
Scientific Report

A kinase-dependent role for Haspin in antagonizing
Wapl and protecting mitotic centromere cohesion
Cai Liang†, Qinfu Chen†, Qi Yi, Miao Zhang, Haiyan Yan, Bo Zhang, Linli Zhou, Zhenlei Zhang, Feifei Qi,

Sheng Ye & Fangwei Wang*

Abstract

Sister-chromatid cohesion mediated by the cohesin complex is
fundamental for precise chromosome segregation in mitosis.
Through binding the cohesin subunit Pds5, Wapl releases the bulk
of cohesin from chromosome arms in prophase, whereas centro-
meric cohesin is protected from Wapl until anaphase onset. Strong
centromere cohesion requires centromeric localization of the
mitotic histone kinase Haspin, which is dependent on the interac-
tion of its non-catalytic N-terminus with Pds5B. It remains unclear
how Haspin fully blocks the Wapl–Pds5B interaction at centro-
meres. Here, we show that the C-terminal kinase domain of Haspin
(Haspin-KD) binds and phosphorylates the YSR motif of Wapl
(Wapl-YSR), thereby directly inhibiting the YSR motif-dependent
interaction of Wapl with Pds5B. Cells expressing a Wapl-binding-
deficient mutant of Haspin or treated with Haspin inhibitors show
centromeric cohesion defects. Phospho-mimetic mutation in Wapl-
YSR prevents Wapl from binding Pds5B and releasing cohesin.
Forced targeting Haspin-KD to centromeres partly bypasses the
need for Haspin–Pds5B interaction in cohesion protection. Taken
together, these results indicate a kinase-dependent role for Haspin
in antagonizing Wapl and protecting centromeric cohesion in
mitosis.
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Introduction

Sister-chromatid cohesion is mediated by the multi-subunit cohesin

complex, which can entrap DNA inside its ring [1]. Precise regula-

tion of sister-chromatid cohesion is fundamental for the fidelity of

chromosome segregation [2]. In vertebrates, cohesin is removed

from chromosomes in two steps during mitosis [3,4]. Through bind-

ing multiple cohesin subunits [5–9], Wapl releases the bulk of

cohesin from chromosome arms during prophase to allow sister-

chromatid resolution [7,8]. Previous studies suggest that Wapl uses

its YSR motif (with the consensus of K/R-S/T-YSR) or FGF motifs to

associate with Pds5 and open a DNA exit gate in the cohesin ring

[6,10–18]. Centromeric cohesin is protected from this removal activ-

ity until its proteolytic cleavage by the protease Separase at

anaphase onset [3,19–21].

During chromosome bi-orientation, strong centromeric cohesion

is critical to resist the spindle pulling force at sister kinetochores.

Weak cohesion at centromeres causes premature chromatid separa-

tion (PCS) and chromosome missegregation, leading to chromoso-

mal instability [22,23]. In contrast to the well-studied function of

Sgo1 in the maintenance of sister-chromatid cohesion in mitosis

[24–35], the role of the mitotic histone kinase Haspin in protecting

centromeric cohesion [36] has only been recently ascertained

[37,38].

Haspin consists of an unstructured non-catalytic N-terminal

region and an atypical kinase domain in the C-terminus. Histone

H3 is the only currently known endogenous substrate of Haspin

[39]. Phosphorylation of H3-T3 (H3pT3) during mitosis by Haspin

promotes inner centromeric localization of the chromosomal

passenger complex (CPC) [40–42], which facilitates chromosome

bi-orientation [43–45]. Haspin uses a N-terminal YSR-like Pds5-

interacting motif (PIM) to bind Pds5 [37,38], which is required for

centromeric enrichment of Haspin and H3pT3 [37,38,41,46]. Muta-

tions in the PIM of Haspin disrupting its interaction with Pds5

cause weakened centromeric cohesion [37,38], indicating a

requirement for the Haspin–Pds5B interaction in cohesion protec-

tion. The YSR (or YSR-like)-containing PIMs in Wapl and Haspin

compete for Pds5B binding at least in vitro [37], suggesting one

plausible mechanism for Haspin in antagonizing Wapl. However,

it remains to be elucidated how Haspin fully blocks the Wapl–

Pds5B interaction to ensure strong cohesion at mitotic centro-

meres. For example, it is unknown whether, and how, the Haspin

kinase domain (Haspin-KD) may contribute to centromeric cohe-

sion protection in mitosis.

Here, we describe and functionally characterize a novel inter-

action between Haspin and Wapl. We show that Haspin-KD binds

and phosphorylates the YSR motif of Wapl (Wapl-YSR), thereby

directly blocking the YSR motif-dependent Wapl–Pds5B interaction
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at centromeres. This study reveals Haspin as a key factor that

provides a unique means of protecting centromeric cohesion in

mitosis.

Results and Discussion

Haspin-KD contributes to Wapl inhibition and centromeric
cohesion protection in mitosis

Sgo1 protects centromeric cohesion mainly by antagonizing the

cohesin release activity of Wapl, either directly or indirectly

[7,8,26–28,30,31,47]. Haspin overexpression largely bypasses the

requirement for Sgo1 in maintaining sister-chromatid cohesion

during mitosis [36,37], indicating that both Haspin and Sgo1 are

Wapl antagonists. However, when exogenously overexpressed as

a SFB-fusion protein (SFB is a triple tag of S-tag, Flag-tag, and

streptavidin-binding peptide) (Figs 1A and EV1A), the N-terminal

region (amino acid residues 1–469) of Haspin (SFB-Haspin-N469)

was defective in suppressing mitotic arrest (Fig 1B) and PCS

(Figs 1C and EV1B) induced by Sgo1 depletion, while similar

levels of wild-type (WT) SFB-Haspin were largely able to suppress

these mitotic defects. Thus, overexpression of the N-terminal

region of Haspin alone, while capable of binding Pds5B [37],

cannot prevent the strong cohesion loss caused by Sgo1 deple-

tion, suggesting a contribution of Haspin-KD to Wapl inhibition in

mitosis.

Cells with chromosomal instability and weak cohesion undergo

PCS to various extents, particularly during prolonged metaphase

with sustained bipolar kinetochore tension [48,49]. As we recently

reported, HeLa-derived Haspin-knockout (KO) cells (clone D2 used

in this study), which have weakened centromeric cohesion [37],

were defective in maintaining chromosome bi-orientation and sister-

chromatid cohesion during metaphase arrest induced by treatment

with the proteasome inhibitor MG132 (Fig 1D and E). These defects

were partly rescued by stable overexpression of SFB-Haspin-N469,

which is in line with the role of Haspin N-terminus in binding Pds5B

and protecting centromeric cohesion [37]. In addition, the inter-

kinetochore (inter-KT) distance on chromosome spreads prepared

from Haspin-KO cells arrested in mitosis with the spindle micro-

tubule poison nocodazole was 20% further apart than the control,

indicative of weakened centromeric cohesion. Compared to full-

length SFB-Haspin, SFB-Haspin-N469 was impaired in restoring

proper inter-KT distance in Haspin-KO cells (Fig 1F). Thus, even

overexpressed Haspin N-terminus is still deficient in supporting

centromeric cohesion to the full extent, suggesting a role for Haspin-

KD in cohesion protection.

