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Abstract

Cerebrospinal fluid (CSF) drains via the lymphatic drainage pathway. This lymphatic pathway 

connects the central nervous system (CNS) to the cervical lymph node (CLN). As the CSF drains 

to CLN via the dural and nasal lymphatics, T cells and antigen presenting cells pass along the 

channels from the subarachnoid space through the cribriform plate. Human immunodeficiency 

virus (HIV) may also egress from the CNS along this pathway. As a result, HIV egressing from the 

CNS may accumulate within the CLN. Towards this objective, we analyzed CLNs isolated from 

rhesus macaques that were chronically-infected with simian immunodeficiency virus (SIV). We 

detected significant accumulation of SIV within the CLNs. SIV virion trapping was observed on 

follicular dendritic cells (FDCs) localized within the follicular regions of CLNs. In addition, SIV 

antigens formed immune complexes when FDCs interacted with B cells within the germinal 

centers. Subsequent interaction of these B cells with CD4+ T follicular helper cells (TFHs) resulted 

in infection of the latter. Of note, 73% to 90% of the TFHs cells within CLNs were positive for SIV 

p27 antigen. As such, it appears that not only do the FDCs retain SIV they also transmit them (via 
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B cells) to TFHs within these CLNs. This interaction results in infection of TFHs in the CLNs. 

Based on these observations, we infer that FDCs within the CLNs have a novel role in SIV 

entrapment with implications for viral trafficking.

INTRODUCTION

Influx of HIV into the central nervous system (CNS) begins early during infection, long 

before symptoms of neuroAIDS arise (1), via infected cells or free virus particles that cross 

the blood brain barrier (BBB) (2). Eventually, HIV reservoirs are established in cells or 

tissues that harbor replication-competent virus for prolonged periods of time. The viral 

reservoir is an archive of viral sequences representative of earlier stages of infection (3–5). 

Both HIV patients and simian immunodeficiency virus (SIV)-infected rhesus macaques 

(RMs) exhibit persistently high levels of viral DNA positive cells, with profound immune 

activation during combination antiretroviral therapy (cART) (6, 7). Despite effective cART, 

HIV viral reservoirs persist and represent a major roadblock of antiviral therapy interruption 

strategies and HIV cure strategies. The resident CNS cells like, perivascular macrophages 

and glial cells have been thought to be potent reservoir sites for HIV infection, thereby 

limiting the success of cART in completely suppressing viral replication within the CNS (8–

10). The viral gene flow between the meninges and deep brain tissues was also reported 

upon HIV-1 infection (11).

Functional meningeal lymphatic system facilitates the drainage of the cerebrospinal fluid 

(CSF) to the cervical lymph nodes (CLNs) (12–18). This system also allows immune cells to 

migrate from cribriform plate into the lymphatic system of nasal mucosa and then into deep 

cervical lymph nodes (CLNs) (14). This meningeal lymphatic system creates a direct link to 

deep CLNs enabling drainage of CSF and immune cells egressing from the CNS (14, 15). 

CLNs constitute a cluster of numerous lymph nodes found in the collar region. These CLNs 

are a major site for systemic activation of CNS specific T cells, after presentation of antigen 

entrapped in dendritic cells (DCs) (19, 20). CNS-derived antigens have been shown to 

induce immune responses in the deep CLNs (21). Circulating conventional DCs (cDCs) had 

been shown to migrate through the rostral migratory stream (RMS) toward the olfactory bulb 

draining into CLNs (15). In this respect, we and others have clearly established trafficking of 

cDCs into the CNS in response to neuroinflammation (3, 4, 22–27). More recently, we have 

provided evidence for the presence of cDCs in the brain parenchyma of SIV-infected RMs 

(28).

In periphery, cDCs carrying HIV migrate into peripheral lymph nodes where they infect and 

prime T cells in the T-cell zone, which then move toward the B-cell follicles (BCFs). These 

BCFs harbor a specialized type of dendritic cell population designated follicular dendritic 

cells (FDCs) (29, 30), which can bind and retain antigen on their dendritic processes for 

months to years in the form of immune complexes (31, 32). BCFs have been postulated as 

important compartments for both latent and active viral reservoirs during treatment (33). In 

HIV disease, virion-immune complexes get trapped on the processes of FDCs, which 

interconnect to form a dense meshwork and represent the largest repository of virus in the 

body for longer time periods (3, 5, 31, 34). FDCs have recently been shown to retain 
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infectious HIV inside endosomes, indicating the migration of virions across these cells (35). 

Interestingly, FDCs have been shown to retain infectious HIV particles even in the presence 

of neutralizing antibodies, and infectious virus has been rescued from FDCs from HIV-

infected patients on suppressive cART for up to 24 years, suggesting that FDCs represent a 

significant reservoir of diverse HIV (5, 35–39). Furthermore, even with suppressive 

antiretroviral therapy, replicating virus can persist to replenish FDC network (40). A similar 

pathway might exist for HIV antigens and HIV-infected cells from CNS to CLNs that are 

particularly important in the context of CNS related immune responses. Understanding viral 

distribution within the CLNs may shed new light on HIV infection of the CNS. The present 

study is the first attempt in this direction providing clear evidence for the abundance of SIV 

virions within FDCs’ network of deep CLNs.

