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The effects of environmental enrichment
on white matter pathology in a mouse
model of chronic cerebral hypoperfusion
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Abstract

White matter (WM) disintegration is common in the older population and is associated with vascular cognitive impair-

ment (VCI). This study explored the effects of environmental enrichment (EE) on pathological sequelae in a mouse model

of chronic cerebral hypoperfusion induced by bilateral common carotid artery stenosis (BCAS). Male C57BL/6 J mice

underwent BCAS or sham surgery. One-week after surgery, mice were exposed to three different degrees of EE; either

standard housing conditions (std), limited 3 h exposure to EE per day (3 h) or full-time exposure to EE (full) for 12 weeks.

At 13 weeks after surgery, cognitive testing was performed using a three-dimensional 9-arm radial maze. At 16 weeks

after surgery, nesting ability was assessed in each mouse immediately before euthanasia. Brains retrieved after perfusion

fixation were examined for WM pathology. BCAS caused WM changes, as demonstrated by corpus callosum atrophy and

greater WM disintegrity. BCAS also caused impaired nesting ability and cognitive function. These pathological changes

and working memory deficits were attenuated, more so by limited rather than full-time exposure to EE regime.

Our results suggest that limited exposure to EE delays the onset of WM degeneration. Therefore, the implementation

of even limited EE may be beneficial for patients diagnosed with VCI.
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Introduction

There is currently no cure for vascular dementia (VaD),
which is the second most common type of dementia
diagnosed amongst the elderly population.1 Safe and
effective interventional strategies, which delay the
onset or slow down the progression of cognitive decline,
are urgently required. Subcortical ischaemic vascular
dementia (SIVD), the most prevalent subtype of VaD,
is a common feature of vascular cognitive impairment
(VCI).2,3 SIVD is characterised by lacunar infarcts and
white matter (WM) lesions4 and is responsible for
VCI in the ageing population.5 Chronic cerebral hypo-
perfusion, a major component of SIVD and diffuse
WM changes caused by small-vessel disease (SVD), is
strongly correlated to VCI and depression, as well as
gait disturbance as evident in SIVD patients.6,7

However, little is known about the neuropathological
processes that lead to the progression of VCI in SIVD
patients. To understand the biological mechanisms that
occur in the progression of SVD, animal models of
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chronic cerebral hypoperfusion have been developed in
rats8–12 and gerbils.13 Our research group has been work-
ing at the forefront to establish several novel rodent
models of VCI or VaD by assessing the effects of reduced
brain perfusion on the dynamics of the cerebral circula-
tion and brain tissue changes.14–19 Remarkably, the bilat-
eral carotid artery stenosis (BCAS) mouse model has
been evaluated as one of the most germane rodent
models of VaD.20–23

Environmental enrichment (EE) has been suggested
as a strategy to improve cognitive impairment in
humans and possibly to reverse WM and neuronal
damage. There is some evidence to show that physical
and cognitive stimulations, which are incorporated in
EE and physical exercise training, could enhance syn-
aptic plasticity and attenuate cognitive deficits in
rodents24–27 and humans.28 These studies reported
that EE increased brain plasticity, enhanced neurogen-
esis, and increased synaptogenesis as well as preserved
motor and cognitive function. Although several previ-
ous studies reported the beneficial effects of EE in
rodents and humans, few studies explored the protect-
ive effects of differing degrees of EE in VaD. Here, we
investigated the effects of different degrees of EE on
the pathological sequelae in mice subjected to BCAS,
with the aim of assessing the morphology of the WM
and cognitive dysfunction as it relates to VCI and
VaD.4

Material and methods

Animals and surgical procedures

Male C57BL/6 J mice (nine weeks old, 23.1� 25.3 g)
were purchased from the Jackson Laboratory, USA.
The mice were housed in group cages with a 12 h day
and 12 h night cycle (6 am–6 pm, day; 6 pm–6 am,
night) and were given access to food and water ad
libitum. After one-week acclimatisation, a total of
74 mice were randomly selected for either bilateral
common carotid artery stenosis (BCAS, n¼ 41) or
sham (n¼ 33) surgery. BCAS surgery was performed
as described previously.14 Briefly, mice were anaesthe-
tised by 1.5% isoflurane in oxygen and air. Middle neck
incision was made, bilateral common carotid arteries
(CCAs) were exposed and isolated from the vagus
nerves. Microcoils of inner diameter of 0.18mm
(Sawane Spring, Japan) were applied to the both
CCAs. Sham animals were exposed to the same opera-
tive procedures as BCAS mice, except for the applica-
tion of microcoils. Body temperature was monitored
and maintained between 36.5�C and 37.5�C with the
aid of a feedback warming pad and a blanket during
the operative procedure. Animals were appropriately
identified with coded numbers. All the experiments

including behavioural test and data analyses in this
study were performed under investigator-blinded con-
ditions. Animals dying during the experimental period
before the planned euthanasia at 16 weeks after surgery
were excluded from further analyses, other than assess-
ment of survival rate.