Interaction with Pds5B through the N-terminal PIM of Haspin is

required for its centromere localization and centromeric cohesion

protection in mitosis (Fig EV1C and D) [37,38]. We next examined

the strength of centromeric cohesion when Haspin-KD (residues

471–798) was artificially targeted to centromeres as a fusion protein

with the centromere-targeting domain of CENP-B (CB-Haspin-KD-

GFP). In nocodazole-arrested mitotic Haspin-KO cells, expression of

CB-Haspin-KD-GFP was able to shorten the inter-KT distance by

17.4% (Fig 1G and H). As a positive control, expression of the

N-terminus (residues 1–50) of Haspin as a CENP-B fusion protein

(CB-Haspin-N50-GFP), but not Haspin-N50-GFP alone (Fig EV1E

and F), also shortened the inter-KT distance as we previously

showed [37]. Moreover, CB-Haspin-KD-GFP partly rescued the

defects of Haspin-KO cells in maintaining metaphase chromosome

bi-orientation and sister-chromatid cohesion during prolonged

MG132 treatment (Fig 1I and J). We noticed that the overall centro-

meric H3pT3 in mitotic Haspin-KO cells expressing CB-Haspin-

KD-GFP was 5.8-fold lower than that in control HeLa cells

(Fig EV1G), suggesting that artificial targeting of Haspin-KD to

centromeres is not sufficient to fully rescue H3pT3. Thus, forced

targeting Haspin-KD to the centromere can at least partly bypass the

requirement for Pds5B–Haspin interaction in protecting centromeric

cohesion.

Taken together, these data indicate the contribution of Haspin-

KD to Wapl inhibition and centromeric cohesion protection in mito-

sis (Appendix Fig S1).

Haspin-KD directly binds the N-terminus of Wapl at the
YSR motif

We then set out to investigate how Haspin-KD promotes centro-

meric cohesion protection. We detected reciprocal co-immunopreci-

pitation (co-IP) of stably expressed SFB-Haspin with endogenous

Wapl from nocodazole-arrested mitotic HeLa cell lysates, but not

from interphase cell lysates (Fig 2A and B). Using recombinant H3

(residues 1–45) fused to GST (H3-GST) as the substrate, we detected

H3-T3 phosphorylation by endogenous Wapl immunoprecipitates

from mitotic HeLa cells, but not from Haspin-KO cells (Fig 2C and

D), indicating the specific association between the endogenous

proteins of Haspin and Wapl in mitotic cells. Furthermore, GST-

fused Wapl (residues 1–33) (GST-Wapl-N) specifically pulled down

SFB-Haspin from mitotic cell lysates (Fig 2E). In addition, Wapl

(residues 1–28) fused to GST (Wapl-N-GST) efficiently pulled down

bacterially expressed and purified recombinant 6xHis-Haspin-KD

(residues 471–798) (Fig 2F). Thus, the YSR motif-containing N-

terminal short fragment of Wapl is sufficient to bind Haspin-KD

directly.

We noticed that Wapl-N-GST and H3-GST pulled down 6xHis-

Haspin-KD with comparable efficiency (Fig 2F and G) and that

the amino acid sequence of highly conserved very N-terminus of

Wapl and histone H3 showed some similarity (Fig EV2A). Previ-

ous studies reported the structure of Haspin-KD [50,51], and the

co-crystal structure of Haspin-KD with histone H3 peptide

ARTK4Q [Protein Data Bank (PDB): 4OUC] [52], which enabled

us to build a model of Haspin-KD in complex with the Wapl

peptide GKTY9 (Fig 2H). The model predicted multiple interac-

tions between the residues of Wapl and Haspin. In particular,

similar to the H3-K4 in binding Haspin-KD [39,52], Y9 of Wapl

was predicted to form hydrogen bonds with D707 and D709 of

Haspin. Indeed, the Wapl-N-Y9A-GST mutant was deficient in

binding 6xHis-Haspin-KD in the pulldown assay (Fig 2I). More-

over, 6xHis-Haspin-KD-D707L/D709N showed over 50% reduction

in the binding affinity for Wapl (Figs 2J and EV2B–D), as well as

H3-GST (Fig EV2E) [51]. These data demonstrate the importance

of residues D707 and D709 of Haspin for binding the YSR motif

of Wapl in vitro.

Taken together, we conclude that Haspin-KD directly binds the

flexible N-terminus of Wapl at the YSR motif, akin to its interaction

with the N-terminal tail of histone H3.
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Figure 1. Haspin-KD contributes to Wapl inhibition and centromeric cohesion protection in mitosis.

A Lysates of asynchronous Haspin-KO clone D2 cells, with or without stable overexpression of SFB-Haspin (WT or N469), were immunoblotted. See also Fig EV1A.
B The indicated cell lines were transfected with control or Sgo1 siRNA. After 36 h, the mitotic index, defined as the percentage of cells in prophase, prometaphase,

and metaphase, was quantified in over 3,000 cells (n = 3, unpaired t-test).
C Cells treated as in (B) were exposed to nocodazole for 3 h. Mitotic chromosome spreads were immunostained (see Fig EV1B). The percentage of cells with PCS,

defined as at least 26 separated chromatids per cell, was determined in over 160 cells. Means and ranges are shown (n = 2).
D The indicated cell lines were exposed to MG132, then fixed at the indicated time points to stain DNA. The percentage of mitotic cells with near-standard

metaphase plate (< 3 misaligned chromosomes) was determined in over 300 cells (n = 3, two-way ANOVA).
E Cells were exposed to MG132 for 8 h. Using mitotic chromosome spreads, the percentage of cells with PCS was determined in over 70 cells.
F Cells were treated with nocodazole for 3 h. Mitotic chromosome spreads were stained with CENP-C antibodies and DAPI. The inter-KT distance was measured on

over 300 chromosomes in over 10 cells (unpaired t-test).
G, H HeLa and Haspin-KO cells transiently expressing the indicated CENP-B fusion proteins were exposed to nocodazole for 3 h; then, mitotic cells were cytospun onto

coverslips, fixed, and stained with H3pT3 or CENP-C antibodies and DAPI. Example images are shown in Fig EV1G. The inter-KT distance was measured on over 500
chromosomes in 20 cells (G, unpaired t-test). Asynchronous cell lysates were analyzed by immunoblotting (H).

I HeLa- and Haspin-KO cells transiently expressing the indicated CENP-B fusion proteins were released from 8-h treatment with STLC into MG132, then fixed at the
indicated time points for staining with H3pT3 or CENP-C antibodies and DAPI. The percentage of mitotic cells with near-standard metaphase plate was determined
in over 300 cells (n = 3, two-way ANOVA).

J Cells were treated as in (I). At 5 h after STLC washout, mitotic cells were collected to prepare chromosome spreads; then, the percentage of cells with PCS was
determined in over 50 cells.

Data information: Means and SDs are shown (B, D, F, G, and I). See also Fig EV1.
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Figure 2. Haspin-KD directly binds the N-terminus of Wapl at the YSR motif.

A Lysates of nocodazole-arrested mitotic HeLa cells with or without stable expression of SFB-Haspin were subjected to immunoprecipitation followed by
immunoblotting with the indicated antibodies.

B Lysates of asynchronous or nocodazole-arrested mitotic HeLa cells stably expressing SFB-Haspin were subjected to immunoprecipitation with the Flag antibody or
control IgG, followed by immunoblotting with antibodies for Wapl or Flag.

C, D H3-GST was subjected to phosphorylation by endogenous Wapl immunoprecipitates from nocodazole-arrested mitotic HeLa- or Haspin-KO cells, and analyzed by
immunoblotting.

E Lysates of nocodazole-arrested mitotic Haspin-KO cells with or without expression of SFB-Haspin were subjected to pulldown by GST or GST-Wapl-N, followed by
anti-Flag immunoblotting or CBB staining for GST proteins.