MATERIALS AND METHODS

Animals and Samples

A total of 11 SIV infected adult Indian rhesus macaques along with a naïve control animal 

were utilized in this study. All animals were maintained at the Yerkes National Primate 

Research Center of Emory University (Atlanta GA) in accordance with the regulations of the 

Committee on the Care and Use of Laboratory Animal Resources. All experiments were 

approved by the local institutional biosafety review and animal use and care committees. 

Rhesus macaques were inoculated intravenously with 200 TCID50 (50% tissue culture 

infective dose) of SIVmac251. Peripheral blood samples were obtained concurrent with the 

times of biopsy samples. Peripheral blood mononuclear cells (PBMCs) were isolated from 

blood of SIV infected rhesus macaques, using standard Ficoll-Hypaque gradient procedure. 

Plasma viral RNA (vRNA) loads were measured in the corresponding blood samples. CLNs 

and other tissues were collected immediately after euthanasia from all animals for in situ 
techniques and flow cytometry analysis. Tissues were fixed by immersion in freshly 

prepared 4% paraformaldehyde and embedded in paraffin. To collect CLN cells, tissue was 

minced and sieved through 40-μm nylon cell strainers (Fisher Scientific, Pittsburgh, PA) 

with a 10 ml syringe plunger.

Ethics Statement

All animals were born and maintained at the Yerkes National Primate Research Center of 

Emory University in accordance with the rules and regulations of the Committee on the Care 

and Use of Laboratory Animal Resources, and according to the guidelines of the Committee 

on the Care and Use of Laboratory Animals of the Institute of Laboratory Animal 

Resources, National Research Council and the Department of Health and Human Services 

guidelines titled Guide for the Care and Use of Laboratory Animals. The animals were fed a 

monkey diet (Purina, Wilkes-Barre PA) supplemented daily with fresh fruits or vegetables 

and water ad libitum. Additional social enrichment, including the delivery of appropriate 

safe toys, was provided and overseen by the Yerkes enrichment staff. Animal health was 

monitored daily and recorded by the animal care staff and veterinary personnel, available 24 

hours a day and 7 days a week. Monkeys were caged in socially compatible same-sex pairs 

to facilitate their well-being and social enhancement. Monkeys showing signs of sustained 

weight loss, disease, or distress were subject to clinical diagnosis based on symptoms and 
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then provided standard dietary supplementation, analgesics, and/or chemotherapy. The 

Yerkes National Primate Research Center has been fully accredited by the Association for 

Assessment and Accreditation of Laboratory Animal Care International.

Necropsy

Animals showing signs of clinical end points relative to disease progression were humanely 

euthanized with an intravenous overdose of pentobarbital sodium according to the guidelines 

of the American Veterinary Medical Association. A complete necropsy was performed on 

these animals. For histopathology or immunohistochemical examination, selected tissue 

samples were fixed overnight in 4% paraformaldehyde, embedded in paraffin and sectioned 

at 4 μm.

Quantitative RT-PCR and Quantitation of SIV RNA in plasma

Plasma and tissue RNA was isolated using the QiaAmp vRNA Mini-procedure and RNeasy 

Mini procedure, respectively, as described by the manufacturer (Qiagen, Germantown MD). 

vRNA levels were measured by quantitative RT-PCR (qRT-PCR) as described previously. 

The assay sensitivity was 50 vRNA copies per ml for plasma. RNA copy numbers in tissues 

were normalized and represented as SIV RNA copies per ng of total RNA (41).

Immunohistochemistry

Immunohistochemistry (IHC) was performed using 4μm thick, formalin fixed, FFPE tissue 

sections. Slides were baked, deparaffinized in xylene, and passed through a series of 

increasing percentage of alcohols. Subsequently, antigen was retrieved with 10 mM citrate 

buffer, pH 6.0 in a water bath warmed to 95°C for 1 hour. Slides were cooled to room 

temperature for 20 minutes and washed three times for 5 min with phosphate buffered saline 

(PBS) containing 0.05% Tween 20. Subsequently, slides were incubated for 30 min in PBS 

containing 0.1% Triton X-100. Slides were blocked with 10% normal goat serum (Jackson 

ImmunoResearch, West Grove PA) and subsequently incubated with 1:50 dilution of anti-

CD35 and SIV gag (p27) monoclonal antibody (clone 55-2F12) in PBS overnight at 4°C. 

Slides were washed three times in PBS containing 0.025% Triton X-100, and treated with 

HRP-conjugated Goat anti-mouse (Novus Biologicals, Littleton CO) for 1 hour at room 

temperature. After further washing, immunoperoxidase staining was developed using DAB 

chromogen procedure as described by the manufacturer (Biocare Medical, Concord CA) for 

10 min. Slides were counterstained with hematoxylin and mounted with permount aqueous 

mounting medium.

