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Abstract

Cocaine, a powerful vasoconstrictor, induces immune responses including cytokine elevations. 

Chronic cocaine use is associated with functional brain impairments potentially mediated by 

vascular pathology. Although the Crack-Cocaine epidemic has declined, its vascular consequences 

are increasingly becoming evident among individuals with cocaine use disorder of that period, 

now aging. Paradoxically, during the period when prevention efforts could make a difference, this 

population receives psychosocial treatment at best.

We review major postmortem and in vitro studies documenting cocaine-induced vascular toxicity. 

PubMed and Academic Search Complete were used with relevant terms.

Findings consist of the major mechanisms of cocaine-induced vasoconstriction, endothelial 

dysfunction, and accelerated atherosclerosis, emphasizing acute, chronic, and secondary effects of 

cocaine. The etiology underlying cocaine's acute and chronic vascular effects is multifactorial, 

spanning hypertension, impaired homeostasis and platelet function, thrombosis, 

thromboembolism, and alterations in blood flow. Early detection of vascular disease in cocaine 

addiction by multimodality imaging is discussed. Treatment may be similar to indications in 

patients with traditional risk-factors, with few exceptions such as enhanced supportive care and 

use of benzodiazepines and phentolamine for sedation, and avoiding β-blockers.

Given the vascular toxicity cocaine induces, further compounded by smoking and alcohol 

comorbidity, and interacting with aging of the crack generation, there is a public health imperative 
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to identify pre-symptomatic markers of vascular impairments in cocaine addiction and employ 

preventive treatment to reduce silent disease progression.
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1. Phenomenology contributing to vascular damage

Cocaine, compared to other illicit drugs, poses a particular risk for vascular disease and is 

most involved in emergency room visits (40.3%), with highest rates for men aged 35–44 

years, amounting to a vast social and economic burden [1]. Cocaine-induced damage to the 

cardiovascular and cerebrovascular systems is widely reported, and is linked with 

hypertension, tachycardia, ventricular arrhythmias [2],myocardial infarction [3,4], stroke 

[4,5], resulting in severe functional impairments or sudden mortality [6–10].

Vast efforts are geared toward psychosocial rehabilitation of cocaine use disorder (CUD). 

However, the accelerated development of vascular disease remains mostly undetected and 

asymptomatic presentation of vascular pathology in CUD results in silent disease 

progression.

“Crack-Cocaine” was introduced in the mid-1980s involving a new route of administration, 

smoking (as opposed to sniffing), which enhances vascular toxicity. Furthermore, the 

phenomenology of CUD consists of repeated drug use leading to tolerance, withdrawal, and 

compulsive drug-seeking behavior with inability to abstain, despite adverse effects to 

medical, social and occupational functioning. Underlying this addiction is CUD's association 

with abnormal brain morphology [11] and function involving inefficiencies in circuits that 

coordinate reward and self-control processes [12].

Despite advances in characterization of addiction, knowledge about the contribution of 

vascular aging to brain impairments in human CUD is scarce. We review the mechanisms 

underlying the vascular damage associated with cocaine use and possible treatment 

directions.

2. Search strategy

We present the main mechanisms of acute and chronic cocaine-induced toxicity on vessels, 

brain and heart (Fig. 1) and the common vascular and systemic effects of cocaine use in 

humans (Fig. 2). Particular attention was given to the imaging studies that measured 

cocaine-induced changes to the human heart, brain, and arteries (Table 1), since these 

methods are gaining a central role as markers of inflammatory disease. Review methodology 

included search in two electronic databases (PubMed and Academic Search Complete) using 

relevant search terms (cocaine, inflammation, cardiovascular, cerebrovascular, carotid artery, 

MRI, magnetic resonance spectroscopy, PET, CT, and ultrasound) from 1978 to 2017; 
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results are presented in Table 1 and Fig. 2. Major findings in circulating pathology are noted 

as well.