F, G 6xHis-Haspin-KD was subjected to pulldown by GST, Wapl-N-GST, or H3-GST followed by CBB staining (F). The relative pulldown efficiency was determined (G).
Means and ranges are shown (n = 2).

H The model of Haspin in complex with the Wapl peptide GKTY9. Haspin is shown in gray cartoon. The bound Wapl peptide is shown in green stick representation.
Nitrogen and oxygen atoms are shown in blue and red, respectively. Water molecules are shown as red spheres. Dashes represent probable interactions. Marked
residues of Haspin which may interact with the Wapl peptide are represented with gray sticks.

I 6xHis-Haspin-KD was subjected to pulldown by GST or Wapl-N-GST (WT or Y9A), followed by anti-6xHis immunoblotting or CBB staining.
J 6xHis-Haspin-KD (WT or D707L/D709N) was subjected to pulldown by GST or Wapl-N-GST and analyzed as in (I).

Data information: L. exp., long exposure. See also Fig EV2.
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The binding of Haspin to Wapl displaces Pds5B from Wapl in vitro

Given the common requirement for the YSR motif of Wapl in bind-

ing Haspin-KD and Pds5B (Figs 2I and EV3A) [11], we speculated

that the binding of Haspin-KD and Pds5B to Wapl-YSR is competi-

tive. To test this possibility, Wapl-N-GST was used to bind increas-

ing concentrations of 6xHis-Haspin-KD and was subsequently

subjected to pull down MBP-Pds5B-N (residues 1–300). We found

that Wapl-N-GST pre-bound by 6xHis-Haspin-KD was deficient in

binding MBP-Pds5B-N (Fig 3A). Moreover, simultaneous addition of

6xHis-Haspin-KD reduced the capability of Wapl-N-GST to pull

down recombinant MBP-Pds5B-N (Fig 3B), as well as endogenous

Pds5B in cell lysates (Fig 3C).

In multiple Wapl-N-GST pulldown assays, while the pulldown of

Haspin-KD was readily detected by Coomassie Brilliant Blue (CBB)

staining, the pulldown of Pds5B-N was only detectable by

immunoblotting, suggesting the difference in their binding affinity

to Wapl. Indeed, when compared side-by-side with MBP-Pds5B-N,

MBP-Haspin-KD (Fig 3D and E) and 6xHis-Haspin-KD (Fig EV3B)

were much more efficiently pulled down by Wapl-N-GST. These

data suggested that Haspin-KD might dominate over Pds5B in the

competition for binding Wapl in vitro. Indeed, MBP-Pds5B-N pre-

bound to Wapl-N-GST was readily dissociated from Wapl by the

addition of 6xHis-Haspin-KD (Fig 3F), whereas 6xHis-Haspin-KD

pre-bound to Wapl-N-GST was hardly eluted when subsequently

incubated with various doses of MBP-Pds5B-N (Fig 3G). Similarly,

simultaneous addition of 6xHis-Haspin-KD substantially reduced the

pulldown of MBP-Pds5B-N by Wapl-N-GST in a dose-dependent

manner (Fig EV3C), but not vice versa (Fig EV3D). Thus, Haspin-

KD binds Wapl-YSR more tightly than Pds5B does, which can

displace Pds5B from Wapl in vitro.

Haspin phosphorylates Wapl at the YSR motif to inhibit the
Wapl–Pds5B interaction

The Haspin–Wapl interaction also prompted us to test whether

Wapl is a substrate of Haspin kinase. The structural model of

Haspin-KD in complex with the Wapl peptide GKT8YSRK predicted

that Haspin can phosphorylate Wapl at T8 (Fig EV4A). The residues

surrounding T8 also match the minimal Haspin substrate consensus

of R/K-T-K/Y, which is also preferentially in the N-terminus [52,53].

Indeed, using phospho-specific antibodies for Wapl-T8 phosphoryla-

tion (Wapl-pT8), we found that 6xHis-Haspin-KD readily phospho-

rylated recombinant GST-Wapl-N (Fig 4A), and full-length Myc-

Wapl immunoprecipitated from asynchronous cells (Fig 4B), but

not the Wapl-T8A mutant, although GST-Wapl-N-T8A efficiently

bound to 6xHis-Haspin-KD (Fig EV4B). Consistent with the

impaired binding of Haspin-D707L/D709N to Wapl, the D707L/

D709N mutant of MBP-Haspin-KD (Fig 4C), and full-length SFB-

Haspin immunoprecipitated from mitotic cells (Fig 4D), was largely

deficient in phosphorylating Wapl-T8. Thus, Haspin can phosphory-

late Wapl-YSR at T8 in vitro.

The crystal structure of Pds5B in complex with the Wapl peptide

KT8YSR suggested that phosphorylation at T8 may compromise

Wapl binding to Pds5B (Fig EV4C) [11]. The isothermal titration

calorimetry (ITC) assay showed that MBP-Pds5B-N bound to Wapl-

N (residues 1–28) peptide with a dissociation constant (Kd) of

6.0 lM (Fig 4E), whereas interaction between MBP-Pds5B-N and

the T8 phosphorylated Wapl-N peptide was undetectable (Fig 4F).

Consistently, the phospho-Wapl-N peptide could hardly pull down

MBP-Pds5B-N (Fig 4G and H). Furthermore, upon pre-phosphoryla-

tion by 6xHis-Haspin-KD, Wapl-N-GST and Wapl-N peptides were

defective in binding MBP-Pds5B-N (Figs 4I and EV4D). Thus,

Haspin-mediated phosphorylation of Wapl-YSR directly inhibits the

Wapl–Pds5B interaction in vitro. Besides, compared to the unphos-

phorylated peptide, the phospho-Wapl-N peptide pulled down

6xHis-Haspin-KD with a 75% reduction of efficiency (Fig EV4E and

F), indicating that phosphorylation of Wapl-YSR also reduces its

binding affinity for Haspin. This is reminiscent of the decreased

binding of Haspin-KD to T3 phosphorylated histone H3 relative to

the non-phosphorylated H3 [51], and is in line with Wapl being a

substrate of Haspin.

We next examined the effect of phospho-mimetic mutations in

the YSR motif on Wapl activity in binding Pds5B and releasing

cohesin. As expected, the phospho-mimetic T8E mutant of Wapl-

N-GST was largely deficient in pulling down MBP-Pds5B-N (Fig 4J).

Tethering Lac-repressor-fused Pds5B residues 1–300 (LacI-Pds5B-N)

to the stably integrated LacO repeats recruited WT and the T8V

mutant of Myc-Wapl with the latter being less efficiently, but not

the Myc-Wapl-T8E mutant, in U2OS cells (Fig EV4G and H). We

then depleted endogenous Wapl in HeLa cells with siRNA, comple-

mented them with siRNA-resistant exogenous Wapl, and examined

the morphology of chromosome spreads prepared from nocodazole-

arrested mitotic cells. Wapl depletion hindered sister-chromatid

resolution due to defective cohesin removal through the prophase

pathway [7,8]. As previously reported [5,30], expression of

Wapl-GFP restored sister-chromatid resolution in endogenous

Wapl-depleted cells. However, Wapl-T8E-GFP, as well as the known

Pds5-binding-deficient Wapl-Y9A/R11E-GFP mutant [11], was

defective in doing so (Figs 4K and L, and EV4I). Similar defect in

restoring mitotic sister-chromatid resolution was observed for the

Myc-Wapl-T8E mutant (Fig EV4J and K). Thus, phospho-mimetic

mutation in the Wapl-YSR motif, which abrogates the Wapl–Pds5

interaction, prevents Wapl from releasing cohesin in cells.