Immunofluorescence staining and quantitative image analysis

Immunofluorescence (IF) staining and quantitative image analysis was performed with 

frozen CLN sections of 4–5 μm thickness. Tissue Sections were baked overnight on glass 

slides at 55°C to firmly affix and dehydrate the tissue. Paraffin-embedded rhesus macaque 

CLN tissue sections were deparaffinized in xylene and rehydrated in a graded series of 

alcohol. Briefly, slides were immersed twice in 100% xylene for 3 min followed by a 3 min 

wash with a 1:1 solution of xylene and 100% ethanol. Subsequently, tissue sections were 

washed in 100, 95, 70 and 50% ethanol followed by a cold-water bath, each for 3 min. 
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Thereafter, tissue sections were boiled in 10 mM sodium citrate, pH 6.0 for 20 min, followed 

by three 5 min washes with PBS containing 0.05% Tween 20. For p27 and PD-1 staining, 

tissue sections were permeabilized in 0.1% triton X-100. Tissue sections were blocked with 

the Sniper reagent (Biocare, Concord CA) for 15 min. After blocking, tissue sections were 

stained with unconjugated primary mouse anti-human CD35 (clone E11; Novus Biologicals, 

Littleton CO), rabbit anti-human CD20 (polyclonal, Thermo Scientific, Rockford IL), goat 

anti human PD-1 (C-16, Santa Cruz Biotech, Dallas TX), mouse anti-p27 SIV gag (clone 

55-2F12, AIDS Research and Reference Reagent Program, Germantown MD) or fluorescein 

peanut agglutinin (PNA) (Vector Labs, Burlingame CA) at a dilution ranging from 1:20 to 

1:100 in PBS containing 1% BSA and incubated overnight at 4°C. Thereafter, tissue sections 

were washed and incubated with secondary fluorophore conjugated antibodies (TRITC-

conjugated donkey anti-mouse, DyLight405-conjugated donkey anti-rabbit, DyLight405 

conjugated donkey anti-goat or FITC-conjugated goat anti-mouse antibodies; Jackson Labs, 

West Groove PA) at a dilution ranging from 1:100–1:500 in PBS containing 1% BSA for 1 

hour at room temperature. Since anti-CD35 and anti-p27 antibodies were generated in 

mouse, tissue sections were blocked after first primary antibody with 10% normal mouse 

serum followed by incubation with Fab fragment donkey anti-mouse (Jackson 

ImmunoResearch, West Groove PA) for 1 hour at room temperature. Subsequently, tissue 

sections were incubated with the second primary antibody and corresponding secondary 

antibodies. Tissue sections were washed three times in PBS containing 0.025% Triton 

X-100. Where indicated, tissue sections were counter-stained with 0.5 μg/ml DAPI for 10 

min at room temperature, rinsed, and mounted in prolong gold antifade reagent 

(ThermoFisher, Waltham MA). Images were acquired using the Olympus IX81 inverted 

microscope at 10x, 20x, 40x or 100x objectives or Olympus 1X81 confocal microscope 

using 60x objective lens. The interaction of FDCs (CD35) with TFH (PD-1) and B cells 

(CD20) was shown as colocalization sharing p27 antigen at their membranes. The formation 

of TFH and B-cell stable complex was demonstrated in a similar manner.

Flow Cytometry

CLNs were harvested immediately after euthanasia; minced and treated with collagenase as 

described previously (35). Cells were then sieved through 40-μm nylon cell strainers with a 

10-ml syringe plunger to make a cell suspension. Isolated cells were >90% viable as 

assessed by trypan blue exclusion. Cells were stained for surface antigens by incubating with 

fluorochrome-conjugated antibodies in staining buffer (PBS containing 2% fetal calf serum) 

for at least 30 minutes protected from light. The following fluorochrome-conjugated 

antibodies were used: CD20 (2H7), CD28 (CD28.2), CD35 (E11), CD4 (OKT-4), CD80 

(2D10), CD95 (DX2), CXCR4 (12G5), ICOS (C398.4A) and PD-1 (EH12.2H7, Biolegend 

San Diego CA); CD21 (B-ly4), CD23 (M-L233), CD3 (SP34-2) and CD32 (8.26) (BD 

Biosciences, San Jose CA); and CXCR5 (MU5UBEE) (eBioscience, San Diego CA). FDCs 

were stained with Alexa Fluor® 488-conjugated SIVmac p27 antibody (55-2F12) or the 

isotype control IgG2b antibody without and with permeabilization in conjunction with the 

collagenase treatment. TFHs were also stained intracellularly with conjugated anti-p27 

(55-2F12) or IgG2b and also BCL-6 (K112-91) or IgG1k (MOPC-21) (BD Biosciences). 