All procedures were pre-approved by the Home
Office, Secretary of the State, London, UK based
upon ASPA: The Animals (Scientific Procedures)
Act 1986, UK and performed in accordance with
the guidelines stipulated by the ethical committee of
Newcastle University and adhering to ARRIVE
guidelines. Figure 1 outlines the entire experimental
protocol.

Measurement of body weight and analysis
of survival rate

Body weight (BW) of each mouse was determined
before surgery and followed up to three times a week
as necessary for a period of 12 weeks and prior to cog-
nitive testing (Supplementary Figure 1(a) and (b)).
During the cognitive testing period, BW was assessed
daily in order to monitor the consistency in weight.
Survival rates were determined until 16 weeks after sur-
gery and before euthanasia. These results were expressed
as Kaplan–Meier survival curves (Supplementary
Figure 1(c) and (d)).

EE paradigm and animal groups

Animals were initially divided into two main groups,
sham and BCAS (Figure 1(b)). One week after the sur-
gery, mice were randomly assigned to six subgroups,
three per group: three different EE conditions per
main group for 12 weeks either standard housing, lim-
ited exposure to EE or full-time exposure to EE.
Standard housing denotes a normal housing condition
with no EE and it incorporated a paper house and
shredded tissue. EE cages had extra toys in addition
to the standard housing, e.g. running wheels, hanging
chains, igloos and a paper tunnel. Limited exposure to
EE was performed as described previously.29 Briefly,
for the first four weeks, mice were transferred to the
EE cages for 3 h every day in the morning from 9 am
to noon. From the fifth week to the 12th week, mice
were placed in EE cages for 3 h, 3 days a week. Full-
time EE group was exposed to EE every day for
24 h over the entire 12 weeks. Thus, altogether six
experimental groups were compared: Sham-std, sham-
operated mice with standard housing; Sham-3 h,
sham mice with limited exposure to EE: Sham-full,
sham-operated mice with full-time exposure to EE;
BCAS-std, BCAS-operated mice with standard hous-
ing; BCAS-3 h, BCAS-operated mice with limited
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exposure to EE; BCAS-full, BCAS-operated mice with
full-time exposure to EE.

Cognitive testing using an innovative
three-dimensional 9-arm radial maze

Cognitive function (mainly working memory) was
assessed in each mouse from 13 weeks post BCAS sur-
gery during a period of 20 days, using a novel three-
dimensional (3D) 9-arm radial maze (3D-RAM).30 This
was a modified version of the conventional 8-arm radial
maze. Behavioural tests were performed in a dimly
lit behavioural testing room. The 3D maze (Grey
PVC, 5mm thick) consisted of nine arms connected
to bridges (slope part) radiating from a central plat-
form. Each arm (35 cm� 11.2 cm) was attached to a
bridge (slope part at 40 degrees, 15.2 cm� 11.2 cm).
The surface of the bridge was made of metal mesh,
which enabled the mice to maintain grip. A small trans-
parent wall panel (9 cm� 6 cm) was randomly placed at
each entrance of a bridge in order to narrow entry,
which avoids a continuous sequential entry from

one bridge to the next. In order to enter each arm,
mice placed in the centre platform and needed to cross
a bridge (elevated ramp).30 At the end of each arm, a
small pellet (Dustless Precision Pellets� Rodent,
Purified, Bio Serv, USA) was placed in order to entice
food-restricted mice to enter the arm. Different colours/
shapes of pictures were placed vertically at the end of
each arm as visual cues, enabling the mice to distinguish
individual arms. The maze was placed at the centre of a
behavioural test room affixed during the entire testing
period. All of the sessions for each mouse were streamed
and recorded using a camcorder (LEGRIA HF R56,
Canon), suspended directly over the maze, via a Wi-Fi
network to an iPad (Apple Inc., USA), which was sited
outside the behavioural test room.

A day before the first session, each mouse was
weighed to ascertain BW, and food deprivation was
induced to achieve 10% reduction in their BW. Mice
were weighed immediately prior to each testing session
to ensure their BW was maintained at 90% of baseline
level. Mice were randomly tested for 20 consecutive
days without prior habituation to the maze.31,32 Mice

Figure 1. Experimental protocol and animal groups. (a) Experimental protocol and (b) six different subgroups of mice in this study.

BCAS: bilateral common carotid artery stenosis; EE: environmental enrichment.
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placed into a transparent plastic beaker (7 cm diameter,
18.5 cm height) were gently introduced on the central
platform at the start of each session. The session was
terminated when each mouse completed nine arm
entries or when 10min had elapsed. After each session,
the mouse was allowed to return to the central platform
before removing it from the maze in a similarly gentle
manner. Between each session, the maze was cleaned
with hypochlorous acid soaked tissue followed by
distilled water to remove any traces smells left by
urine or faeces.