3. Pharmacodynamics of cocaine

Cocaine's main vasoactive metabolite benzoylmethylecgonine, a tropane alkaloid, is a 

sodium channel blocker, which produces enhanced sympathetic activity at low doses [13,14] 

(Fig. 1, center box). At high doses, cocaine is markedly more dangerous than other central 

nervous system stimulants, including amphetamines [15], and can cause sudden cardiac 

death through its effect on sodium channels and local anesthetic actions [13,14,16]. Cocaine 

crosses the blood–brain-barrier perhaps better than other psychoactive chemicals and may 

even induce its breakdown [17,18]. In addition, cocaine blocks reuptake of catecholamines 

in the presynaptic neurons in the central and peripheral nervous systems, resulting in 

increased catecholamines, sympathetic output and stimulation [2,19]. There is also evidence 

that the cardiovascular actions of cocaine are mediated in part by dopamine [20], via central 

and peripheral mechanisms [21]. Stimulation of dopamine cells in the ventral tagmental area 

increases blood pressure and this effect is antagonized by the dopamine D2 receptor 

blockers [22].

4. Acute effects of cocaine

Cocaine's acute hematological effects on the vessel (Fig. 1, upper box) [10,23,24] center on 

the loss of the endothelium's protective functions, a common denominator in the 

pathogenesis of ischemic vascular disease [35,36]. Cocaine releases endothelin-145, which is 

found to be elevated in CUD and declines with detoxification [36,46,47]. When vessels are 

stressed, endothelin-1 (a vasoconstrictor protein produced by vascular endothelial cells) is 

elevated and nitric oxide (a blood vessel dilator) decreases, leading to vasoconstriction 

[35,36]. It was recently demonstrated that cocaine elicits autophagy involving nitric oxide 

and glyceraldehyde-3-phosphate dehydrogenase signaling cascade [48]. Additional 

mechanisms implicated in cocaine induced vasoconstriction include increases in calcium 

[49]. In cases of acute damage, when stress leads to rupture in vessels, endothelial damage 

promotes the increase of fibrinogen (glycoprotein, which helps in formation of blood clots) 

and Von Willebrand factor (glycoprotein signaling endothelium changes), leading to platelet 

aggregation and ultimately the formation of blood clots [38]. This cascade reduces blood 

flow following cocaine use and can lead to acute organ damage.

Additionally, inflammation and atherosclerosis are substantial potentially lethal vascular 

effects of cocaine use that have acute and chronic systemic impact 

[2,4,10,13,16,23,35,37,38,42,50]. Cocaine creates an elevated immune system inflammatory 

state with decreased basal anti-inflammatory markers (e.g., interleukin-10) [42,51], and 

increased pro-inflammatory cytokines (e.g., tumor necrosis factor alpha, Interleukin 1β) 

[42,51], all contributing to vascular disease (e.g., endocarditis).

Cocaine induces acute cardiotoxicity through multiple pathways (Fig. 1, left box). While 

smoking crack or sniffing cocaine, there is a vast accumulation of the drug in the heart 

affecting myocardial tissue directly [26]. Sympathomimetic effects generate a rise of heart 
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rate, blood pressure and myocardial contractility, which enhance myocardial oxygen 

demand, whereas myocardial oxygen supply is decreased by coronary vasoconstriction and 

enhanced thrombosis. These mechanisms underlie inadequate myocardial oxygen 

equilibrium, which may lead to ischemia and manifest as angina or infarction [2,13]. 

Ischemia is suggested as the main mechanism of acute damage responsible for various 

clinical presentations [25]. Other known mechanisms of cardiotoxicity, include cocaine's 

blockage of sodium channels and a subsequent increase in calcium flux and a 

vasoconstrictor response [28]. For example, cocaine-induced blockade of cardiac sodium 

channel Nav1.5 affects myocardial electrical impulses critical for action potential generation 

and propagation in the heart (by increasing the sympathomimetic stimulation frequency, 

cocaine produces a progressive reduction in Nav1.5 current amplitude for successive pulses 

within a stimulation train by a mechanism commonly referred to as use-dependent 

inhibition) [52]. In addition to ischemic heart disease [4], other complications include 

multiple foci of mid-wall and subepicardial late enhancement in the apical septum and apical 

lateral wall [53] and coronary vasoconstriction [2,16,23]. Acute aortic syndromes [23] and 

acute aortic dissection [2,8] are other frequent findings associated with cocaine use (Fig. 2).