Using Wapl-pT8-specific antibodies, we were not able to reliably

detect Wapl-T8 phosphorylation in nocodazole-arrested mitotic

HeLa cells. Since modification-specific antibodies are highly influ-

enced by neighboring post-translational modifications (PTMs) [54],

the presence of additional PTMs at the Wapl-YSR motif, such as

acetylation of K7 [55], may interfere with the antibody recognition

for Wapl-pT8. In addition, given the role of Wapl in releasing the

majority of cohesin from chromosome arms in prophase, presum-

ably only a small population of Wapl can undergo transient and

dynamic phosphorylation at T8, which may be under the detection

limitation of our antibodies. Besides, due to the presence of nearby

residues of arginine and lysine, our mass spectrometry analysis did

not recover the peptides containing Wapl-T8. Given these reasons,

our failure in detecting Wapl-pT8 in cells should not be taken as the

proof that Haspin-mediated phosphorylation of Wapl-YSR does not

occur during mitosis.

A Wapl-binding-deficient mutant of Haspin is defective in
protecting mitotic centromere cohesion

To examine the functional importance of Haspin–Wapl interaction for

centromeric cohesion protection, we stably expressed Haspin-GFP
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Figure 3. The binding of Haspin to Wapl displaces Pds5B from Wapl in vitro.

A Various amounts of 6xHis-Haspin-KD were subjected to pulldown by GST or Wapl-N-GST. Then, the bead-immobilized GST proteins were washed and subsequently
used to pull down MBP-Pds5B-N.

B MBP-Pds5B-N was subjected to pulldown by GST or Wapl-N-GST in the absence or presence of 6xHis-Haspin-KD.
C Asynchronous HeLa cell lysates were subjected to pulldown by Wapl-N-GST, in the absence or presence of recombinant 6xHis-Haspin-KD.
D, E MBP-Pds5B-N or MBP-Haspin-KD was subjected to pulldown by GST or Wapl-N-GST (D). The relative pulldown efficiency was determined (E). Means and ranges

are shown (n = 2). L. exp., long exposure.
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(WT or the Wapl-binding-deficient D707L/D709N mutant) in

Haspin-KO cells (Fig EV5A). Immunofluorescence microscopy of

chromosome spreads prepared from nocodazole-arrested mitotic

cells showed that both WT and the D707L/D709N mutant of Haspin-

GFP mainly localized to the mitotic centromeres (Fig 5A), though

the mutant was 2.3-fold less concentrated than the WT protein

- 37

- 25

- 25

Wapl-pT8

GST-Wapl-N WT T8A
ATP + - + -

kDa

A

Anti-GST

6xHis-
Haspin-KD

B

6xHis-
Haspin-KD kDa

- 150

- 37

- 150

ATP
Myc-Wapl

+ - + -
T8AWT

Wapl-pT8

Anti-Myc

Myc IP

C Flag IPD

E

Molar ratio
1 2 30

0

-1

-2

-3

-4

-5

-6

-7

Time (s)
0 1000 2000 3000 4000 5000 6000 70000.0

-0.2

-0.4

-0.6

-0.8

μc
al

/s
ec

K
ca

l/m
ol

e 
of

 in
je

ct
an

t

Kd = 6.0 μM

Binding between Pds5B and Wapl F
 Time(s)

μc
al

/s
ec

K
ca

l/m
ol

e 
of

 in
je

ct
an

t
Binding between Pds5B and Wapl-pT8

Molar ratio

0.0

-0.2

-0.4

-0.6

-0.8

0

-1

-2

-3

-4

-5

-6

-7

0 1000 2000 3000 4000

1 20

No binding

G

R
el

at
iv

e 
pu

lld
ow

n
ef

fic
ie

nc
y 

of
M

B
P

-P
ds

5B
-N

0.0

0.2

0.4

0.6

0.8

1.0
P<0.0001

Wapl-N peptide WT pT8

H

I

GST or 
Wapl-N-GST

(CBB)

J

- 25

- 25

- 75

MBP-
Haspin-KD

Anti-MBP

Wapl-pT8

Anti-GST

kDa

Wapl-
N-GST

WT D707L/
D709N

ATP -+ -+
+ + + +

Wapl-pT8

+ATP - + +

Anti-GST

-

SFB-
Haspin

Wapl-N-GST + + + + +
SFB-Haspin WT D707L/D709N

- 25

- 25

- 100

kDa

- 3

Inp
ut 

(2%
)

Bea
ds

Wapl-N peptide

- 75

W
T pT

8

kDaMBP-
Pds5B-N

Peptide

Wapl-N-GST
GST+ - -

6xHis-Haspin-KD
ATP

-

+
+

+

+
+

+

+
-

MBP-Pds5B-N
In

pu
t

(0
.8

%
)

25 -

75 -

kDa

B
ea

ds

Wapl-GFP

siWapl

Anti-GFP

Wapl

α-Tubulin - 50
- 150

- 150
kDa

WT
- + + + +

T8E Y9A/R11EVector

K

0

20

40

60

80

100
P<0.05 P<0.01

ns

C
el

ls
 w

ith
 u

nr
es

ol
ve

d
ch

ro
m

at
id

s 
(%

)

siWapl - + + + +
H2B-GFP

WT T8E Y9A/R11E
Wapl-GFP

L

- 75

- 25

kDa

CBB

MBP-
Pds5B-N

In
pu

t
(0

.8
%

)

G
S

T

WT T8E

Wapl-N-GST

Figure 4. Haspin phosphorylates Wapl at the YSR motif to inhibit the Wapl–Pds5B interaction.

A, B GST-Wapl-N (A), or transiently expressed Myc-Wapl immunoprecipitated from asynchronous cells (B), was subjected to in vitro kinase reaction with 6xHis-Haspin-
KD, followed by immunoblotting with antibodies to 6xHis, Myc, Wapl-pT8, or GST.

C, D Wapl-N-GST was subjected to in vitro kinase reaction with MBP-Haspin-KD (C), or transiently expressed SFB-Haspin immunoprecipitated from mitotic cells (D),
followed by immunoblotting with antibodies to Flag, MBP, Wapl-pT8, or GST.

E, F ITC curves of the binding of MBP-Pds5B-N to WT or phospho-Wapl-N peptide. Kd is shown (n = 3).
G, H MBP-Pds5B-N was subjected to pulldown by biotinylated Wapl-N (WT or pT8) peptide immobilized on Neutravidin resin, followed by immunoblotting with MBP

antibodies or streptavidin-HRP (G). The relative pulldown efficiency was quantified (H; n = 3, unpaired t-test).
I Wapl-N-GST was subjected to in vitro kinase reaction with 6xHis-Haspin-KD. After stringent salt wash, bead-immobilized GST proteins were used to pull down
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Data information: Means and SDs are shown (E, H and L). See also Fig EV4.

