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Abstract
Over 30 million cancer survivors exist worldwide. 
Survivors have an earlier onset and higher incidence of 
chronic comorbidities, including endocrinopathies, cardiac 
dysfunction, osteoporosis, pulmonary fibrosis, secondary 
cancers and frailty than the general population; however, 
the fundamental basis of these changes at the cellular 
level is unknown. An electronic search was performed 
on Embase, Medline In-Process & Other Non-Indexed 
Citations, and the Cochrane Central Register of Controlled 
Trials. Original articles addressing the cellular biology of 
ageing and/or the mechanisms of cancer therapies similar 
to ageing mechanisms were included, and references 
of these articles were reviewed for further search. We 
found multiple biological process of ageing at the cellular 
level and their association with cancer therapies, as 
well as with clinical effects. The direct effects of various 
chemotherapies and radiation on telomere length, 
senescent cells, epigenetic modifications and microRNA 
were found. We review the effects of cancer therapies on 
recognised hallmarks of ageing. Long-term comorbidities 
seen in cancer survivors mimic the phenotypes of ageing 
and likely result from the interaction between therapeutic 
exposures and the underlying biology of ageing. Long-term 
follow-up of cancer survivors and research on prevention 
strategies should be pursued to increase the length and 
quality of life among the growing population of cancer 
survivors.

Introduction
Globally, there are over 30 million long-term 
survivors of cancer.1 By 2025, an estimated 
19 million new cancer cases will be diagnosed 
each year, the majority of which will produce 
long-term survivors. Studies among long-
term cancer survivors indicate numerous 
possible clinical complications resulting in 
considerable morbidity and mortality, related 
to chemotherapy, radiation therapy (RT) 
or both.2–6 Because of the elevated risk of 
chronic disease among cancer survivors, such 
as frailty syndrome, second cancers, psycho-
social comorbidities and endocrinopathies, 
and because of the lack of standardised 
system-wide longitudinal medical follow-up, 
the Institute of Medicine has emphasised 
research in this area to establish guidance on 
survivorship care.7 

A wealth of observational data on the devel-
opment of late complications in cancer survi-
vors are available, including our previous 
reviews on late complications in childhood 
cancer survivors8 and adults9 who undergo 
haematopoietic cell transplantation (HCT), 
but information documenting the patholog-
ical basis for development of these effects 
is sparse. To understand the biology of late 
effects better and provide a foundation for the 
development of interventions, it is important 
to characterise late effects at the cellular 
level. Cancer survivors, in general, appear to 
develop age-related diseases and phenotypes 
sooner than members of the general popula-
tion. This is likely because damage to normal 
tissues from cancer therapies diminishes 
physiological reserve, accelerates processes 
typically associated with ageing or both. The 
roles of telomeres, senescent cells, epigen-
etic modifications and micro RNA (miRNA) 
have been described in terms of their contri-
butions to the pathobiology of accelerated 
ageing. However, published data linking clin-
ical phenotypes seen in cancer survivors with 
processes of accelerated ageing at the cellular 
level is lacking. We do not wish to suggest that 
cancer therapies are not valuable or worth-
while; on the contrary, the advances made in 
cancer treatment have allowed many individ-
uals to live long and healthy lives. However, 
the purpose of the current paper is to clarify 
the biological mechanisms by which the 
ageing-like sequelae cancer therapies occur. 
To do this, we conducted a comprehensive 
review of the pathogenesis of the accelerated 
ageing-like state in survivors of cancer.

Design
A review of Embase, Medline In-Process 
and Other Non-Indexed Citations and the 
Cochrane Central Register of Controlled 
Trials was conducted by an experienced 
medical librarian resulting in 1259 articles 
by electronic search in December 2015. Only 
English language articles were searched. 
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The following medical subject heading terms were 
used: neoplasms, ageing, age factor, premature, survival, 
survival analysis, disease-free survival, telomere, telomere 
shortening, frail elderly, patients, randomised controlled 
trial, double-blind method, single-blind method, 
placebos, placebo effect, retrospective study, case report, 
animals and humans. The data were synthesised based on 
the publications pertaining specifically to the biological 
basis of late complications at cellular level. Translational 
studies on late complications of HCT were also included 
due to potentially similar mechanisms of tissue and 
cellular damage by chemotherapy or RT in HCT recipi-
ents. We first present data describing the current evidence 
for accelerated ageing due to cancer therapies and then 
detail the effects on premature ageing and senescence at 
cellular level by specific treatments.