The full etiology underlying cocaine's acute neurotoxicity is multifactorial (Fig. 1, right 

box), with similar mechanisms that also underlie its cardiotoxicity effects, spanning 

hypertension, impaired homeostasis and platelet function (aggregation), thrombosis, 

thromboembolism, decreased cerebral blood flow (CBF), and focal perfusion deficits [29–

32,54,55]. Cerebral vasospasm is pharmacologically induced via cocaine's potent 

sympathomimetic properties [32] and an increase of endothelin-132,34. In addition, cocaine 

induces disruption of cerebral autoregulation of blood flow (maintaining relatively constant 

blood flow despite changes in perfusion pressure) and global reduction in cerebral glucose 

metabolism [31]. Abnormalities in the expression of transcription factors in cells and 

changes of brain neurotransmitter systems have been reported [31]. For example, 

vasoconstriction, a main underlying cause of ischemic strokes, may result from the increased 

availability of epinephrine, norepinephrine, and serotonin (especially in large and medium-

sized brain vessels) in the vasculature due to cocaine blockade of their reuptake [55–57]. 

Furthermore, vasoconstriction at presynaptic nerve terminals increases the release of 

calcium from the sarcoplasmic reticulum in cerebral vascular smooth muscle cells [32,33]. 

Sudden increases in arterial pressure can induce aneurysms (a localized widening of an 

artery or vein, resulting from weakening of vessel wall), arteriovenous malformations 

(abnormal connection between arteries and veins, bypassing the capillary system) and 

hemorrhagic strokes [55]. Massive strokes can also be caused by arterial dissection and 

hemispheric infarcts [32]. Carotid artery dissection might also be caused by cocaine 

mediated apoptosis of vascular cells leading to ischemic stroke, although the mechanism is 

not fully understood [58].

The major cerebrovascular effects of cocaine consist of ischemic and hemorrhagic 

(including subarachnoid and intracerebral hemorrhages) strokes [5,13,29–32,59–61] (Fig. 2). 

In particular, crack cocaine seems to be associated with both ischemic strokes and 

hemorrhage strokes, whereas cocaine hydrochloride causes mainly intracerebral and 

subarachnoidal bleeding [61,62]. Individuals with underlying arteriovenous malformation or 

aneurysm are at greater risk for such events [31]. Additional findings point to reduced 
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arterial caliber, focal narrowing in the anterior (and middle cerebral arteries) and posterior 

cerebral circulation as well as communicating arteries [63].

Volkow et al. [64] were the first to document that CUD had profound decreases in CBF as 

evidenced by decreased brain uptake of water. Cocaine doses within the range self-

administered by drug abusers can markedly decrease CBF (approximately by 70%) within 

2–3 min after administration, lasting in some arteriolar branches for over 45 min [5]. Thus, 

cocaine induces microischemia in various types of vessels and arteriolar branches that is 

exacerbated with repeated use and is likely to be a contributor to its neurotoxic effects [5]. 

Furthermore, chronic cocaine-use reduces capillary flows in brain and may be responsible 

for cerebrovascular small-vessel ischemic disease (e.g. cocaine-induced leukoaraiosis), 

possibly involving genetic factors [65,66].

Cocaine-induced acute neurotoxic mechanisms are further revealed by uncoupling between 

vascular effects [i.e., changes in: CBF, oxygenated (HbO2) and deoxygenated hemoglobin 

(HbR), and cerebral blood volume] from the cellular effects (i.e., changes in intracellular 

calcium [Ca2+], an indicator of neuronal activation). Such an examination in a rat cortical 

brain identified a 2.9 ± 0.5 min lag time between the peak neuronal and vascular responses 

to cocaine [67]. Specifically, a multimodality imaging study revealed that cocaine caused an 

immediate decrease in local oxygen content and CBF (t < 4 min) followed by a longer 

lasting overshoot (7.1 ± 0.2 min) in these measures (up to 40 min) while Ca2+ increases 

were immediate (peaked at 4.1 ± 0.4 min) and remained elevated over 20 min [67].

Cocaine's immediate increases in neuronal activity and abrupt decrease in CBF and HbO2 

could underlie cerebrovascular complications associated with cocaine use, such as ischemic 

stroke [67,68]. Furthermore, Ca2+ increases could also underlie the reported enhanced 

hemodynamic and field potential responses to sensory stimulation after acute cocaine 

administration [67,69].

5. Chronic effects of cocaine

Cocaine's chronic effects on the vessel (Fig. 1, upper box) [10,23,24] consist of repeated 

endothelial damage leading to premature and severe atherosclerosis in various organs 

[10,19].