Collagenase (Sigma) treatment was performed with 1mg/ml at 37°C for 10 minutes and 

permeabilization was performed by utilizing FOXP3/Transcription factor staining buffer 
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(eBioscience, San Diego CA). Cells were fixed in intracellular fixation buffer for 30 minutes 

at room temperature in dark then washed twice in 1X permeabilization buffer before being 

resuspended in 1X buffer containing fluorochrome labeled antibody for detection of 

intracellular antigen. Cells were incubated for 45 minutes at room temperature in the dark, 

washed twice in 1X permeabilization buffer and resuspended in staining buffer for 

acquisition. LIVE/DEAD® Fixable Dead Cell Stain (Life Technologies, Carlsbad CA) was 

used to gate for the live cells. Samples were acquired on a BD LSRFortesa and analyzed 

using FlowJo software (Tree Star, Ashland OR).

RESULTS

Chronic infection with SIV results in varying levels of viral RNA loads in plasma, PBMCs 
and CLNs

To assess the level of SIV infection in rhesus macaques, SIV vRNA levels were measured at 

the time of necropsy in the plasma (up to 29 weeks after intravenous inoculation) in 11 

SIVmac251 infected rhesus macaques. SIV vRNA was detected in plasma of all animals and 

ranged from 103–106 copies/mL (Fig. 1A). Thus, a robust chronic SIV infection was 

established in all 11 RMs that were infected. SIV vRNA was detected in plasma as early as 

one week after inoculation, peaked between 2–3 weeks, and remained at high set-point (103–

106) levels until the end of the study (week 20–29) (Fig. 1C). Next, SIV vRNA levels were 

assessed in the PBMCs and CLNs to determine the relative difference in the magnitude in 

viral burden and infection between these two compartments. SIV vRNA levels expressed as 

copies/ng of RNA was found to be at significantly higher levels in the CLNs (p = 0.004) as 

compared to PBMCs (Fig. 1B). Typically, we expect to obtain approximately 50 μg of total 

RNA from 100mg of tissue samples and 8μg total RNA from 1 × 106 PBMCs or lymphoid 

cells.

B-cell follicles within CLNs trap high levels of SIV

Having established the presence of SIV vRNA in CLNs, we sought to determine whether 

SIV could be detected in BCFs within CLN. We also included 2 CLNs from SIV-naïve RMs 

for staining with hematoxylin-eosin to identify BCFs (Fig. 2A). The relative abundance of 

SIV burden was first determined on FDCs in the CLNs by immunohistochemistry for 

SIVp27 (Fig. 2A). Cells stained with SIVp27 gag protein were observed in CLNs obtained 

from chronically SIV-infected rhesus macaques, but not in the corresponding SIV-negative 

controls as seen by alkaline phosphatase based fast red (Fig. 2E–F) and DAB (Fig. 2G–H) 

chromogens. Therefore, chronic SIV infection of rhesus macaques resulted in substantial 

SIV acquisition by FDCs in the BCFs of CNS draining CLNs, in addition to accumulation 

shown in peripheral LNs by others (31, 32).

FDCs entrap substantial load of viral antigen within CLNs

To identify virus harboring cells within BCFs, IHC and IF analyses were performed to 

identify FDCs, B-cell aggregates, GCs and SIV by staining with CD35, CD20, PNA and 

SIVp27 antibodies, respectively. We observed CD20+ B-cell aggregates in BCFs (Fig. 3A). 

Then we looked for FDC architecture within BCFs. The signature reticular pattern of FDCs 

was clearly observed in the CLN BCFs by IF using confocal microscopy (Fig. 3B). CLNs 
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from SIV naïve rhesus macaques were populated with CD35 expressing FDCs (Fig. 3B) 

without any overlap with CD20+ B cells especially within the center of GCs (Fig. 3C). To 

confirm that FDCs harbored SIV, IF analysis was performed on CLN sections from SIV 

infected rhesus macaques for SIVp27, CD35 and DAPI (Fig. 3D). A significant proportion 

of FDCs within BCFs of the CLNs were observed positive for SIV p27 staining (Fig. 3D).

Having established the quantitative measure of SIV burden on FDCs in BCFs of CLN in 
vivo, further ex vivo studies were performed to better understand SIV acquisition by the 

FDCs. Cells were isolated from CLNs and characterized by surface and intracellular staining 

to determine FDC retention of SIV using antibodies to CD35, CD20 and SIVp27, along with 

appropriate isotype controls. Consistent with what has been demonstrated in peripheral LNs, 

we observed FDC frequencies to be 12.84±1.82% of total live cells to be CD35+/CD20− 

FDCs within CLNs (Fig. 4A). These cells also expressed other FDCs markers such as CD21 

and CD80 in good proportion 25.2% and 94.9%, respectively (Fig. 4A). In view of the 

ability of FDCs to trap antigen and retain it for an extended period of time, we assessed the 

frequency of FDCs carrying SIV mature gag protein p27 on the surface as well as within the 

cells. Without permeabilization, negligible presence of SIVp27 was observed on FDCs (Fig. 