Results
Evidence for accelerated ageing in cancer survivors
Ageing is a natural and unavoidable process inherent to 
life. However, for many living creatures, ageing is asso-
ciated with a variety of physical changes, hardships and 
illnesses. On a microscopic level, ageing is a consequence 
of gradual, lifelong accumulation of molecular and 
cellular damage and loss of physiological integrity. Hall-
marks of ageing include genomic instability, telomere 
attrition, epigenetic alterations, mitochondrial dysfunc-
tion, loss of proteostasis, chronic low-grade inflammation 
and cellular senescence.10

Although a great success, cure or control of cancer 
leads to a higher prevalence and earlier onset of multiple 
ageing-associated health problems; these include 
abnormal thyroid function, decreased bone mineral 
density and increased osteoporosis, infertility, compro-
mised tissue regeneration, cardiotoxicity and decreased 
left ventricular function, pulmonary fibrosis and chronic 
sterile inflammation.11–13 For example, at age 50, 45.5% 
of paediatric and adolescent/young adult Hodkgin’s 
lymphoma survivors have experienced at least one 
severe cardiovascular condition (defined using a modi-
fied common terminology for adverse events grading 
rubric).13 Cumulative incidence of second malignant 
neoplasms at 30 years after childhood cancer diagnosis 
is nearly 8%14; survivors of childhood cancer are 3.3–6 
times more likely than age-matched individuals in the 
general population to develop a second malignancy.14–16 
The estimated life expectancy for this population is 30% 
less than that of the general population.17 The prevalence 
of any chronic health condition among childhood cancer 
survivors at least 5 years post-treatment ranges from 66% 
to 88%.6 Collectively, these epidemiological data suggest 
that cancer therapies may accelerate the biology of ageing.

Humans age at remarkably different rates, even in the 
absence of cancer therapies.18 This separation between 
chronological age and biological age in part reflects an 
organism’s resilience to intrinsic (eg, reactive oxygen 
species) and extrinsic (eg, RT) stressors and capacity to 

restore cellular homeostasis.19 Clinically, the increased 
vulnerability to stress and inability to restore physiolog-
ical integrity is referred to as frailty.20 Multiple and varied 
indices of frailty exist,21 but all consistently show that 
those deemed frail are at significantly increased risk for 
adverse health outcomes, including morbidity, disability 
and death.22 About 10% of individuals 65 years or older 
in the general population are considered frail, illustrating 
the link between frailty and ageing.23

Frailty is a trait that is shared by many survivors of HCT 
as well. The Bone Marrow Transplant Survivor Study 
(BMTSS), including nearly 1000 survivors of HCT, aged 
18–64, found that the risk of frailty among survivors 
was 10.8-fold higher than in siblings4 and that the prev-
alence of frailty (8.4%) was comparable to that seen in 
individuals older than age 65 years.24 Participating survi-
vors and siblings were queried for information about 
physical health, extent of chronic graft-versus-host-dis-
ease (GVHD), sociodemographic factors, ‘health-risk 
behaviours’ and physical activity level. Rates of frailty were 
eightfold higher among HCT survivors than among their 
siblings.4 Among survivors of HCT at least 10 years after 
transplant, the 15-year cumulative incidence of severe/
life threatening/fatal conditions was 41%.25

Frail health is often demonstrated in the population 
of childhood cancer survivors as well. Improvements in 
therapy and supportive care for children diagnosed with 
cancer have increased the overall 5-year survival rate from 
20% in the early 1960s26 to around 80% in recent years.27 
However, the risk of death of paediatric cancer survivors 
in 10 years can vary between diagnosis groups by at most 
12% even up to 20 years postdiagnosis.28 The Childhood 
Cancer Survivor Study (CCSS) compared the health status 
of 9353 adult long-term survivors of childhood cancer 
diagnosed between 1970 and 1986 to the health status 
of a randomly selected cohort of the survivors’ siblings.29 
Survivors were more likely to report poor general health, 
poor mental health, activity limitations and functional 
impairment. Forty-four per  cent of survivors reported 
at least one adverse health status domain. Additionally, 
20-year-old survivors of childhood cancer were found to 
have the same cumulative incidence of severe, life threat-
ening and fatal chronic health conditions as 50-year-old 
siblings.24 Furthermore, compared with sibling controls, 
childhood cancer survivors report poor general health 
with a prevalence ratio (PR) of 2.37 and adverse health 
status outcome in any domain with a PR of 2.10.30 These 
studies provide a quantitative description of the pheno-
type of premature ageing in this population.