In the heart, the significant interaction of cocaine with norepinephrine transporters [26,27] 

can lead to left ventricular dysfunction by effect of dilation, reduction of ejection phase and 

reduced contractility [70]. Despite some controversy [3,53,71], left ventricular hypertrophy 

(as shown in Fig. 2) is among the most prevalent chronic morphological findings associated 

with cocaine toxicity in patients with cocaine-associated chest pain [2–4,10,16,24,50,72–

77]. Structural and functional damage has been reported in both ventricles including 

decreased ejection fraction and increased end-systole [6,78] and steatosis [79] (abnormal 

retention of lipids within cells) that is associated with impaired left ventricle function [6]. 

These effects, as well as others (e.g., myocardial edema), may show a cocaine dose-related 

response [73]. Other reports document aortic damage including dilatation [78], reduced 

strain, compliance and distensibility [74,80], and increased stiffness index and pulse wave 
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velocity [74]. Furthermore, asymptomatic or subclinical cardiovascular disease is shown in 

coronary calcification, plaque and stenosis and found to be independently associated with 

cocaine use [81]. In a longitudinal study, after 6 months of cocaine, use >50% coronary 

stenosis developed [46].

Cocaine-induced chronic neurotoxicity consists of monoamine re-uptake inhibition, anti-

cholinergic activity, and alpha-adrenergic stimulation [19]. Advanced atherosclerosis of 

intracranial vessels [32] is noted as the cause of cocaine-induced stroke in numerous studies 

[4,29].

Atherosclerosis of the carotid arteries is of particular relevance to CUD because these 

arteries supply blood to the brain regions that are implicated in the cognitive impairments 

documented in CUD [39–41]. Studies in healthy populations reveal association between 

cognitive deficiencies and atherosclerosis, indicating that there is an inflammatory pathway 

that reduces the brain's executive control network efficiency [82–84]. For example, carotid 

arteries thickness has been associated with diminished attention-executive–psychomotor 

network functioning in elderly humans [85] and levels of atherosclerosis correlate with 

functioning of cognitive control networks in healthy individuals [82–84]. Thus, 

atherosclerosis may impact cognitive and behavioral functioning even before arterial 

narrowing results in a stroke. Literature that characterizes atherosclerosis in the carotid 

arteries in asymptomatic cocaine users is scarce. Additional in vivo examinations are clearly 

required to solidify knowledge concerning early vascular disease detection in CUD, 

especially, the assessment of carotid plaque composition for determining risk profiles and 

predicting future clinical events in CUD.

Additional reports on chronic cocaine use impact, document orbitofrontal cortex 

inflammation associated with intranasal cocaine use resulting in mutilations such as: 

panhypopituitarism [86] (inadequate or absent production of the anterior pituitary 

hormones); optic nerve dysfunction, and diffuse white-matter lesions in downstream regions 

including the basal ganglia [87]; proptosis (forward displacement of the eye) and double 

vision generated by osteolytic destruction (dissolution of bone) of the sinuorbital barriers 

[88]; sinonasal inflammatory condition involving severe destructive lesions of the nasal 

cavities and facial structures [89]; and extensive bony destruction of the orbital walls with 

associated orbital cellulitis, and nasolacrimal duct obstruction [90].

6. Secondary effects of cocaine

In addition to cocaine-specific effects, there are secondary harms resulting from synergetic 

effects between multiple environmental, psychosocial and behavioral factors comprising the 

addiction phenomenology that could in turn enhance potential vascular damage. These 

factors include the life-course and complexity of CUD, comprised of years (often, decades) 

of concomitant alcohol and/or tobacco and/or other drug use, potentiating vascular toxicity. 

The issue is complicated further by the fact that contaminants such as procainamide, 

quinidine and antihistamines, which are often mixed with the cocaine, may contribute to the 

effects seen and influence the underlying pathophysiology [30]. Furthermore, compromised 

decision making underlying having unprotected sex or using drugs intravenously can 
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increase exposure to infections that activate the immune and inflammatory systems [42], 

potentially of additive impact in accelerating aging of the vasculature [91]. The prevailing 

low socio-economic status, limited awareness of health issues, lack of sleep, and poor 

nutrition, could further hasten vascular disease [43,44]. Additionally, genetic factors leading 

to variability in reaction to cocaine can enhance hemodynamic responsiveness, incidence of 

coronary vasoconstriction, and vascular damage [16].