The number of arm entries, number of arm repeats
and number of arm entries before first repeat (NABFR)
were recorded. The probability of each pair of ‘‘arm
entries and arm repeats (top of each cell)’’ and ‘‘arm
repeat score (bottom of each cell)’’ (Figure 7(a)) and
probability of each ‘‘NABFR (top of each cell)’’ and
‘‘NABFR score (bottom of each cell)’’ (Figure 7(d))
were then calculated. Arm repeat scores for each pair
were defined as the difference in percentage compared
to the most probable pair. For example, the most prob-
able arm repeats in nine arm entries can be 3, and its
probability is calculated as 41.0%. Arm repeat score of
this pair was set as zero (Figure 7(a)). The probability
of 1 arm repeat in nine arm entries was theoretically
3.37%. Therefore, the arm repeat score of this pair was
calculated as: 41.0� 3.37¼ 37.63%. However, the
probability of 5 arm repeats in nine arm entries is
6.0%. In this case, the arm repeat score was calculated
as a negative value: 6.0� 41.0¼� 32.0%, as more than
three arm repeats are counted as a negative score.
NABFR scores were similarly calculated in the same
manner as the arm repeat score. For example, the
most probable NABFR is 3 and its probability was
calculated as 23.05%. NABFR score of this was set
as zero (Figure 7(d)). The probability of NABFR¼ 5
is theoretically 14.23%. Therefore, the NABFR score
of this was calculated as: 23.05� 14.23¼ 8.82 %. On the
other hand, the probability of NABFR¼ 1 is 11.11%. In
this case, NABFR score was calculated as a negative
value: 11.11� 23.05¼� 11.93%, as less than 3 NABFR
is counted as a negative score. The final scores represent
the average of the scores from all sessions.

Nesting behaviour

The NESTLETSTM (Ancare, USA) test was used to
assess the nesting ability of mice33 before BCAS or
sham surgery (as baseline) as well as 16 weeks after
surgery before euthanasia. Briefly, one NESTLET,
composed of a pressed square of cotton material
(2� 2 inches) was placed at one corner of each
cage at 4 pm and left there overnight. First, mice
shredded the tightly packed cotton material and
then arranged it into a nest. Next morning at 10

am, each cage was assessed in terms of the appear-
ance of the nest (NESTLET score), height of the nest
(cm) and the percentage NESTLET used (%).
Scoring was defined as follows33: (1) Nestlet not
noticeably touched (more than 90% intact); (2) nest-
let partially torn (50–90% remaining intact); (3) nest-
let mostly shredded but often no identifiable nest site:
less than 50% of the nestlet remains intact, but less
than 90% is within a quarter of the cage floor area,
i.e. the cotton is not gathered into a nest but is
spread around the cage. The material may sometimes
be in a broadly defined nest area, but the critical
definition is that 50–90% is shredded; (4) an identifi-
able but flat nest: >90% of the nestlet is torn and the
material is gathered into a nest within a quarter of
the cage floor area, but the nest is flat, with walls
higher than the average mouse BW for less than 50%
of its circumference; (5) a (near) perfect nest: more
than 90% of the nestlet is torn and the nest is a
crater, with walls higher than the average mouse
BW for >50% of its circumference.

Histopathological analysis

Mice were anaesthetised by intraperitoneal injection
of sodium pentobarbital (50mg/kg) and perfused
transcardially at 20ml/min with 0.01M phosphate-
buffered saline (PBS), pH 7.4. Brains were removed
and divided into two hemispheres. The right or left
hemisphere of each brain was randomly assigned
for histological analysis and post fixed in 4% parafor-
maldehyde (PFA) in 0.01M PBS (pH 7.4) for 48 h.
Each hemisphere was cut into five blocks at different
coronal levels after fixation: Block OB, coronal level of
olfactory bulb (OB); Block 1, coronal level of breg-
maþ 0.5mm; Block 2, coronal level of bregma�
1.0mm; Block 3, coronal level of bregma� 2.0mm;
Block 4, level of cerebellum and brain stem. Each
sub-dissected block was dehydrated and embedded in
paraffin to produce 5-mm thick sections for histological
staining and analysis.