ª 2017 The Authors EMBO reports Vol 19 | No 1 | 2018

Cai Liang et al Haspin phosphorylates and inhibits Wapl EMBO reports

49



W
T

D
70

7L
/D

70
9N

D
2+

H
as

pi
n-

G
FP

H3pT3 DNA/GFP/CENP-CGFPA B

H
3p

T3
 / 

H
as

pi
n-

G
FP

 ra
tio

WT D707L/D709N
0

1

2

3

4

5 P<0.0001

D2+Haspin-GFP
MG132 (h)

2 4 6 8 10

M
ito

tic
 c

el
ls

 w
ith

m
et

ap
ha

se
 p

la
te

 (%
)

0

20

40

60

80

100

HeLa+H2B-GFP
D2+H2B-GFP
D2+Haspin-GFP
D2+Haspin-D707L/D709N-GFP-#1
D2+Haspin-D707L/D709N-GFP-#2

C
C

el
ls

 w
ith

 >
 2

5
se

pa
ra

te
d 

ch
ro

m
at

id
s 

(%
)

0

20

40

60

80

100

HeLa D2

D2+Haspin-GFP

WT
D707L/D709N
#1 #2

MG132 (8 h)

H2B-GFP

D
MG132 (4 h)

0

10

20

30

40

50
C

el
ls

 w
ith

 >
 2

5 
se

pa
ra

te
d 

ch
ro

m
at

id
s 

(%
)

HeLa D2 D2+SFB-
Haspin-K511A

E F

Time after release from STLC into MG132 (h)

M
ito

tic
 c

el
ls

 w
ith

m
et

ap
ha

se
 p

la
te

 (%
)

0

20

40

60

80

100

HeLa
D2 HeLa+5-ITu (2 μM)

HeLa+5-ITu (1 μM)

P
<0.0001
P

<0.0001

1 2 3 4 5 60

Time after release from STLC into MG132 (h)

0

20

40

60

80

100

HeLa Survivin-WT Survivin-K62A D2

ns

1 2 3 4 5 6

M
ito

tic
 c

el
ls

 w
ith

m
et

ap
ha

se
 p

la
te

 (%
) ns

P<0.01
ns
P<0.05
P<0.001

ns
P<0.05

P<0.0001

ns

P<0.001

ns

P<0.0001G

MG132 treatment (h)

0

20

40

60

80

100

HeLa
Survivin-WT
Survivin-K62A
D2

1 2 3 4 5 6 7 8

M
ito

tic
 c

el
ls

 w
ith

m
et

ap
ha

se
 p

la
te

 (%
)

H

Scc1

SA2

H
aspin-KD

Pds5B

Haspin-containing cohesin
Sororin-containing cohesin
Microtubule-Kinetochore

Sgo1
P

PP2A

Wapl

YSR
M

PIM

I
PIM

P

N-terminal region Kinase-domain
1 470 798

Human Haspin
Pds5B

Wapl H3P

cohesin CPC

PIM

J

Smc3 Smc1

Centromeric cohesion KT-MT attachment
error correction

Chromosome bi-orientation

Chromosomal instability

Figure 5.

EMBO reports Vol 19 | No 1 | 2018 ª 2017 The Authors

EMBO reports Haspin phosphorylates and inhibits Wapl Cai Liang et al

50



(Fig EV5B). Moreover, compared to Haspin-GFP, Haspin-D707L/

D709N-GFP generated 11.8-fold less H3pT3 at centromeres (Fig 5B).

This is consistent with the impaired binding of 6xHis-Haspin-KD-

D707L/D709N to histone H3 (Fig EV2B–D), as well as the markedly

decreased H3-T3 phosphorylation by this mutant in vitro [51].

Haspin-KO cells showed increased distance between sister kine-

tochores as we previously showed [37], which was efficiently

restored by Haspin-GFP (Fig EV5C and D). However, Haspin-

D707L/D709N-GFP expressed at the levels comparable to those of

Haspin-GFP was deficient in supporting proper inter-KT distances.

Moreover, during MG132-induced metaphase arrest, the Haspin-

D707L/D709N-GFP mutant was not able to rescue the defects in

maintaining chromosome bi-orientation (Fig 5C) and sister-chro-

matid cohesion (Figs 5D and EV5E) to the same extent as similar

levels of Haspin-GFP did. These results indicate that cells expressing

the D707L/D709N mutant of Haspin have weakened centromeric

cohesion. This may explain the moderately reduced localization of

Haspin-D707L/D709N-GFP at mitotic centromeres, given that

centromeric recruitment of Haspin requires its interaction with

Pds5B and that Pds5B requires cohesin to localize at centromeres

[37,38,40,46]. Thus, even when overexpressed, the Haspin-D707L/

D709N-GFP mutant only partly rescues the centromeric cohesion

defects in Haspin-KO cells. In addition, CENP-B-fused Haspin-KD-

D707L/D709N-GFP was defective in supporting proper inter-KT

distance, metaphase chromosome bi-orientation, and sister-

chromatid cohesion in Haspin-KO cells (Fig 1G–J).

Taken together, these data demonstrate that interaction with

Wapl is required for Haspin to support strong cohesion at mitotic

centromeres. However, the cohesion defects in cells expressing the

Haspin-D707L/D709N mutant did not allow us to distinguish

whether this is due to reduced Wapl-YSR phosphorylation and/or

due to the reduced affinity for Wapl that makes Haspin a poor

competitor for Pds5B.

Haspin kinase activity promotes centromeric cohesion
independently of the H3pT3–Survivin interaction

We recently showed that, even when stably overexpressed (Fig EV5F),

the catalytically inactive mutant of Haspin (SFB-Haspin-K511A) only

partly restored the capability of Haspin-KO cells in maintaining meta-

phase chromosome bi-orientation [37]. Consistently, SFB-Haspin-

K511A was impaired in supporting strong sister-chromatid cohesion

during metaphase arrest (Fig 5E), as well as proper inter-KT distance

in nocodazole-arrested mitotic cells (Fig EV5G). Since Wapl-N-GST

was deficient in pulling down 6xHis-Haspin-KD-K511A (Fig EV5H),

the centromeric cohesion defects in cells overexpressing SFB-Haspin-

KD-K511A could not be unequivocally attributed to the potential

contribution of Haspin kinase activity to cohesion protection, similar

to the Haspin-D707L/D709N mutant.

We thus investigated whether chemical inhibition of Haspin

kinase activity in mitosis compromises centromeric cohesion. When

nocodazole-arrested mitotic HeLa cells were treated for 1 h with vari-

ous small-molecule inhibitors of Haspin, the inter-KT distances on

mitotic chromosome spreads were 11–15% further apart than the

control (Fig EV5I and J), indicative of weakened centromeric cohe-

sion. We next examined metaphase chromosome bi-orientation when

cells were released from STLC into MG132 in the absence or presence

of Haspin inhibitors. As expected, treatment with the Haspin inhibitor

5-ITu delayed the metaphase chromosome bi-orientation (Fig 5F),

reflecting the role of H3pT3-dependent CPC in correcting erroneous

kinetochore–microtubule (KT-MT) attachments [40–42]. Impor-

tantly, Haspin inhibitor-treated cells were defective in maintaining

chromosome bi-orientation on the metaphase plate during the

sustained metaphase arrest, consistent with the centromeric cohesion

defects. In addition, the pulldown of 6xHis-Haspin-KD by Wapl-N-

GST was not affected by 5-ITu up to 20 lM (Fig EV5K), suggesting

that treatment of mitotic cells with Haspin inhibitors may not

compromise the interaction of Haspin-KD with Wapl. These data

strongly suggest that Haspin kinase activity, likely toward Wapl, is

the main contributor to centromeric cohesion protection.

The contribution of Haspin kinase activity to the maintenance of

mitotic centromere cohesion is in stark contrast to the role of mitotic

kinases Plk1, Cdk1, and Aurora B in promoting cohesin release from

chromosome arms through phosphorylating cohesin and its protec-

tor Sororin [18,28,31,56–61].