7. Prevention and treatment

Cocaine use promotes vascular disease, while also influencing the course of disease 

management, and therapy. Here too, it is helpful to briefly review prevention and treatment 

recommendations separately for acute vascular events.

Preventing acute events in pre-symptomatic individuals must include special consideration. 

First, in terms of risk detection, studies with CUD document that Framingham risk scores 

label the majority of CUD as low risk, underestimating the indications for preventive action. 

The use of beta-blockers show mixed results. Notably, traditional cardiac biomarkers, such 

as myeloperoxidase and c-reactive protein are not useful as biomarkers for CUD [92], since 

imaging evidence reveal that the relationships between myocardial fat and body mass index 

in CUD is different than non-drug users [93].

Medication to reduce inflammation (e.g., recombinant IL-10, soluble receptor medication 

such as Etanercept) may be helpful to control cocaine induced inflammatory cascade [51]. 

As nitric oxide/glyceraldehyde-3-phosphate dehydrogenase pathway mediates cocaine 

induced autophagy, glyceraldehyde-3-phosphate dehydrogenase can be tested for use (see 

clinical trials in Parkinson's disease [48,94]). Finally, and perhaps most importantly, cocaine 

abstinence or even reduced use promotes reduction in endothelial-1 damage [45,46]. Thus, 

prevention of secondary harms and halting of further disease progression in CUD mandates 

cessation of cocaine use and cigarette smoking, limitation of alcohol consumption, as well as 

enhancing healthy life routines (e.g., regular health monitoring, physical activity, sleep, diet, 

stress management).

Treatment for cocaine-induced acute vascular events may be similar to indications in 

patients with traditional risk-factors, with few exceptions. For example, enhanced supportive 

care and use of benzodiazepines and phentolamine for sedation; and avoiding β-blockers, 

which can lead to severe hyper-tension and coronary vasoconstriction resulting from the 

interaction of β-blockers with cocaine (for review see Ref. [13]). Notably, there is no 

specific pharmacological antidote for cocaine overdose, yet the administration of 

benzodiazepines can help alleviate some of the stress that is placed on the heart and may 

greatly reduce the risk of heart attack, stroke or serious heart damage arising from the 

overdose.

The first line of treatment for cocaine induced sodium channel blockade is alkalization with 

hypertonic sodium bicarbonate. Class IB antiarrhythmic agents are indicated and class IA 

should be avoided. Direct acting vasodialators as nitroglycerin can be helpful though these 

are rarely used. In patients with acute manifestation of cerebrovascular events it is essential 
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to perform a toxicological drug screening also in presence of normal blood pressure and 

with spontaneous subcortical hemorrhagic stroke and negative anamnesis for drug abuse at 

admission [95].

Chronic treatments for CUD with cardiovascular problems include antiplatelet and 

antithrombin agents, statins and diuretics.

8. Future directions: urgent need for early detection of a complex disease 

process in a vulnerable and aging population

As evident from this review, there is ample data on cocaine-induced endothelial dysfunction, 

vasoconstriction, and accelerated atherosclerosis. Given the known vascular toxicity cocaine 

induces [13,23], further compounded by cigarette smoking and alcohol comorbidity 

[32,73,96] and interacting with the progressing age of the crack generation [97,98], there is a 

public health imperative to identify presymptomatic markers of vascular impairments in 

CUD.

Chest pain [8,13,76] and cerebrovascular events [5,31,63] may occur within minutes to just a 

few hours from cocaine use. Atherosclerosis, however, develops during prolonged periods of 

chronic cocaine use and in its early stages usually does not create symptoms or signs. 

Indeed, silent disease progression is particularly pronounced in CUD who remain 

asymptomatic until they reach the emergency room with acute events [8,24,73]. Therefore, 

the ability to identify plaques before luminal stenosis develops is fundamental for early 

disease detection [99].

Multimodality imaging studies could promote the identification of CUD with silent pre-

symptomatic atherosclerosis in the brain, heart and arteries [100–104]. Advances in imaging 

help to detect morphology of blood vessels and the composition of the vessel walls, 

facilitating observation of atherosclerosis-associated abnormalities in the arteries [99]. For 

example, 18F-fluorodeoxyglucose positron emission tomography (18F-FDG-PET) and 

magnetic resonance imaging (MRI), PET/MR, allow simultaneous investigation and tracking 

of brain, cardiac and the carotid arteries function and structure in the same individuals. The 

PET with 18F-FDG can quantify vessel-wall inflammation in atherosclerotic plaques 

[101,102] and three dimensional black-blood dynamic contrast-enhanced MRI [103] can 

characterize carotid wall morphology (plaque microvessels, composition and burden).