Volume of the corpus callosum. Luxol-fast blue and cresyl
fast violet (LFBþCFV): Klüver-Barrera (KB) stain
was used to assess area and volume of the corpus cal-
losum (CC). KB-stained sections obtained from Blocks
1, 2, and 3: coronal level of bregmaþ 0.5mm, �1.0mm
and �2.0mm, respectively, were used so that the whole
CC from rostral to caudal segment was analysed.
Images of the CC from paramedian to the lateral
edge were captured using a bright field microscope
(Leitz DIALUX 20, Leica) with a 5� objective lens
coupled to a lumenera infinity digital camera
(Lumenera Corporation, Canada). The entire CC was
also traced using ImageJ software, and the area of CC

154 Journal of Cerebral Blood Flow & Metabolism 38(1)



(mm2) for each block was calculated. To assess the
volume, we assumed that each CC area was of similar
shape. The areas of the CC were defined as: CC area
obtained from block 1 (bregmaþ 0.5mm), S1 (mm2);
from block 2 (bregma� 1.0mm), S2 (mm2); from block
3 (bregma� 2.0mm), S3 (mm2). The volume of the ros-
tral and caudal side of CC were defined as: V1 (mm3),
volume of the CC between block 1 and block 2 (dis-
tance¼ 1.5mm); V2 (mm3), volume of the CC between
block 2 and block 3 (distance¼ 1.0mm). Using the
following formula, each volume was calculated as fol-
lows: V1 (mm3)¼ 1:5

3 S1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S1 � S2
p

þ S2
� �

; V2
(mm3)¼ 1

3 S2þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S2 � S3
p

þ S3
� �

. Total estimated
volume of CC between coronal level of bregmaþ
0.5mm and bregma – 2.0mm (mm3)¼V1þV2 (mm3).

WM severity scores. WM severity score was assessed in
KB-stained coronal sections obtained from blocks 1, 2,
and 3. We analysed all the distinct regions of the WM
including the CC, anterior commissure, hippocampal
fimbria, internal capsule, optic nerve and optic tract.
For analysis of the CC, the images were captured
using a bright field microscope (Leitz DIALUX 20,
Leica) with a 20� objective lens coupled to a lumenera
infinity digital camera (Lumenera Corporation,
Canada). The severity of the WM pathology was
graded as follows: Grade 0, normal; Grade 1, disar-
rangement of the nerve fibres; Grade 2, the formation
of marked vacuoles; Grade 3, and the disappearance of
myelinated fibres as described previously.8

Oligodendrocytes. Haematoxylin-stained sections obtained
from block 3, coronal level of bregmaþ 2.0mm were
used for the analysis of total number of oligodendro-
cytes in the CC. Oligodendrocytes were identified based
upon its size and morphology: size of its nucleus
around 6-mm, rounding shape with a dense-stained
nucleus.4 The whole CC from paramedian to lateral
edge of each section was imaged and analysed. All
oligodendrocytes within each image were counted to
assess the total number of oligodendrocytes.

Statistical analysis

Data were expressed mean� SEM. Using IBM SPSS
statistics 22 software, non-paired t-test or one-way ana-
lysis of variance (ANOVA) followed by post-hoc
Tukey’s test were performed for multiple comparison
of each group. Mann-Whitney U test or Kruskal-Wallis
H Test was performed for non-parametric analysis.
Two-way repeated measures ANOVA was performed
for assessment of BW change and behavioural data.
Log-rank test was performed for Kaplan–Meier survival
analysis. P< 0.05 was defined as statistically significant
in all analyses.

Results

BW compared with sham animals after BCAS

Pre-operative BWs of each group were: Sham-std,
23.6� 0.3 g; Sham-3 h, 23.6� 0.5 g; Sham-full, 24.0�
0.7 g; BCAS-std, 24.6� 0.3 g; BCAS-3 h, 24.4� 0.6 g;
BCAS-full, 24.9� 0.4 g, respectively (P> 0.05). At one
week after surgery, all BCAS groups had lost some BW
compared with the pre-operative value and began to
recover until 13 weeks post-operation. However,
weight gain in all BCAS groups was slower compared
with sham animals at each indicated time points
(P< 0.01) (Supplementary Figure 1(a) and (b)),
although the amount of food intake after surgery was
not different between the sham and BCAS animals
(data not shown). There were no significant differences
in BW at any time point between sham and BCAS sub-
groups (Supplementary Figure 1(b)). However, limited
exposure to EE (BCAS-3 h) tended to gain more BW
compared to other BCAS subgroups, especially from
seven weeks after surgery.

BCAS animals tended to survive less compared
to sham animals

All sham-operated mice (n¼ 33) survived until
16 weeks after surgery (Supplementary Figure 1(c)).
However, the survival rate of the BCAS mice was
85.4% (35 of original 41 mice) at 16 weeks after surgery
(Kaplan–Meier survival analysis, log-rank P¼ 0.01)
(Supplementary Figure 1(c)). The survival rates of the
BCAS mice were as follows: BCAS-std 92.9% (13 of
original 14), BCAS-3 h 91.0% (10 of 11); BCAS-full
75% (12 of 16) (Supplementary Figure 1(d)). There
were no significant differences between BCAS groups
by Kaplan–Meier survival analysis. However, BCAS-
full showed the lowest survival rate during 16 weeks
observation period post-surgery. The causes of death
in the BCAS group were: cerebral haemorrhage
(n¼ 1), severe enterocolitis (n¼ 1), kidney anomaly
(n¼ 1), acute renal failure due to dehydration (n¼ 3).
The final number of survivors in each group was Sham-
std, n¼ 11; Sham-3 h, n¼ 11; Sham-full, n¼ 11; BCAS-
std, n¼ 13, BCAS-3 h, n¼ 10; BCAS-full, n¼ 12
(Figure 1(b)).