Other than Wapl phosphorylation discovered in this study, the

only known readout of Haspin kinase activity in mitosis is H3pT3

[39], which is directly recognized by the Survivin subunit of CPC

◀ Figure 5. The Haspin–Wapl interaction and Haspin kinase activity are required for the protection of mitotic centromere cohesion.

A, B Haspin-KO cells stably overexpressing Haspin-GFP or Haspin-D707L/D709N-GFP (clone #2) were exposed to nocodazole for 3 h. Mitotic chromosome spreads were
immunostained with antibodies for anti-GFP, H3pT3, or CENP-C. Example images are shown (A). The centromeric H3pT3/Haspin-GFP immunofluorescence intensity
ratio was determined on over 500 chromosomes in 20 cells (B, n = 3, unpaired t-test).

C The indicated stable cell lines were exposed to MG132, fixed at the indicated time points, and then stained with GFP antibodies and DAPI. The percentage of
mitotic cells with near-standard metaphase plate was determined in over 200 cells. Means and ranges are shown (n = 2).

D The indicated cell lines were exposed to MG132 for 8 h. Using mitotic chromosome spreads (see Fig EV5E), the percentage of cells with PCS was determined in over
60 cells.

E HeLa- and Haspin-KO cells with or without stable overexpression of SFB-Haspin-K511A were exposed to MG132 for 4 h. Using mitotic chromosome spreads, the
percentage of cells with PCS was determined in 72 cells for each condition.

F HeLa and clone D2 cells were released from 3-h treatment with STLC into MG132-containing medium, in the absence or presence of Haspin inhibitors, and then
fixed at the indicated time points for DNA staining. The percentage of mitotic cells with near-standard metaphase plate was determined in around 300 cells (n = 3,
two-way ANOVA).

G The indicated cell lines were released from 5-h treatment with STLC into MG132-containing medium and then fixed at the indicated time points for DNA staining.
The percentage of mitotic cells with near-standard metaphase plate was determined in around 300 cells (n = 3, unpaired t-test).

H The indicated cell lines were exposed to MG132 and then fixed at the indicated time points to stain DNA. The percentage of mitotic cells with near-standard
metaphase plate was determined in around 300 cells (n = 3).

I A schematic of Haspin-containing centromeric cohesin complex. Double-headed arrows represent interactions.
J Schematic depiction of the role for Haspin in ensuring chromosome bi-orientation during mitosis.

Data information: Means and SDs are shown (B, F–H). Scale bars, 10 lm. See also Fig EV5.
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[40–42]. It is thus possible that the defect in centromeric cohesion

protection described above can also be contributed by CPC mislocal-

ization. We then directly examined whether the H3pT3-dependent

recruitment of CPC to centromeres is required for the protection of

centromeric cohesion. Using CRISPR/Cas9, we stably depleted

endogenous Survivin in HeLa cells stably expressing exogenous

Survivin-Myc-6xHis, or the Survivin-K62A-Myc-6xHis mutant lack-

ing phospho-specific interaction with H3pT3 (Fig EV5L and M) [62].

Compared to the control Survivin-WT cells, cells expressing the

Survivin-K62A mutant showed 2.9-fold in the centromeric localiza-

tion of Aurora B, the kinase subunit of CPC (Fig EV5N and O).

Consequently, these mutant cells were delayed in chromosome bi-

orientation when released from STLC into MG132. However, they

were proficient in achieving and maintaining proper alignment of

chromosomes on the metaphase plate (Fig 5G). Similar results were

obtained in HeLa cells in which endogenous Survivin was stably

replaced by the exogenous Survivin-H80A-Myc-6xHis mutant

(Fig EV5P) incapable of binding histone H3 and H3pT3 [62–64].

Furthermore, the Survivin-K62A-mutant cells efficiently maintained

metaphase chromosome bi-orientation during the prolonged MG132

treatment (Fig 5H) and showed proper inter-KT distances

(Fig EV5Q). Thus, loss of H3pT3–Survivin interaction does not

cause detectable weakening of centromeric cohesion, though it obvi-

ously compromises the efficiency of chromosome bi-orientation.

These results indicate that Haspin kinase activity contributes to

centromeric cohesion protection independently of the H3pT3-depen-

dent recruitment of CPC to centromeres.

Hengeveld et al [65] recently proposed that the CPC is localized

at the inner centromere to sustain centromere cohesion on bi-

oriented chromosomes. It is possible that another pool of CPC,

which is recruited to mitotic centromeres independently of Survivin

binding to H3pT3, might contribute to the protection of centromere

cohesion during metaphase. Indeed, weak accumulation of CPC at

centromeres was still detectable in cells expressing the K62A or

H80A mutant of Survivin (Fig EV5N and O). This could be due to

the recruitment of CPC by the Shugoshin proteins which bind to

histone H2A with T120 phosphorylation (H2ApT120) at mitotic

centromeres [33,40,66], or by other unidentified mechanisms.

In sum, these results support the model that Haspin phosphory-

lates Wapl at the YSR motif to directly inhibit the Wapl–Pds5B inter-

action. We suggest that the centromeric cohesion defects in cells

treated with Haspin inhibitors might be due to decreased phospho-

rylation of Wapl-YSR. However, we cannot rule out the possibility

of additional effects of loss of H3pT3, other than delocalization of

H3pT3-dependent centromeric CPC, which would result in cohesion

defects. Besides, we cannot fully exclude the possibility that Haspin

kinase activity toward another unknown target also contributes to

cohesion protection.

Conclusion

Taken together, we propose that there are different pools of centro-

meric cohesin complexes in which Pds5B binds to either Haspin or

Sororin, another Wapl antagonist [11,18,67–69]. The interaction of

Pds5B with the N-terminal PIM of Haspin enables the centromeric

localization of Haspin, which can competitively interfere with the

YSR motif-dependent binding of Wapl to Pds5B. The centromeric

Haspin uses its C-terminal kinase domain to bind and phosphorylate

Wapl at the YSR motif, thereby directly inhibiting the Wapl–Pds5B

interaction at mitotic centromeres and preventing Wapl-mediated

release of the Haspin-containing cohesin complex (Fig 5I). We

therefore conclude that Haspin ensures mitotic chromosome bi-

orientation not only by promoting the H3pT3-dependent centro-

meric localization of CPC to correct improper KT-MT attachments,

but also by antagonizing Wapl to protect centromeric cohesin

(Fig 5J). This study provides new insight into how different factors

in the complex centromere signaling network are specialized to

meet the multiple challenges encountered on the road to accurate

chromosome segregation in mitosis [70].

Materials and Methods

Cell culture, plasmids, siRNA, transfection, and drug treatments

All cells were cultured in DMEM supplemented with 1% penicillin/

streptomycin and 10% FBS (Gibco) and maintained at 37°C with

5% CO2. Cells stably expressing SFB-Haspin proteins were main-

tained in 0.2 lg/ml puromycin (Calbiochem). Cells stably express-

ing Haspin-GFP proteins were isolated and maintained in blasticidin

(Sigma) at 3 and 1.5 lg/ml, respectively. Cells stably expressing

pEF6-Survivin-Myc-His were maintained in 2 lg/ml blasticidin.