4B) while a considerable proportion of FDCs (24.74±6.03%, mean ± SEM) harbored 

intracellular SIVp27 (Fig. 4C), irrespective of collagenase treatment. These results suggest 

FDCs’ entrapped SIV virions were primarily inside the cells as shown earlier in case of 

inguinal LNs (35).

Antigen harboring FDCs interact with B and TFH cells in CLNs

A model of the interaction of FDCs with B and TFH cells within the BCFs of CLN has been 

illustrated in Fig. 5A. Based on this model of cellular interactions in the BCFs, presence of 

cellular complexes would be indicative of FDC and B-cell interaction. FDCs trap and retain 

antigens in the form of specific antibody/complement-antigen immune complexes (ICs) 

allowing them to provide antigen to interact with B cell receptors (BCRs) on B cells. FDCs 

express adhesion molecules, FcR, and complement receptors 1 and 2 (CR1/CR2) on their 

cell surface. The ICs bind to FcRs and CRs (also known as CD35/CD21) on the FDC 

dendrites. To test the presence of these complexes, CLN sections were stained for B cells 

(CD20), FDCs (CD35) and SIV antigen (p27) respectively (Fig. 5B). We observed that 

FDCs that harbor SIV were in proximity to and in contact with B cells, giving an indication 

that cellular interactions and delivery of antigen to B cells was occurring in the BCF. The 

formation of cellular complexes was visible as clusters of cells consisting of FDCs and B 

cells in close proximity, as demonstrated by the co-localization of CD35, CD20 and SIVp27 

within these cellular clusters. FDCs that express FcRs and complement receptors 1 & 2 

(CD35/CD21) are capable of presenting immune complexes to B cell receptors in the BCF. 

Hence, it appears that not only do FDCs acquire SIV on their surface in a significant manner 

in the CLN, but these cells are able to form intimate cellular interactions with B-cells, which 

may drive antigen specific memory B-cell responses in CLNs. Additionally, the interactions 

between FDCs that harbor SIV (red) and TFH (blue) cells was also examined, and as with B 

cells, FDCs form intimate interactions with TFH within the BCFs (Fig. 5C). Our confocal 

imaging also demonstrated the presence of SIVp27 antigen in TFH cells, which supports the 

notion of FDCs transferring SIV and infecting TFH cells in the BCFs of CLNs (Fig. 5C). 
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This exchange of antigens is significant, considering the ability of TFH cells to migrate from 

the BCFs and lymph nodes. We indeed observed higher proportion of infected TFH cells on 

the periphery of BCFs of CLNs as compared to the center of BCFs, where the proportion of 

antigen loaded FDCs was higher (Supplementary Fig. 1).

Infected TFH cells can interact with B cells in GC of CLNs

Finally, studies were performed to establish that SIV-infected TFHs could interact with B 

cells in the BCF. TFH cells express high levels of PD-1, which leads to decreased TFH 

proliferation. In this regard, the qualitative nature of TFH and B-cell interactions was 

determined by confocal microscopy, which demonstrated PD-1hi expressing, infected TFH 

cells surrounded by B cells (Fig. 5D). This interaction seems to be significant, considering 

the association between these complexes and hypergammaglobunemia in HIV patients. 

Thereafter, infected PD-1hi TFH cells were shown by colocalization of PD-1 and SIVp27 

(Fig. 6A). To confirm the quantitative nature of TFH cell infection, flow cytometry was 

performed (Fig. 6B). Cells isolated from CLNs were examined for CD4, CD3, PD-1, 

CXCR5, BCL6, ICOS, CXCR4, CD95 and CD28 expression (Fig. 6B,C). CD4+/PD-1+/

CXCR5+ cells (Fig. 6B) were analyzed for intracellular expression of SIVp27 along with 

isotype controls (Fig. 6D lower panel). CD4+PD-1+TFH cells ranged from 0.65% to 3.49% 

of total CD4+ T cells isolated from CLNs (Fig. 6B, D upper panel). The phenotype of TFH 

cells varied as a population with cells expressing ICOS (99.8%), CXCR4 (13.5%), CD28 

(99.5%) and CD95 (100%). SIVp27 was detected in 73.1% to 90.9% of the total CD4+/

PD-1+/CXCR5+ positive TFH cell population isolated from CLNs (Fig. 6D). Thus, not only 

do FDCs harbor and present SIV to B cells within BCF of CLNs, SIV infection is 

established in TFH cells.

DISCUSSION

In this study, we attempted to establish that SIV trapped on the FDC network within CLNs 

may provide an additional viral reservoir, which would be distinct from the latent or 

persistent CNS reservoir that exists in perivascular macrophages, microglia and astrocytes. 