Limited versus full-time exposure to EE and
CC atrophy

The CC volume in each group was calculated to
assess atrophy. Compared with all the sham animals
(Figure 2(b) to (d)), BCAS-std and BCAS-full sub-
groups showed significantly smaller volumes of CC.
This was apparent in the rostral as well as caudal seg-
ments and the total volume of the CC. The BCAS-3 h

Hase et al. 155



subgroup showed significantly larger volumes of CC
compared with BCAS-std subgroups (*P< 0.05).

Limited versus full-time exposure to EE on
WM integrity

BCAS resulted in higher WM severity scores compared
with sham animals. In the paramedian area of the CC
(Figure 3(a) (A to F)), BCAS-3 h mice showed reduced
WM score (preserved WM integrity) compared to
BCAS-std at all coronal levels comprising blocks 1, 2
and 3 at coronal levels relative to bregmaþ 0.5mm,
�1.0mm and �2.0mm, respectively (*P< 0.05)
(Figure 4(a), (d) and (g)). In the most caudal part,
BCAS-3 h mice also had reduced WM severity score
compared to BCAS-full (*P< 0.05) (Figure 4(g)).

In turn, BCAS-full mice had more preserved WM integ-
rity compared to BCAS-std (*P< 0.05) (Figure 4(h)
and (i)). In both the median (Figure 3(b) (A to F))
and lateral (Figure 3(c) (A to F)) regions of the CC,
BCAS-3 h and BCAS-full subgroups exhibited reduced
WM scores compared to BCAS-std at all coronal levels
(*P< 0.05) (Figure 4(b), (e), (h), (c), (f) and (i)). There
was also a reduction in the WM score of the anterior
commissure of BCAS-3 h and BCAS-full animals com-
pared to BCAS-std (*P< 0.05) (Figure 4(j)). Similarly,
there was less WM damage in the hippocampal fimbria
and internal capsule in the BCAS-3 h animals com-
pared to BCAS-std (*P< 0.05) (Figure 4(k) and (l)).
In the optic nerve and optic tract, BCAS sub-
groups showed greater WM scores compared to sham
subgroups.

Figure 2. Volume of the corpus callosum (CC) (a) (A to F), LFBþCFV stained sections from block 3 (coronal level of breg-

ma� 2.0 mm) in each group. a(A), sham-std; a (B), sham-3 h; a (C), sham-full; a (D), BCAS-std; a (E), BCAS-3 h; a (F), BCAS-full. Scale

bar represents 200mm. Arrows indicate the peripheral edge of the CC. (b to d), Histograms showing CC volume of different levels

from rostral (b), caudal side (c) as well as total CC volume (d). All BCAS-std and BCAS-full subgroups showed smaller CC volume

compared with all sham subgroups (P< 0.01) (b to d). BCAS-3 h showed larger total CC volume compared with BCAS-std

(**P< 0.01) (c) (*P< 0.05) (d). Lack of differences were apparent between BCAS-std and BCAS-full (b to d) or between sham-std and

BCAS-3 h (b to d). There were no differences between the sham subgroups (b to d).

BCAS: bilateral common carotid artery stenosis.
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Status of oligodendrocytes during limited versus
full-time exposure to EE

All sham subgroups showed normal alignment and
appearance of oligodendrocytes in the caudal segment
of the CC (Figure 5(a) (A to C)). On the other hand,

BCAS-std mice had lower numbers and disrupted cells
(Figure 5(a) (D)). EE, especially BCAS-3 h, preserved
the number and alignment of oligodendrocytes (Figure
5(a) (E)). The total number of oligodendrocytes in the
entire caudal segment was greater in BCAS-3 h mice
compared with BCAS-std and BCAS-full subgroups

Figure 3. LFBþCFV stained corpus callosum: (a) LFBþCFV stained paramedian part of the CC in each group. a(A), sham-std; a(B),

sham-3 h; a(C), sham-full; a(D), BCAS-std; a(E), BCAS-3 h; a(F), BCAS-full. Scale bar represents 50mm. (b) LFBþCFV stained median

part of the CC in each group. b(A), sham-std; b(B), sham-3 h; b(C), sham-full; b(D), BCAS-std; b(E), BCAS-3 h; b(F), BCAS-full. Scale

bar represents 50 mm. (c) LFBþCFV stained lateral part of the CC in each group. c(A), sham-std; c(B), sham-3 h; c(C), sham-full; c(D),

BCAS-std; c(E), BCAS-3 h; c(F), BCAS-full. Scale bar represents 50mm.