The St Jude Lifetime Cohort Study (SJLIFE) compared 
patients who were treated for childhood cancer at St Jude 
Children’s Research Hospital between 1962 and 2003, at 
least 10 years prior, to age-matched controls in the general 
population.31 Frailty, defined as ≥3 of low lean mass, weak-
ness, exhaustion, low energy expenditure and slow walking 
speed, was found in 2.7% of male participants and 13.1% 
of female participants. None of the comparison popula-
tion fulfilled criteria for frailty. Furthermore, survivors 
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of childhood acute lymphoblastic leukaemia exposed to 
cranial radiotherapy had reduced cognitive status and 
memory as well as reduced integrity by neuroimaging in 
neuroanatomical regions consistent with early onset mild 
cognitive impairment and dementia.32 The long-term 
health-related outcome among childhood cancer survi-
vors has been compared between those who were treated 
with HCT and those who were treated with conventional 
therapy.33 Those who received HCT demonstrated signifi-
cantly elevated risk for severe/life-threatening conditions 
(relative risk of 3). The higher than expected prevalence 
of frailty among HCT and childhood cancer survivors, 
their increased risk for adverse health outcomes and their 
shortened lifespan lend further evidence to the premise 
that cancer therapies may accelerate the fundamental 
biology of ageing.

The aforementioned childhood cancer therapies and 
HCT are vastly different from typical therapies used to treat 
adult cancers. Dose intensification occurs in the majority of 
standard regimens used to treat childhood cancer.34 Adult 
patients with cancer receive far less volumes of chemothera-
peutics, in part due to the genetic complexity of childhood 
cancer tumours and in part due to the ability of children’s 
bone marrow to quickly recover. HCT conditioning regi-
mens historically relied on dose  intensification as well.35 
While some regimens now rely on reduced intensity condi-
tioning, most HCT survivors are faced with long-term 
immunosuppression and unique challenges like GVHD. 
Despite the relatively mild doses of chemotherapeutics 

used to treat adults with cancer, these individuals often 
develop features of accelerated ageing as well.

Among adult cancer survivors, various conditions that 
occur in normal ageing are seen prematurely as well. 
They include neurocognitive decline, osteoporosis, skin 
and ocular changes, sexual dysfunction, second cancers 
and chronic fatigue.36 Muscle dysfunction often occurs as 
a result of cancer therapy37; prolonged bed rest decreases 
whole body protein synthesis and leads to wasting of skel-
etal muscle.38 Adjuvant chronic corticosteroid treatment, 
which is used in many cancer treatment regimens, can 
induce cataracts, osteoporosis, proximal myopathy, thin-
ning of the skin, infection and impaired wound healing.39 
All of the aforementioned phenotypes occur during 
normal ageing (see figure 1).

We have demonstrated with clinical data that cancer 
survivors develop the health-related manifestations of 
ageing more quickly than their peers. While ageing 
prematurely is a better alternative to dying prematurely, a 
better understanding of what drives this process presents 
an opportunity for improvement.

Mechanisms of cellular ageing induced by cancer therapies
At the tissue level, the hallmarks of premature ageing can 
be further categorised into four interlinked processes 
that contribute to the ageing phenotypes of decreased 
resilience, geriatric syndromes and predisposition to 
age-related chronic diseases. These include telomere 
attrition, cellular senescence, stem and progenitor cell 

Figure 1  Diagram depicting age-related effects of respective cancer therapies. CHF, congestive heart failure; RT, radiation 
therapy.
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dysfunction, macromolecular (DNA) damage and epige-
netic alterations (see tables 1 and 2).