Although the presence of viral antigens was observed on FDCs in CLNs and in the sharing 

of antigen from FDCs to B cells and TFH cells, future studies are required to more firmly 

establish the role of FDCs in CLNs as a viral reservoir and the relationship between this 

reservoir and viruses within the CNS. Furthermore, we need to investigate in greater detail 

the role of myeloid cell trafficking into the CNS and establish the significance of FDC 

accumulated virus in HIV infection. Monocyte trafficking into tissues is crucial to 

understand viral persistence during cART and its impact on HIV disease. These cells 

undergo continuous slow trafficking from blood to tissues and differentiate into 

macrophages and immature dendritic cells via afferent lymphatics. As such, they may 

contribute to establishment of cellular reservoirs that are unaffected by cART (42, 43).

A significant proportion of FDCs within CLNs were observed to harbor SIV, after 

establishment of primary infection. Indeed, SIV harboring FDCs were shown here to directly 

interact and co-localize with B and TFH cells. This interaction is significant as it can lead to 

antigen-specific memory B-cell response and the infection of TFH cells, respectively. Finally, 
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we also demonstrated that B-cells are in intimate contact with TFH cells, which has been 

found to be associated with hypergammaglobulinemia, a means of immune response evasion 

by HIV (44). Based on these observations, we infer a novel role for CLN FDCs in viral 

entrapment and creation of a persistent SIV reservoir with potential importance to HIV 

neurological infections. Hence, our study highlights the role of FDCs in accumulation and 

transmission of HIV with implications for HIV egress from the CNS.

FDCs are known to act as an archive of infection and possess ability to indirectly infect 

nearby CD4+ TFH cells via an immune synapse involving B cells (34). FDCs are in direct 

contact with B cells and TFHs. It has been reported that human FDCs isolated from patients 

on cART retain infectious virus within a non-degradative cycling compartment. FDCs retain 

and recycle virus immune complexes, and as such only a fraction of the virus need be 

present on the FDC network and the remaining fraction may be retained in the endosomal 

compartment. This FDC retained virus is able to infect CD4+ T cells in in vitro experiments 

(35). These observations add further support to our studies and the potential impact of FDC 

associated virus in HIV disease.

Long lived reservoirs pose the most significant obstacle to a cure of HIV. While much has 

been gleamed from studies of CD4+ T cell reservoirs, less is known about other cellular or 

tissue reservoirs, including the CNS. A direct link between the CNS with CLNs via the 

meningeal lymphatic system has been demonstrated (12–17). “Glymphatics” refers to a 

tunnel of astrocytes (a subpopulation of glial cells) surrounding the blood vessels in the 

brain. They have been shown to be responsible for flow of brain interstitial fluid into 

cerebrospinal fluid (CSF) (17, 45). Interstitial fluid first drains from brain parenchyma to 

CSF via glymphatics (17, 45, 46). Subsequently, the flow of interstitial fluid into the CLNs 

involves dura mater lymphatic vessels. The connection of the CNS to the lymphatic system 

has been demonstrated in infectious disease models (i.e. cerebral malaria) (47) and in the 

maintenance of immune tolerance to self-antigens in the CNS (15). This route has also been 

proposed for the migration of HIV infected cells out of the brain (48). However, no studies 

have specifically looked at the role of CLNs in HIV infection so far. We hypothesized that 

cDCs upon entering into the CNS may encounter HIV virions or proteins released from 

productively infected cells (such as long-lived macrophages and microglia) or apoptotic 

bodies of short-lived perivascular macrophages. Thereafter, infiltrating into CSF and moving 

from cribriform plate to the lymphatic system of the nasal mucosa finally draining into deep 

CLNs.

To test our hypothesis, we first presented evidence for the accumulation of the virus in 

CLNs. Levels of viral RNA were shown to be significantly higher in CLNs than PBMCs of 

SIV infected rhesus macaques. Reports in the past have shown similar observations in 

peripheral lymph nodes (49, 50). The majority of SIV burden within CLNs was found to be 

contained in the BCFs on FDCs, which is in line with previous reports for peripheral lymph 

nodes (51). Given FDCs established role as an HIV-1/SIV reservoir (5, 30, 32, 34, 36, 37, 

51), we determined that as high as 39% of the total FDCs in samples from CLNs harbored 

SIV (as measured by SIVp27 protein staining). This virus could either be bound on the 

surface of FDCs or within the cycling endosomes for extended periods of time (30, 35, 52). 

Subsequent interactions of these FDCs with BCF trafficking target cells might result in 
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infection of these cells and may also provide a route of virus egress out of the CLNs and into 

the CNS. Consistent with FDCs studied from other LNs, FDCs from CLNs of SIV-infected 

rhesus macaques are also a site for significant viral accumulation. HIV held on the surface of 

FDCs does not replicate or evolve; however, it retains the ability to infect cells that traffic 

nearby (36). Importantly, although FDCs themselves remain uninfected, they reside 

immediately adjacent to activated CD4+ T and B cells within GCs and the long dendritic 

processes of FDCs interact directly with these adjacent lymphocytes. CD4+ T-follicular 

helper (TFH) cells are a specialized CD4+ T-cell population in the BCF and play a seminal 

role in formation of the GC (53). Of note, FDCs can facilitate infection of CD4+ TFH cells 

(39, 54, 55).