BCAS: bilateral common carotid artery stenosis.
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(P< 0.01) (Figure 5(b)). BCAS-full also showed
increased number of cells compared with BCAS-std
(P< 0.05) (Figure 5(b)).

Impaired nesting ability induced by BCAS was
reversed by EE

Sham subgroups had almost the same level of nesting
ability (Nestlet score) compared with preoperative

baseline level at 16 weeks after surgery. However,
BCAS-std subgroup exhibited lower Nestlet scores
(impaired nesting ability) compared to baseline level
(*P< 0.05). EE reversed impaired the nesting ability,
and limited exposure to EE (BCAS-3h) tended to
improve the nesting ability compared with BCAS-std
and BCAS-full subgroups (Figure 6(c)). BCAS plus EE
subgroups made higher nests and used more Nestlet to
make nests compared with BCAS-std (data not shown).

Figure 4. White matter (WM) severity score in WM. (a to i) Histograms showing WM severity score in the paramedian (a, d and g),

median (b, e and h) and lateral (c, f and i) side of corpus callosum (CC) of all different coronal levels. (j to l) Histograms showing WM

severity score in the anterior commissure (j), hippocampal fimbria (k) and internal capsule (l). In all of these WM, BCAS plus limited

exposure to EE (BCAS-3 h) subgroup showed lower WM scores (preserved WM integrity) compared with BCAS-std (*P< 0.05) (a-i)

and BCAS-full (*P< 0.05) (g). BCAS-full also attenuated WM damage compared with BCAS-std (*P< 0.05) (b, e, h, i and j) especially in

the caudal part of the CC (*P< 0.05) (g, h and i).
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Impaired working memory partially reversed by EE

Working memory was significantly impaired in BCAS
compared to sham animals.

Arm repeat scores. Average arm repeat scores in sessions
1–10, sessions 11–20 and sessions 1–20, all showed
significantly lower scores in BCAS compared to sham
animals (P< 0.05 in sessions 1–10; P< 0.01 in sessions
11–20 and sessions 1–20) (Figure 7(b)). Sham group
dramatically improved arm repeat score by 47.4% in
sessions 11–20 compared to sessions 1–10, whereas
BCAS group reduced score by 6.6% (Figure 7(b)). All
the sham animals improved arm repeat scores (average
49%) in sessions 11–20 compared to sessions 1–10. The
BCAS-3 h mice improved their score by 37.3%,
whereas BCAS-std only improved by 13.0% and
BCAS-full even reduced the average score by 45.7%
(Figure 7(c)). For the arm repeat score averaged from
sessions 1–20, the BCAS-3 h subgroup showed the high-
est mean score between BCAS subgroups, followed by

BCAS-full and BCAS-std. In sessions 11–20 and ses-
sions 1–20, the BCAS-3 h mice showed no differences
compared to sham-std. In sessions 11–20, BCAS-3 h
also showed no significant change in lower arm repeat
scores compared with those on sham-3 h (P¼ 0.08).

NABFR scores. The NABFR was lower in BCAS mice
compared to the sham (P< 0.01) (Figure 7(e)). All
sham subgroups also completed more arm entries
before first repeat compared with all BCAS subgroups.
Between BCAS subgroups, the BCAS-3 h mice sub-
group completed more arm entries before first repeat,
in sessions 1–5 and 11–15 (Figure 7(f)). The BCAS
animals also showed lower NABFR scores compared
with sham in sessions 1–10, 11–20 and 1–20, (P< 0.01)
(Figure 7(g)). The NABFR scores averaged from
sessions 1–20, were highest for the BCAS-3 h mice
followed by BCAS-full and BCAS-std (Figure 7(h)).
BCAS-3 h mice also showed a trend towards lower
scores compared with sham-3 h in sessions 11–20
(P¼ 0.06).

Figure 5. Total number of oligodendrocytes in the corpus callosum (CC). (a) (A-F), Representative images of haematoxylin-stained

corpus callosum (CC) in each group. a(A), sham-std; a(B), sham-3 h; a(C), sham-full; a(D), BCAS-std; a(E), BCAS-3 h; a(F), BCAS-full.

Scale bar represents 25 mm. (b) Histogram showing total number of oligodendrocytes in the entire CC. BCAS-3 h showed increased

number of oligodendrocytes in the entire CC compared with BCAS-std and BCAS-full (both **P< 0.01). BCAS-full showed increased

number of oligodendrocytes compared with BCAS-std (*P< 0.05).
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Discussion

Our findings in this study suggest beneficial effects of
limited EE against WM changes after chronic BCAS as
related to the features of VCI and VaD. We found that
BCAS caused: (1) WM damage demonstrated by CC
atrophy as well as WM disintegration and loss of oligo-
dendrocytes; (2) impaired the nesting ability as well as
the cognitive function. These unfavourable changes
were attenuated by (EE intervention, by limited expos-
ure to EE rather than full-time exposure to EE.