The original Haspin cDNA and Myc-Wapl plasmid were kindly

provided by Drs Jonathan Higgins (Newcastle University, UK) and

Hongtao Yu (University of Texas Southwestern Medical Center,

USA), respectively. SFB-Haspin, pBos-CENP-B-GFP, and pBos-CENP-

B-Haspin-N50-GFP were previously described [37]. SFB-Haspin-

N469 was made by introducing a stop codon at Haspin-K470. pBos-

Haspin-GFP and pBos-Wapl-GFP were constructed by replacing the

H2B fragment in pBos-H2B-GFP (Clontech) with the KpnI/BamHI-

digested PCR fragments encoding full-length Haspin and Wapl,

respectively. To make pBos-CENP-B-Haspin-KD-GFP constructs, the

PCR fragments encoding Haspin residues 471–798 were subcloned

into the BamHI site of pBos-CENP-B-GFP. All point mutations were

introduced with the QuikChange II XL site-directed mutagenesis kit

(Agilent Technologies). All plasmids were sequenced to verify

desired mutations and absence of unintended mutations.

For Wapl RNAi rescue experiments (Figs 4K and L, and EV4I–K),

HeLa cells were transfected twice with control or Wapl siRNAs in a

24-h interval. At 4 h after the second siRNA transfection, cells were

transfected with the siRNA-resistant Wapl-GFP or Myc-Wapl plas-

mids. After 24 h, cells were lysed for immunoblotting, or treated

with nocodazole for 3 h to prepare chromosome spreads for

immunostaining. The following siRNA duplexes were ordered from

Integrated DNA Technologies (IDT): siWapl (50-CGGACUACCCUUA
GCACAAdTdT-30), siSgo1 (50-CAGUAGAACCUGCUCAGAAdTdT-30),
and siPds5B (50-GAGACGACUCUGAUCUUGUdTdT-30). Plasmid and

siRNA transfections were done with Fugene 6 (Promega) and Lipo-

fectamine RNAiMAX (Invitrogen), respectively. Cells were arrested

in prometaphase with 0.16–3.3 lM nocodazole (Selleckchem).

Drugs used in this study were STLC (5 lM, Tocris Bioscience),

MG132 (5–20 lM, Sigma), and 5-iodotubercidin (5-ITu, 1–10 lM,

Tocris). LDN-192960 (10 lM) and LDN-211898 (30 lM) were kindly

provided by Dr. Jonathan Higgins. Mitotic cells were collected by

selective detachment with “shake-off”.
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Antibodies

Rabbit polyclonal antibodies used were to H3pT3 (B8633, Dr.

Jonathan Higgins), Wapl (A300-268A, Bethyl; for immunoblotting),

Cyclin B1 (clone D5C10, Cell Signaling Technology, CST), GFP

(A11122, Invitrogen), GST (G7781, Sigma), MBP (E8032, New

England BioLabs), GAPDH (14C10, CST), Survivin (NB500-201,

Novus Biologicals), Pds5B (A300-537A, Bethyl), and H2ApT120

(Active Motif). Rabbit anti-Wapl-pT8 polyclonal antibodies were

produced by immunization with the synthetic phospho-peptide

MTSRFGK[pT]YSRKGG. Rabbit anti-Haspin polyclonal antibodies

were produced by immunization with the synthetic peptide

AADGRRQRRPGREAA, which recognized exogenously expressed

Haspin, but not endogenous Haspin. Mouse monoclonal antibodies

used were to a-tubulin (T-6047, Sigma), Aurora B (AIM-1; BD Bios-

ciences), 6xHis-tag (GNI4110-HS, GNI), Flag-tag (M2, Sigma), Myc-

tag (4A6, Millipore), Wapl (MBL, clone C11-10, code number M221-

3; for immunoprecipitation), and H3pT3 (16B2, kindly provided by

Dr. Hiroshi Kimura, Osaka University, Japan). Guinea pig polyclonal

antibodies against CENP-C were from MBL (PD030). Human centro-

mere autoantibodies were from Immunovision. Secondary antibod-

ies for immunoblotting were goat anti-rabbit or horse anti-mouse

IgG-HRP (CST). Streptavidin-HRP was from ThermoFisher (43–4323).

Secondary antibodies for immunostaining were donkey anti-rabbit

IgG-Alexa Fluor 488 or Cy3 (Jackson ImmunoResearch), anti-mouse

IgG-Alexa Fluor 488 or 546 (Invitrogen), anti-human IgG-Alexa Fluor

647 (Jackson ImmunoResearch), and goat anti-guinea pig IgG-Alexa

Fluor 647 (Invitrogen).

CRISPR/Cas9-mediated editing of Survivin gene in HeLa cells

Single-guide RNA (sgRNA) for human Survivin gene was ordered as

oligonucleotides from IDT, annealed, and cloned into the BbsI site

of dual Cas9 and sgRNA expression vector pX330 (Addgene). The

plasmids were transfected into HeLa cells stably expressing

Survivin-Myc-6xHis using Fugene 6 (Promega). After 48-h incuba-

tion, cells were split individually to make a clonal cell line with

selection using 1 lg/ml puromycin for 2–3 days. The sgRNA target-

ing a sequence (50-CTGTCCCTTGCAGATGGCCG-30) is at the junc-

tion of an intron and the beginning of the second exon of Survivin

gene. Clones with strong reduction in centromeric Aurora B were

isolated by immunostaining and confirmed by immunoblotting.

Fluorescence microscopy and statistical analysis

Cells grown on coverslips were fixed with 2% paraformaldehyde

(PFA) in PBS for 10 min followed by extraction with 0.1 or 0.5%

Triton X-100 in PBS for 5 min. Mitotic HeLa cells obtained by

shake-off were re-attached to glass coverslips by Cytospin at

1,500 rpm for 5 min, pre-extracted for 5 min with 1% Triton X-100

in PHEM (60 mM Pipes, 25 mM Hepes, 10 mM EGTA, and 2 mM

MgCl2, pH 6.9), then fixed with 4% PFA in PHEM for 20 min. In

general, to produce chromosome spreads, mitotic cells obtained by

selective detachment were incubated in 75 mM KCl for 10 min, re-

attached to glass coverslips by Cytospin, then fixed with 2% PFA in

PBS for 20 min followed by extraction with 0.1% Triton X-100 in

PBS for 5 min. Fixed cells were stained with primary antibodies for

1–2 h and secondary antibodies for 1 h, all with 3% BSA in PBS

with 0.1–0.5% Triton X-100 and at room temperature. DNA was

stained for 10 min with DAPI or Hoechst 33342 (0.5 lg/ml, Thermo

Fisher Scientific).

Fluorescence microscopy was carried out at room temperature

using a Nikon ECLIPSE Ni microscope with a Plan Apo Fluor 60×

Oil (NA 1.4) objective lens and a Clara CCD (Andor Technology).

The inter-KT distance was measured using the centromere marker

CENP-C or ACA on over 25 kinetochores per cell in at least 20 cells

from one or two independent experiments. Distance was determined

by drawing a line from the outer kinetochore extending to the outer

edge of its sister kinetochore. The length of the line was calculated

using the imaging software of NIS-Elements BR (Nikon). Quan-

tification of fluorescent intensity was carried out with ImageJ (NIH)

using images obtained at identical illumination settings. Briefly, on

chromosome spreads, the average pixel intensity of H3pT3, Aurora

B, or Haspin-GFP staining at inner centromeres, defined as regions

falling within a 9-pixel-diameter circle at paired centromeres, was

determined using ImageJ. ACA or CENP-C intensity was determined

within a 9-pixel-diameter circle encompassing single centromere

dots. After background correction, the ratio of Haspin-GFP/CENP-C,

H3pT3/Haspin-GFP, or Aurora B/ACA intensity was calculated for

each centromere. The acquired images were processed using Adobe

Photoshop and Adobe Illustrator. Statistical analyses were carried

out by unpaired t-test using GraphPad Prism 6.