Telomeres  are regions of repetitive nucleotide 
sequences found on both ends of eukaryotic chromo-
somes that aid in chromosomal separation during mitosis 
and ensure that chromosomes are retained and properly 
inherited in chromosomal separation.40 Telomere short-
ening occurs with each cycle of cellular division until the 
cell reaches its ‘Hayflick limit’—a cultured human cell’s 
capacity to divide for a limited number of cycles before 
exiting the cell cycle in G1 phase and undergoing cellular 
senescence.41  Shorter telomeres have been linked to 
higher mortality rates in a meta-analysis.42 There is also a 
direct relationship between average telomere length and 
risk for developing de novo cancers,43 and telomere short-
ening that occurs during the natural process is thought to 
be a contributing factor to the increased rates of cancers 
among the population.44

Ageing humans have an increased burden of senescent 
cells.45 Senescent cells exhibit somewhat specific char-
acteristics that allow their identification in vitro and in 
vivo, including senescence-associated β-galactosidase.46 
The  senescence-associated secretory phenotype (SASP) 
comprises proinflammatory cytokines, chemokines, 
growth factors, extracellular matrix proteases and other 
factors that impact nearby and distant normal cells, 
leading to local and systemic consequences of senescent 
cells, such as frailty and insulin resistance.45 47 48

Due to the numerous replicative cycles they undergo, 
cancer cells have shorter telomeres than cells in normal 
tissue.49 They  can survive high numbers of replications 
by maintaining telomeres with telomerase, an enzyme 
expressed in over 90% of immortal cell lines and cancers 
but undetectable in most normal tissues.50 Inhibiting 
telomerase therefore limits the growth of human cancer 

cells.51 The properties of telomerase can be exploited to 
create targeted cancer therapies including telomerase 
inhibitors, telomerase-targeted immunotherapies and 
telomerase-driven virotherapies.52 Many cancer thera-
pies impact telomere length by causing high proliferative 
demand for haematopoietic reconstitution.53 In addition 
to increasing replicative demand, some anticancer ther-
apies (eg, cisplatin) directly impair telomerases.54 This 
telomere-initiated senescence reflects a DNA damage 
checkpoint response activated by chemotherapy-induced 
dysfunctional telomeres.

Short telomeres have also been associated with stem 
cell exhaustion in mice and humans.55 Stem cell lines are 
exhausted after a certain number of serial transplanta-
tions into successive recipients.56 Depletion of haemato-
poietic reserve is a major mechanism of normal ageing 
as ageing directly affects stem cells due to exhaustive 
proliferation.57 Patients receiving HCT from adult donors 
have shorter telomeres than patients receiving HCT from 
younger donors, likely due to telomere shortening in 
ageing.58 Clonal haematopoietic disorders occur more 
frequently in elderly individuals who are thus are more 
prone to developing cancer.59 In elderly people who are 
already predisposed to cancer, any further insult that can 
affect telomeres or induce senescence can increase the 
risk of development of new cancers significantly.

Additionally, many chemotherapeutic agents generate 
free-radical intermediates, which cause direct damage to 
DNA.60 DNA damage is also induced by alkylating agents, 
a process thought to introduce secondary malignan-
cies.61 DNA repair enzymes are inhibited by some cancer 
therapies, such as topoisomerase I and topoisomerase I 
inhibitors.36

Many epigenetic modifications occur as part of the 
normal cellular ageing process. Adult identical twins, 
despite identical genotypes, have different disease suscep-
tibilities, largely attributed to the epigenetic changes that 
occur as they age.62 Overall, global hypomethylation, CpG 
island hypermethylation and changes in histone methyla-
tion increase with normal ageing.63

The involvement of miRNAs has also been implicated in 
senescence and ageing.64 The most upregulated miRNAs 
are found in cells in states of stress-induced senescence, 
followed by those in replicative senescence, then by those 
in quiescence.65 It is likely through these primary mecha-
nisms that adjuvant chemotherapy accelerates the devel-
opment of age-related phenotypes and causes early onset 
frailty.36

Evidence of ageing at the cellular level due to specific cancer 
therapies
Tumour cells can be induced by chemotherapy to 
undergo senescence in both in vivo and in vitro models.66 
One way by which this occurs is through allowing γH2AX 
to accumulate in telomeric DNA in cells undergoing 
senescence.67 γH2AX accumulation is an indicator for 
developing age-related disease.45 Various cytotoxic drugs 
(cyclophosphamide, doxorubicin, azidothymidine, 