Few previous studies reported overall BW change
after long-term BCAS. We found BCAS animals did
not gain weight compared to sham, despite the lack of
differences in the amount of food consumption between
BCAS and sham animals. The reduced trailing effects
on BW in the BCAS mice may be explained by systemic
metabolic changes. Overall survival rate after surgery was
significantly lower in BCAS compared to sham animals.

This is compatible with previous reports indicating
that survival rates after BCAS was about 80%.14,34

However, in our study, an overall four-month survival
rate after BCAS was >90% in BCAS-std and BCAS-3h
subgroups. We also suggest the higher mortality in the
BCAS-full subgroup could be explained by dehydration
and acute renal failure possibly due to the increased phys-
ical activity promoted by the full-time exposure to EE.
Although EE exposes the animals to a number of differ-
ent features including physical exercise and social inter-
action, we noted the average number of wheel rotations
in BCAS-full subgroup was 5-fold greater compared with
BCAS-3h, sham-3h and sham-full subgroups (data not
shown). Limited exposure to EE could have also initiated
and activated the fronto-subcortical circuits more often
when the animals experienced limited exposure to EE
every time. Repeated activation of fronto-subcortical cir-
cuits could enhance the cognitive function and prevent
cognitive decline after BCAS.

Figure 6. Assessment of nesting ability (a) and (b)(A-F), Representative images of nest created from the Nestlet in each group.

(a) A nest seen before surgery (baseline); (b)(A-F), nests seen at 16 weeks post-operation. b(A), sham-std; b(B), sham-3 h; b(C),

shamfull; b(D), BCAS-std; b(E), BCAS-3 h; b(F), BCAS-full. (c) Boxplot showing Nestlet score at baseline level and post operation in

each group. BCAS-std subgroup had impaired nesting ability compared to baseline level (*P< 0.05). EE reversed impaired nesting

ability induced by BCAS, especially by limited EE (BCAS-3 h) (c).
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Figure 7. Cognitive function assessed in the 9-arm radial maze: (a) Table showing probability of each pair of ‘‘arm entries and arm

repeats (top of each cell)’’ and ‘‘arm repeat score (bottom of each cell)’’. Pairs of N/A did not occur in this experiment. (b and c)
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It has been reported that nesting is important for heat
conservation, reproduction and shelter and shown to
relate to brain lesions, pharmacological agents and gen-
etic mutations.33 We found that BCAS caused impaired
nesting ability, and it was attenuated by EE, which is a
new finding in the BCAS mouse model. BCAS plus lim-
ited exposure to EE mice tended to make better nests
compared to other BCAS subgroups. These results sug-
gest that EE after chronic cerebral hypoperfusion could
protect changes in different cognitive domains or could
attenuate mild undetectable sensory-motor deficit
involved in the nesting ability.

Previous reports suggest that BCAS causes impaired
working memory.15,35,36 These studies used the conven-
tional 8-arm radial maze or the Y-maze. We utilised an
innovative 3D 9-arm radial arm maze for the assess-
ment of cognitive function, which is a modified version
of the conventional radial arm maze and designed for
assessing working memory.31 This maze allowed us to
measure more indices compared with the conventional
8-arm radial arm and Y-mazes.32,37 The arm repeat
scores allowed us to assess probability as well as
number of arm repeats. The NABFR scores allowed
us to detect differences in cognitive function of each
group with greater sensitivity. We found that all
BCAS showed significantly lower arm repeat scores
and NABFR scores compared with the sham animals,
suggesting that BCAS impaired working memory. This
is consistent with the heterogeneity observed in VaD
and normally ageing individuals. We also found that
limited exposure to EE ameliorated cognitive decline
after BCAS. The average arm repeat score and
NABFR score in sessions 11–20, BCAS plus limited
exposure to EE subgroup (BCAS-3 h) showed no sig-
nificant difference compared with sham subgroups.
This result suggests that moderate, rather than full-
time exposure to EE could be an effective intervention
against impaired working memory as evident in VCI.3

Overall, our observations are consistent with previous
evidence indicating that EE elicits beneficial effects on
neuronal plasticity and cognitive functioning in rats,26

mice27,38–40 and humans.27,38–40 However, the underly-
ing neurophysiological mechanisms of EE remains
poorly understood. It is proposed that the structural
and biomechanical changes in the WM induced by
EE, is due to the upregulation of genetic expressions
associated with neurogenesis, synaptic plasticity, neu-
roprotection and intact memory function.41