9. Conclusion

With the proliferation of coronary artery and vascular disease among cocaine users, more 

procedures are required for early detection and prevention of cardiovascular and 

cerebrovascular associated morbidity and mortality in this population. Prevention of 

cocaine-induced systemic complications could be considered as part of a harm reduction 

strategy. Consequently, cocaine use should be included in protocols and guidelines as a risk 

factor for cardiovascular, cerebrovascular and other vascular and arterial disease. 

Furthermore, guidelines of pharmacological management of addictions should consider 
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preventive treatment for vascular damage in cocaine users, and hopefully this will reduce 

severe impairment and sudden premature mortality in this population.
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Fig. 1. Cocaine's acute and chronic toxicity mechanisms
Cocaine's acute and chronic toxicity mechanisms on the vessel, heart, and the central 

nervous system (CNS), and their interactions. Carbon (C). Hydrogen (H). Nitrogen (N). 

Oxygen (O). Sodium (Na). Serotonin (5-HT). Norepinephrine (NE). Dopamine (DA). Nitric 

oxide (NO). Von Willebrand factor (vWF). Dioxygen (O2). Left ventricular (LV). Heart 

mechanisms adapted from Ref. [13]; figure based on following references [2,5,6,10,13,15–

19,23–44].
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Fig. 2. Cocaine-induced major pathophysiological load to the cardiovasculature, 
cerebrovasculature, and arteries
The main clinical pathology associated with cocaine (and its citations) is listed according to 

localization. Left ventricular (LV). Right ventricular (RV).
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Table 1

Cardiovascular, cerebrovascular and arterial pathology in cocaine users as imaged by magnetic resonance 

imaging and positron emission tomography.a

Localization Methodology Sample Selected findings

Internal carotid artery 
[60]

1.5 Tesla (T) scanner, 3-
dimensional time-of- flight 
angiogram, black blood 
images pre-post injection 
with intravenous gadodiamide

37 asymptomatic African 
American with or without 
HIV and CUD (mean age 
38.7 ± 4.9)

A high frequency (24.3%, 95% CI = 0.12–0.41) 
of a lipid core in carotid plaque. Only total 
cholesterol level associated with presence of 
lipid core.

Left ventricular (from 
the mitral plane valve to 
LV apex) [73]

1.5T scanner, a T2-weighted 
STIR and LGE sequences

30 asymptomatic CUD 48 h 
after drug cessation (mean 
age 39 ± 7)

Structural damage in 83% of CUD: delayed 
enhancement (73%) and focal edema of the LV 
(47%). 37% showed both edema and fibrosis; 
32% had ischemic patterns of fibrosis and 68% 
had non-ischemic patterns of fibrosis. Edema 
correlated with cocaine dose-related effect in 
86% of CUD.

Left ventricular [3] T2-STIR and LGE sequences 11 asymptomatic CUD and 
11 matched healthy controls, 
without cardiovascular 
disease (age not provided)

Discrete LGE with non-ischemic pattern in 27% 
of CUD but not in controls. Global extracellular 
volume fraction significantly larger in CUD vs. 
controls (31 ± 6% vs. 26 ± 2%, p < 0.05). No 
significant difference found between groups in 
LV EF or edema.

Left ventricular [79] MRI/Proton magnetic 
resonance spectroscopy (1H-
MRS) 3T scanner and a 
retrospectively gated 
TrueFisp sequence

44 females (32 CUD, mean 
age 45.7 ± 6.7; 12 non-users. 
Mean age 42.8 ± 9.5)

Cardiac steatosis in CUD (65.7%) vs. controls 
(16.7%), a 14-fold risk of cardiac steatosis, 
controlling for age, gender, glucose, 
triglycerides, and systolic blood pressure.

Left ventricular (anterior 
descending coronary 
artery) [71]

1.5T scanner. Cine images 
with a steady-state free 
precession pulse sequence. 
Delayed-enhancement images 
acquired after a bolus 
injection of 0.2 mmol kg−1, 
with an inversion recovery 
fast gradient-echo pulse 
sequence.