Protein expression and purification

Bacterial expression plasmids of H3-GST (in pETGEX-CT) and

6xHis-Haspin-KD (in pET45b+) were kindly provided by Dr.

Jonathan Higgins (Newcastle University, UK). MBP-Haspin-KD and

MBP-Pds5B-N were constructed by subcloning Haspin residues 471–

798 and Pds5B residues 1–300, respectively, into pGEX-MBP-6xHis.

Wapl-N-GST was constructed by subcloning Wapl residues 1–28

into the NcoI/SacI sites of pETGEX-CT. GST-Wapl-N was

constructed by subcloning Wapl residues 1–33 into pGEX-4T1. The

plasmids were transformed into BL21 (DE3)-competent cells (Strata-

gene). Cells were grown in LB broth under antibiotic selection at

37°C until OD600 at 0.6–0.7, and protein expression was induced

with 0.1–0.4 mM IPTG at 16°C for 16 h or at 37°C for 4 h. Cells

were lysed by sonication in buffer A (50 mM Tris–HCl, pH 8.0,

300 mM NaCl, for MBP-Pds5B-N), buffer B (20 mM Tris–HCl, pH

8.0, 100 mM NaCl, 1 mM EDTA, 1% Triton X-100 or 0.5% NP-40,

for GST fusion proteins), or buffer C (40 mM Tris–HCl, 300 mM

NaCl, 1% Triton X-100, 20 mM imidazole, pH 7.4, for 6xHis-

Haspin-KD). The lysate was clarified by centrifugation and incu-

bated with Amylose Resin (BioLab), glutathione Sepharose 4B (GE

Healthcare), or Ni-NTA resin (Qiagen) beads, all in lysis buffer. The

resins were washed with lysis buffer and eluted with 10 mM

maltose, 10 mM glutathione, or 300 mM imidazole.

Immunoblotting and immunoprecipitation

SDS–PAGE, immunoblotting, and immunoprecipitation were carried

out using standard procedures. Cell lysates were prepared in stan-

dard SDS sample buffer or Lamond buffer for immunoblotting. For

the co-immunoprecipitation (Figs 2A–D and 4D), cells were lysed in

P50 buffer containing 25 mM Tris–HCl, pH 7.5, 50 mM NaCl, 0.1%

NP-40, 2 mM MgCl2, 10% glycerol, 1 mM dithiothreitol (DTT),
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protease inhibitor cocktail (P8340, Sigma), 1 mM PMSF, 0.1 lM
okadaic acid (Calbiochem), 10 mM NaF, 20 mM b-glyceropho-
sphate, and benzonase (Merck). After the removal of insoluble

materials by high-speed centrifugation, lysates were precleared with

GammaBind G Sepharose (17-0885-02, GE Healthcare). Lysates were

incubated with antibodies for 3 h at 4°C before the addition of

GammaBind G Sepharose for a further 1 h. Beads were washed

several times with the lysis buffer with 150 mM NaCl, boiled in

standard SDS sample buffer, and subject to immunoblotting.

GST pulldown and peptide pulldown

For GST-Wapl-N pulldown of SFB-Haspin (Fig 2E), nocodazole-

arrested mitotic HeLa cells stably expressing SFB-Haspin were lysed

in P50 buffer with 150 mM NaCl. The lysates were precleared with

glutathione Sepharose 4B beads, then incubated with GST fusion

proteins immobilized to glutathione Sepharose 4B beads for 2 h. For

Wapl-N-GST pulldown of endogenous Pds5B (Fig 3C), asyn-

chronous HeLa cells were lysed in P50 buffer, precleared, then

subjected to GST pulldown in the absence or presence of 6xHis-

Haspin-KD. For Wapl-N-GST or H3-GST pulldown of 6xHis-Haspin-

KD, MBP-Haspin-KD, or MBP-Pds5B-N, these recombinant proteins

were incubated for 1 h with bead-immobilized GST fusion proteins

in P150 buffer (50 mM Tris–HCl, pH 7.5, 150 mM NaCl, 0.5%

Triton X-100). For the data in Fig 2I and J, pulldown was conducted

in P150 buffer with 300 mM NaCl. For peptide pulldown of MBP-

Pds5B-N (Fig 4G) or 6xHis-Haspin-KD (Fig EV4E), 1 lg Wapl-N

peptides (WT or pT8) was incubated with 4 lg recombinant

proteins in 500 ll P150 buffer for 4 h, then incubated with NeutrA-

vidin Plus Ultralink Resin (Thermo Fisher Scientific) for 1 h. The

Wapl peptide of residues 1–28 (95% pure) followed by Lys-biotin

was synthesized by GL Biochem (Shanghai). Following all these

pulldown assays that were conducted at 4°C, the beads were

washed 3–5 times with the same buffer and subjected to analysis by

immunoblotting or CBB staining.

In vitro kinase reaction

For phosphorylation of GST-Wapl-N, Wapl-N-GST or Wapl-N

peptide (Figs 4A, C, I and EV4D), 0.5 lg substrates was incubated

with 0.2 lg recombinant Haspin-KD. For phosphorylation of Myc-

Wapl (Fig 4B), asynchronous HEK293T cells transiently expressing

Myc-Wapl were lysed in buffer containing 50 mM Tris–HCl, pH 7.5,

500 mM NaCl, 0.1% NP-40, and 10 mM MgCl2 with protease inhibi-

tors and phosphatase inhibitors as in P50 buffer; then, the anti-Myc

immunoprecipitates were subjected to phosphorylation by 0.2 lg
6xHis-Haspin-KD. The kinase reactions were conducted in 50 ll
kinase reaction buffer (50 mM Tris–HCl pH 8.0, 150 mM NaCl,

10 mM MgCl2) with 0.2 mM ATP for 20 min at 30°C. The reactions

were terminated with SDS sample buffer, boiled, and analyzed by

immunoblotting.

Isothermal titration calorimetry and fitting

Measurements of the heat exchange associated with MBP-Pds5B-N

(residues 1–300) binding to synthetic Wapl-N peptide (residues 1–

28) were acquired using a microcalorimeter (VP-ITC, GE Health-

care). All experiments were performed at a constant temperature of

25°C. All solutions were filtered and degassed before each experi-

ment. The sample cell (V = 1.4301 ml) was filled with MBP-Pds5B-

N (17 lM) sample in the buffer containing 200 mM NaCl and

20 mM Tris–HCl, pH 8.5, whereas the injector contained the same

buffer with synthetic Wapl peptide (270 lM); 25–30 injections were

performed with 10 ll synthetic peptide injected into sample cell

each time. The data were fit to a one-site binding model in the

Origin program. A constant background was subtracted. The affi-

nities were reported as Kd in the text and figures.

Structural modeling

The structure of Haspin kinase domain in complex with the Wapl

peptide GKTY (Fig 2H) or GKTYSRK (Fig EV4A) was modeled using

WinCoot based on the structure of Haspin kinase domain in

complex with the H3 peptide ARTKQ (PDB ID: 4OUC). The structure

of Pds5B in complex with the Wapl peptide KpTYSR (Fig EV4C) was

modeled using WinCoot based on the structure of Pds5B in complex

with the Wapl peptide KTYSR (PDB ID: 5HDT). The geometries of

the modeled structure were refined using REFMAC. All the figures

were made by PyMOL (www.pymol.org).

Expanded View for this article is available online.
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