Carotid artery stenosis is an important risk factor
for cerebral WM disease42,43 and relates to WM
damage and cognitive dysfunction44–46 apparent in
SIVD.14 We propose that chronic cerebral hypoperfu-
sion in mice or rats47 leads to reduced CBF. Thus, we
noted that all BCAS subgroups showed thickened car-
otid arterial wall and prolonged reduction of CBF as
evident by laser speckled flowmetry at 16 weeks after
surgery.48 This suggested that compensatory mechan-
isms such as collateral flow, were not able to prevent
CBF reduction due to severely stenosed carotid arteries
but the reduced CBF in turn facilitated damage in the
deep WM, particularly affecting the cellular structure
including oligodendrocytes in the CC.14,34–36 However,
the WM pathology is indicative of overall subcortical
damage and neuronal disconnectivity between cerebral
cortices that result in cognitive and motor deficits
observed in SIVD.4,45,46,49 As BCAS-std and BCAS-
full mice both showed more severe WM damage, i.e.
CC atrophy than in the BCAS-3 h subgroup, this sug-
gests that continuous but moderate levels of EE is more
beneficial for sustaining WM integrity than no enrich-
ment or full-time exposure to EE.

WM in the aged mouse is vulnerable to prolonged
cerebral hypoperfusion and hypoxic stress and loses its
ability to recruit cyclic AMP response element-binding
protein (CREB)-mediated oligodendrogenesis for
responding to WM injury and stress.50 In our study,

Figure 7. Continued

Histograms showing arm repeat score of all sham and all BCAS (b) and score of each subgroup (c). (b), Average arm repeat scores of

all BCAS in sessions 1–10, sessions 11–20 and sessions 1–20 were lower compared with sham (*P< 0.05 vs. sham; yP< 0.01 vs. sham;
zP< 0.01 vs. sham). Sham group had dramatically increased arm repeat scores, by average 47.4% in sessions 11–20 compared to

sessions 1–10. BCAS group reduced their score by 6.6%. (c) All sham subgroups had increased arm repeat score (average 49%) in

sessions 11–20 compared to sessions 1–10. Limited exposure to EE (BCAS-3 h) increased their score by 37.3%. BCAS-std only

increased by 13.0% and BCAS-full reduced the score by 45.7%. Limited exposure to EE (BCAS-3 h) subgroup showed the best score

between BCAS subgroups. (d) Table showing probability of each ‘‘number of arm entries before first repeat, NABFR (top of each cell)’’

and ‘‘NABFR score (bottom of each cell)’’. (e and f) Graphs showing number of arm entries before first repeat (NABFR) in all sham

and all BCAS (e) as well as NABFR of each subgroups (f). Every consecutive five sessions were averaged. (e) All sham completed more

arm entries before first repeat, compared with all BCAS (P< 0.01). (f) Between BCAS subgroup, BCAS-3 h tends to complete more

arm entries, especially in sessions 1–5 as well as sessions 11–15. (g and h) Histograms showing NABFR score of all sham and all BCAS

(g) and subgroups (h). Average NABFR scores for all BCAS in sessions 1–10, sessions 11–20 and all sessions 1–20 were lower

compared with all sham animals (**P< 0.01 vs. sham; yP< 0.01 vs. sham; zP< 0.01 vs. sham) (g) and limited exposure to EE (BCAS-3 h)

subgroup showed the best NABFR score between BCAS subgroups (h).
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limited exposure to EE significantly attenuated WM
pathology and preserved oligodendrocytes, suggesting
that EE can restore WM integrity and result in better
cognitive function, possibly via CREB-mediated oligo-
dendrogenesis. The assessment of CREB-mediated
oligodendrogenesis in the WM could enable elucidation
of the mechanisms of limited exposure to EE against
WM damage.

There are some limitations in our study. First, we
assessed cognitive function and brain histological
changes at one time point, 16 weeks after surgery
before euthanasia. Physiological and histological data
obtained from more time points would be useful for
greater understanding of the pathological mechanisms
as well as effects of EE in BCAS. Secondly, we set lim-
ited exposure to EE regime as 3 h a day. Testing other
durations of exposure to EE, such as shorter than 3
hours or longer than 3 hours could more precisely elu-
cidate the effects of limited EE against BCAS. Thirdly,
as VCI or VaD also involves changes in the medial tem-
poral lobe,51 we have not presented data on the status of
the hippocampus along with our present findings. This
requires an in depth labour intensive analysis, which is
currently in progress. Finally, we deem that further ana-
lysis of the fibre tracts of the CC would allow us to
identify the nature of the damage in specific fronto-sub-
cortical circuits that are affected after long-term cerebral
hypoperfusion.

Conclusions

In summary, long-term chronic cerebral hypoperfusion
induced by BCAS produced similar neuropathological
changes to those seen in VaD indicative of the relevance
of the model. This study also demonstrated that limited
exposure to EE protects the WM and elicits a beneficial
effect on oligodendrocyte loss after chronic cerebral
hypoperfusion-induced vascular injury. Although fur-
ther experimental studies are needed, moderate EE
appears a safe and effective future interventional strat-
egy for cerebrovascular diseases, especially for patients
with VCI.
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