In order to assess the cellular interactions of FDCs harboring SIV in BCFs of CLNs, we 

identified cellular complexes of FDCs with B cells in chronically SIV-infected CLNs using 

confocal microscopy. These interactions could lead to the development of SIV specific 

germinal center reactions and memory B-cell responses in CLNs, as well as potentially 

being a source of the hypergammaglobulinemia that is a hallmark of HIV/SIV infections. In 

addition to their capability to retain immune complexed antigen, FDCs have been shown to 

attract B cells and specific T cells into the BCFs to generate germinal center reactions (34, 

56, 57). Consistent with what has been demonstrated in peripheral lymph nodes (44, 58) 

(59), we demonstrate that SIV harboring FDCs intimately interact with TFH cells within 

BCFs and that a high frequency of TFH are infected with SIV in CLNs. Since TFH, and other 

CD4+ T cell subsets, are dynamic cells that migrate out of lymph nodes (60), the 

interactions between FDCs and TFH in CLNs may be important in the context of 

understanding CNS infection.

The interaction between TFH and B cells increases the turnover of B cells in the follicles of 

peripheral lymph nodes. This strong interaction between TFH and B cells has been 

demonstrated in a number of studies (44, 58, 61–63). Furthermore, the expansion of TFH 

cells in lymphoid tissues has been found to be associated with high titers of virus specific 

antibodies and heightened proliferation of B cells (61, 62, 64). In this regard, the formation 

of complexes with B and TFH cells with antigen shared between the two could be 

demonstrated. A positive correlation between the TFH cells in peripheral lymph nodes and 

hypergammaglobunemia has also been demonstrated by few studies, which contributes to 

production of large amounts of nonspecific antibodies and evasion of immune response by 

virus (44). Collectively, these interactions between FDCs, B and TFH cells indicate that not 

only do FDCs act as carriers of SIV, but they also possess the capacity to infect the 

neighboring cells, an observation consistent with the characteristic features of viral 

reservoirs.

While our study highlights that HIV is trapped on FDCs, forms immune complexes with B 

cells and infects TFH in CLNs, yet these observations are a prelude to determining that HIV 

trapped on FDCs in CLNs is a potential reservoir site. To unequivocally establish this viral 

reservoir site, one of the component of these studies will necessitate assessment and 

comparison of viral genotypes present in the periphery with virus in CNS perivascular 

macrophages, microglial cells, astrocytes and those associated with FDCs in CLNs in order 

to define the relationship of viruses between these compartments. These future studies will 
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be instrumental in establishing pathways of viral egress from the CNS into the periphery as 

well as determine the putative link between CNS infection and CLN reservoirs during the 

course of disease. Additional studies will also be essential to assess the phenotypic 

properties of viruses in the CLNs, which will confirm the pathogenicity of the virus in the 

CLNs and establish this site as a direct link with CNS infection. Overall, we have 

demonstrated that identification of additional reservoirs that may be involved in seeding 

additional genotypes back into the CNS.

Supplementary Material
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Fig. 1. SIV viral load at necropsy
(A) Viral load (Gag copies/ml) at time of necropsy. (B) Viral RNA (copies/ng) in CLNs and 

PBMCs derived from SIV-infected rhesus macaques during chronic infection. (C) Viral load 

over a period of 1–29 weeks after viral inoculation in plasma of SIV-infected rhesus 

macaques. The statistical significance was tested using two-tailed student t test. A p value 

<0.05 was considered statistically significant.
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Fig. 2. SIV detection in B-cell follicles of CLNs
The CLN sections acquired from SIV naïve and infected rhesus macaque were stained using 

hematoxylin and eosin. Representative figure shows the GC architecture at 4X (A) and a 

magnified boxed image of one follicle at 10X (B). Immunohistochemistry on paraffin 

embedded CLN sections from SIV-naïve animal was done to detect p27 expressing cells. It 

showed no chromogen red signal confirming the absence of antigen as seen at 40X (C) and 

100X (D) magnification. The sections from chronically infected animal showed positive 

chromogen red signals as indicated by arrows at both 40X (E) and 100X (F) magnification. 