24 CUD (22 male; mean age 
29.7) with history of cocaine 
associated chest pain, without 
emergency department 
admission

Regional ventricular function of 17 segments 
was normal in all patients. Only one participant 
(4%) had calcified plaques at the anterior 
descending coronary artery (proximal and 
medium segments).

Left and right ventricles. 
Aorta (the oblique 
sagittal plane and 
thoracic aorta) [78]

3T scanner, high resolution 
Balanced Steady-State Free 
Precession cine, and LGE 
sequences

94 asymptomatic CUD (81 
male; mean age 36.6 ± 7; 13.9 
± 9 years of cocaine use) and 
80 age-matched healthy 
controls

CUD had increased LV and RV end-systolic 
volume, and LV mass index, with decreased 
LVEF and RVEF vs. healthy controls; 30% of 
CUD had LGE; CVD was detected in 71% of 
CUD and mean duration of cocaine use was 
related to probability of LV systolic dysfunction 
and aortic dilatation.

Aorta (transverse plane; 
right pulmonary artery in 
proximal descending 
aorta). Left and right 
ventricles [74]

CMR using a 1.5T scanner, a 
Balanced Steady-State Free 
Precession cine, a 
prospectively gated cine, and 
LGE sequences and high 
resolution black blood images

20 regular cocaine users (17 
male; mean age 37 ± 7), at 
least monthly during the last 
year, and 20 healthy control 
subjects (19 male; mean age 
33 ± 7), without CVD

CUD had increased arterial stiffness - reduced 
aortic compliance, decreased distensibility, 
increased stiffness index, and higher pulse wave 
velocity, independent of vessel wall thickness. 
LV mass was 18% higher in CUD, and had 
larger left atrial diameter than healthy controls, 
as associated with duration and frequency of 
cocaine use.

Aorta (ascending and 
descending) [80]

MRI using an automated 
contours detection method 
applied to images of a phase-
contrast acquisition 
perpendicular to the 
ascending aorta. Blood 
pressure was measured by a 
brachial cuff during MRI

33 long term CUD (20 
female; mean age 46 ± 7, and 
13 healthy controls (7 female; 
mean age 43 ± 9)

Aortic strain and distensibility were lower in 
CUD vs. controls, with relationship to duration 
of cocaine use as an independent predictor of 
descending aortic dysfunction with a significant 
average decrease in strain of 2.5% and a trend 
for a decrease in aortic distensibility for 1 year 
of cocaine use.

Major cerebral arteries 
[63]

1.5T scanner, T1-weighted 
sagittal localizer images, the 
3-dimensional sequence, with 
magnetization transfer, flow 
compensation and saturation 
imaging options, pre-post 

24 healthy and neurologically 
normal men (mean age 29 
± 5) with median cocaine use 
of 8 lifetime exposures (range 
3 to >40)

Vasoconstriction in 62.5% and 33.3% subjects 
receiving 0.4- and 0.2-mg/kg cocaine, 
respectively, compared with 14.2% subjects 
administered placebo. Alterations from reduced 
arterial caliber to focal narrowing or complete 
signal loss detected in posterior, middle arteries, 
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Localization Methodology Sample Selected findings

double-blind intravenous 
administration of cocaine or 
placebo

vertebral arteries, and the anterior and posterior 
communicating arteries.

Cortical and subcortical 
regions [105]

3T MRI scan for 
determination of regions of 
interest, using an automated 
segmentation tool; PET using 
the ECAT EXACT HR 
camera after an intravenous 
bolus injection of 
[11C]PBR28

15 recently abstinent crack-
cocaine abusers (8 female; 
mean age 39.9 ± 9; 17 ± 7 yrs 
of use) and 17 healthy 
controls (9 female; mean age 
38.4 ± 8.1) matched on 
ethnicity, age, smoking

No significant differences in [11C]PBR28 VT 
were observed in the cortical and subcortical 
regions in cocaine abusers compared with 
healthy controls. The results of this in vivo 
study do not support increased 18 kDa 
translocator protein expression and, by 
extension, microglial activation in chronic 
cocaine-abusing humans.

a
Excluding case reports. Ejection fraction (EF). Late gadolinium enhancement (LGE). Left and right ventricles (LV, RV).
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