample 
KH1354 (1, 10, 100 ng, and 1 μg of input DNA). While the estimated 
target enrichment varied from 60.1% to 66.7% (Table S5), the 1 ng 
input DNA sample had the highest mean target coverage (66.6×; Table 
S6) of the dilution series. Coincidentally, during preparation of this 
manuscript, NimbleGen released new guidelines (SeqCap EZ Library SR 
v5.0), which now recommend 100 ng of input DNA. Illumina also now 
offers a low input library preparation kit (10 ng). Our results are en-
couraging for future experiments where samples may contain low copy 
number DNA (e.g., from hair/fur traps), as 1 ng of input DNA has the 

Gene Immune-gene sequence name Position Location Gene description

C3 Fox_ENSCAFG00000018625 1,558 Exon Complement C3

C3 Fox_ENSCAFG00000018625 18,625 Intron Complement C3

C3 Fox_ENSCAFG00000018625 2,190 Intron Complement C3

C3 Fox_ENSCAFG00000018625 8,750 Intron Complement C3

CRP Fox_ENSCAFG00000011787 2,855 Exon C-reactive protein precursor

DLA-
DMA

Fox_ENSCAFG00000000848 2,510 Intron Major histocompatibility 
complex, class II, DM alpha 
isoform X1

IL10 Fox_ENSCAFG00000011443 2,198 Intron Interleukin-10

IL23R Fox_ENSCAFG00000018542 40,066 Intron Interleukin-23 receptor

IL23R Fox_ENSCAFG00000018542 43,528 Intron Interleukin-23 receptor

IL23R Fox_ENSCAFG00000018542 52,788 Intron Interleukin-23 receptor

ITGAM Fox_ENSCAFG00000016881 10,880 Intron Integrin alpha-M isoform X1

ITGAM Fox_ENSCAFG00000016881 53,170 Intron Integrin alpha-M isoform X1

NLRP3 Fox_ENSCAFG00000010686 44,328 Intron NACHT, LRR and PYD 
domains-containing protein 
3 isoform X1

NLRP3 Fox_ENSCAFG00000010686 44,349 Intron NACHT, LRR and PYD 
domains-containing protein 
3 isoform X1

TLR7 Fox_ENSCAFG00000011698 24,027 Exon Toll-like receptor 7 isoform 
X1

TABLE  2 Directional outliers detected 
by lositan and outFLANK analyses 
(FDR < 0.05)
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potential to generate GBS data using a single MiSeq run; however, opti-
mization of such experiments may require more intense investigations.

We estimated a target enrichment of 61.5% and 59.9% (Table S5) 
and a mean target coverage of 50.1× and 37.0× (Table S6) for red fox 
and arctic fox, respectively. Similarly, cross-species exon target cap-
ture has been successful for a broad range of cichlids (Ilves & López-
Fernández, 2014). Red fox and arctic fox recently diverged from one 
another ~3.2 mya during the late Pliocene (Kumar et al., 2015), and 
these data suggest that our existing probe set can be used in future 
studies aimed at addressing similar questions regarding genetic varia-
tion in arctic fox or related fox species.

4.3 | Analysis of microsatellites

Genotyping microsatellite regions using PCR-based techniques can be 
difficult because the polymerase can “slip” at STRs, leading to ampli-
cons that differ in length. Additionally, STR-containing reads from HTS 
data can be difficult to accurately map to a reference genome due to 
mismatch/INDEL penalties associated with STR expansion and contrac-
tion (Fungtammasan et al., 2015). Therefore, we manually inspected 
the bi-allelic INDELs of our 23 microsatellite targets for poor align-
ments, which generated a filtered microsatellite dataset containing 15 
loci. Microsatellite genotypes from dinucleotide STRs have been accu-
rately called with a 90% success rate given a 17× depth of coverage 
(Fungtammasan et al., 2015), and our filtered subset had an average 
depth of coverage of 48×. We did not detect genetic structure in this 
microsatellite dataset using structure or adegenet PCA plots (Fig. S3a). 
These results did not fully align with genotypes from the same samples 
generated using traditional microsatellite amplification and profiling 
using a genetic analyzer by Goldsmith et al. (2016). Our observed hete-
rozygosity is also high compared to reported estimates of expected het-
erozygosity in Polish red fox (72%, Mullins et al., 2014) and that of other 
carnivores, including the American badger (81%; Rico et al., 2016) and 
Canadian black bear (55%–81%; Pelletier et al., 2017). Possible causes 
of the conflicting results include amplification bias and allelic dropout in 
their dataset that is suggested by the large difference in observed ho-
mozygotes (1.6% vs. 28.1%) or challenges in our dataset in aligning se-
quences to generate accurate genotypes and hence the larger number 
of heterozygotes. We did not detect significant departures from HWE 
for any of the microsatellite loci used in our analyses; clearly, there are 
challenges associated with genotyping microsatellite regions using HTS. 
De Barba et al. (2017) recently performed high-throughput microsatel-
lite genotyping of black bear samples and reported improved genotyp-
ing success compared to traditional methods. Alternatively, including 
several hundred, independent, random genomic regions containing 
SNPs to determine background genomic variation, could mitigate some 
of the technical and bioinformatic limitations we encountered.