Slides were also stained with DAB to further confirm SIV chromogen staining. Figures G 
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and H clearly show intense brown signals for DAB, which correspond to presence of p27 

containing cells in the GC of chronically infected animals.
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Fig. 3. Confirmation of SIV-bearing FDCs within CLNs of rhesus macaques
Immunohistochemistry and immunofluorescence on paraffin-embedded CLN sections from 

rhesus macaques was utilized to detect BCFs, CD35-positive FDCs and presence of viral 

p27 antigen. (A) Cells within the GCs from CLN of SIV-naive rhesus macaques were 

characterized by staining sections with anti-CD20 for B-cell aggregates (lymphoid follicles) 

and PNA for GCs. Representative images at 10x magnification indicate presence of CD20 

(blue), PNA (green) and overlay of the two. (B) Representative image indicates the presence 

of CD35 immunofluorescence expressing cells, with a typical reticular arrangement marked 

with arrows and the blown image shows two such patterns after blow up of the image. (C) 

Distribution of CD20+CD35- B cells (green) and CD35+CD20- FDCs (red) within GCs of 

CLNs. The arrows show only FDCs distributed at the center of follicle. (D) Cells in the 

CLNs of SIV-infected rhesus macaques with chronic infection were characterized to identify 

the presence of p27 (green) (upper right) and CD35 (red) (bottom left) positive cells. 

Sections were stained with DAPI (upper left) to localize nuclei. Representative merged 
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image (bottom right) at 40x magnification indicate presence of p27 and CD35 positive cells 

within the CLNs.
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Fig. 4. FACS analysis of SIV-harboring FDCs within CLNs
Cells isolated from CLNs of chronically SIV-infected animals (week 29) (n = 5) were 

characterized by FACS analysis. Collagenase treated and untreated cells were surface stained 

for CD35 and CD20 markers. The cells which were not permeabilized were directly stained 

for p27 expression, whereas cells that were permeabilized (where indicated) were stained for 

intracellular SIV p27 expression. (A) Selection of FDCs by gating CD20-CD35+ cells 

(upper right) from live cell gate (upper left). CD20−/CD35+ cells were characterized for 

CD21 (lower right) and CD80 (lower right). FDC frequencies were found to be 

12.84±1.82% of total live cells. These cells also expressed other FDCs markers such as 

CD21 and CD80 in good proportion 25.2% and 94.9%, respectively. Figure B shows SIV 

p27 surface staining on CD35+ CD20- FDCs in the histograms from 5 SIV infected rhesus 

macaques, while figure C shows intracellular SIV p27 expression in cells isolated from 

CLNs of chronically SIV-infected rhesus macaques. The surface expression of p27 was 

found to be negligible on FDCs. A considerable proportion of FDCs (24.74±6.03%, mean ± 
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SEM) harbored intracellular SIVp27. Blue and red line on the histograms corresponds to 

p27 and isotype control antibodies, respectively.
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Fig. 5. Evidence of immune complexes and infection of TFH cells within CLNs of chronically 
SIV-infected rhesus macaques
Model figure depicting the interaction of FDCs, B cells, and TFH cells (A) within the GC of 

a secondary lymphoid organ. FDCs trap and retain antigens in the form of specific antibody-

antigen immune complexes allowing them to provide antigen to interact with BCRs on GC 

B cells. FDCs express adhesion molecules, FcR, and complement receptors 1 and 2 (CR1/

CR2) on their cell surface. The ICs bind to FcRs and CRs (also known as CD35/CD21) on 

the FDC dendrites. TFH cells also express high levels of PD-1, which leads to decreased TFH 

proliferation. The interaction of FDCs and B cells within the GC of CLNs (B). Cells from 

CLNs of chronically SIV-infected rhesus macaques were stained for CD20, CD35 and p27 

expression. Representative profiles at 60x magnification indicate formation of immune-

complexes, resulting from co-localization of CD20 (blue), p27 (green) and CD35 (red) 

signals. The arrows indicate the regions of colocalization. The antigen on the surface of 

FDCs could interact with B cells in the follicles of CLNs. Figure C shows transfer of viral 

p27 antigen (green) from CD35+ FDCs (red) to PD-1hi TFH (blue) cells in GC of CLNs. The 

Figure shows antigen carrying FDCs in proximity to TFH cells, with some of the TFH cells 

being actually infected (colocalization of blue and green). The formation of the complex 

between CD20 (B cells) and (PD-1hi) TFH cells, with (p27) antigen shared at their 
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membranes was shown in figure D. This showed that FDCs can infect B cells and TFH cells 

in the CLNs.
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Fig. 6. Confirmation of SIV infection within TFHs of CLNs
The use of confocal microscopy showing the presence of p27 (red) in PD-1hi TFH cells 

(blue) (A). The figure clearly shows intracellular antigen in TFH cells as shown by arrows in 

magnified image. Cells isolated from CLNs of chronically SIV-infected rhesus macaques 

(week 29) (n = 5) were characterized by FACS analysis. CD3+CD4+ cells were gated to 

select CXCR5+PD-1+ TFH cells (B). The phenotype of TFH cells was established using 

staining for BCL6, ICOS, CXCR4, CD95 and CD28 expression (C). The percentages of TFH 

cells in all rhesus macaque CLNs are shown in upper panel, while the percentages of TFH 

cells showing intracellular p27 are shown in lower panel (D). Blue and red line on the 

histograms corresponds to BCL-6 or p27 antibody and isotype control antibodies, 

respectively.
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