4.4 | Target capture analysis of immunogenetic 
diversity—considerations

We used lositan, bayescan, and outFLANK to detect candidate out-
lier SNPs putatively under selection. While lositan and outFLANK 

detected FST outliers (Figure 2a; Tables 2 and S8), bayescan did not. 
Narum and Hess (2011) reported lower type I (false positive) and type 
II (false negative) error rates for lositan and bayescan compared to ar-
lequin, but false positives for candidate SNPs under directional and 
balancing selection are abundant with all three approaches. Further, 
these methods have limited sensitivity in detecting SNPs under weak 
selection (Narum & Hess, 2011). We also detected 1,195 SNPs under 
balancing selection dispersed through exons, introns, and regulatory 
regions of the red fox immunome (Table S8). Signatures of balancing 
selection in the context of response to pathogens have been found 
in human immune-related genes, including those associated with the 
major histocompatibility complex (MHC; Andrés et al., 2009), and in 
the MHC of wolverine (Gulo gulo; Rico et al., 2015). MHC genes are 
highly polymorphic and play an important role in the adaptive im-
mune response to pathogens. Therefore, our findings are consistent 
with previous studies in finding candidate immune-related loci under 
balancing selection. While these results are promising, they should be 
viewed with caution as we concede that there is the potential for bias 
in the outlier analyses because the initial dataset was not a random 
distribution of genome-wide loci that would include both neutral and 
adaptive alleles. We also acknowledge that our tests for directional 
and balancing selection likely contain biases associated with linked loci 
because all of the SNPs cannot be considered as independent markers.

Outlier SNPs in exons under directional selection that were de-
tected by both lositan and outFLANK included C3, CRP, and TLR7 
(Table 2). C3 encodes an activator in the complement system, which 
is involved in innate and adaptive immune responses and functions 
to lyse microorganisms, promote phagocytosis, trigger inflammation 
and aids in immune clearance (www.genecards.org). CRP recognizes 
foreign pathogens and promotes their elimination (www.genecards.
org). TLR7 is a toll-like receptor that recognizes single-stranded RNA 
and activates the innate immune system (www.genecards.org). The 
candidate SNP in TLR7 may be an intriguing target for future studies 
because AR is a single-stranded RNA virus. The preliminary interpre-
tation of our data suggests selective pressure at the molecular level 
on three immune genes in red fox. Overall, the SNP-based analy-
sis found no evidence of population structure among red fox using 
all SNPs (Fig. S3b), but indicated population structure based on FST 
outliers only, where red fox from coastal tundra regions were dis-
tinct from those in the boreal Southcentral regions (Figure 2b,c). To 
support these preliminary findings, future studies are required using 
larger sample sizes from Alaska red fox that compare rabies-negative 
and rabies-positive individuals from the same population and they 
could help reveal a genetic link to rabies susceptibility/resistance.

5  | CONCLUSION

Understanding the capacity for local adaptation to disease in wild 
populations requires expanded genomic assessments of the genetic 
responses to these selective pressures. Herein, we developed an im-
munogenetic assay that bridges between genetic and full-genome 
research and has the potential to generate empirical data that set the 

http://www.genecards.org
http://www.genecards.org
http://www.genecards.org
http://www.genecards.org
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basis for predictive models to enhance our ability to anticipate epi-
zootic disease spread and impacts under different climatic scenarios.
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