Table 1  Processes inducing an accelerated ageing-like 
state

Process Phenotypic effects

Telomere 
attrition

►► Frailty
►► Impaired tissue/organ functioning
►► Premature ageing syndromes (aplastic 
anaemia, pulmonary fibrosis)

Cellular 
senescence

►► Frailty

Free radical 
generation

►► Pulmonary fibrosis
►► Cardiac toxicity
►► Renal toxicity
►► Secondary malignancies

Stem cell 
exhaustion

►► Reduced tolerance to antineoplastic 
therapy

►► Reduced renal and pulmonary function 
reserve

Epigenetic 
alterations

►► Secondary malignancies
►► Premature ageing syndromes (aplastic 
anaemia, pulmonary fibrosis)
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5-fluorouracil) have been shown to induce senescence 
directly in tumours via DNA damage.68 Many drugs act 
similarly, inducing ageing-related biological pathways.66

Telomere shortening from chemotherapy and HCT 
is dose dependent.69 Wynn et al referred to the effects 
of HCT on telomeres as equivalent to those of ‘several 
decades of ageing’.59 In a study of patients being treated 
for non-Hodgkin’s lymphoma, mean telomere length 
declined after chemotherapy.70 Following successful treat-
ment for chronic myeloid leukaemia, telomere restriction 

fragment lengths have been demonstrated to be shorter 
in myeloid cells of patients than in age-matched healthy 
subjects.71 Mononuclear cells and granulocytes of chil-
dren treated for acute lymphoblastic leukaemia and 
solid tumours also demonstrate telomere shortening.53 
The phenomenon of telomere shortening appears to be 
common among cancer survivors.

The human catalytic subunit of telomerase, hTERT, 
is overactive in 85%–90% of cancers.72 Many anticancer 
therapeutic agents exploit the human catalytic subunit 

Table 2  Specific therapies inducing/mitigating the development of an accelerated ageing-like state

Agent modality Agent Cellular effects

Radiotherapy ►► Ionising radiation Cellular senescence, changes to DNA repair 
genes, epigenetic alterations

Hormonal ►► Tamoxifen Cellular senescence

Tyrosine kinase inhibitors ►► Sunitinib
►► Dasatinib

Cellular senescence
Dasatinib→senolytic

Anthracyclines ►► Doxorubicin,
►► Daunorubicin

Free radical generation, DNA damage, telomere 
attrition, cellular senescence, stem cell 
exhaustion

Alkylating agents ►► Cyclophosphamide
►► Temozolomide

DNA damage, cellular senescence, epigenetic 
alterations

Topoisomerase inhibitors ►► Anthracyclines
►► Epipodophyllotoxin (eg, etoposide)
►► Camptothecin analogues (eg, irinotecan)

DNA damage, epigenetic alterations

Antimetabolites/cytotoxic 
drugs

►► 5-Fluorouracil
►► Cisplatin

Cellular senescence, DNA damage

BRAF inhibitor ►► Vemurafenib Cellular senescence

Antitumor antibiotics ►► Mitomycin C Cellular senescence, epigenetic alterations

Isoquinololine alkaloid ►► Berberine Cellular senescence

Bcl-2 inhibitor ►► Navitoclax
►► Obatoclax

Senolytic (apoptosis of senescent cells)

HCT (includes conditioning 
regimen)

►► N/A Telomere attrition, stem cell exhaustion

Telomerase inhibitors ►► GRN163L (Imetelstat)
►► Vaccines (GV-1001, GRNVAC1, Vx-001)

Possible telomere attrition

Nucleoside analogue 
reverse-transcriptase 
inhibitor

►► Azidothymidine Telomere attrition

DNA cross-linking agents ►► Cisplatin Epigenetic alterations

Ribonucleotide reductase 
inhibitors

►► Hydroxyurea
►► Methotrexate

Epigenetic alterations

Microtubule inhibitors ►► Vinca alkaloids (vinblastine, vincristine, 
vindesine, vinorelbine)

►► Taxanes (paclitaxel, docetaxel)
►► Podophyllotoxin

Epigenetic alterations

miRNA ►► miR-34a
►► miR-144
►► miR-21
►► miR-155

Cellular senescence, telomere attrition

GVHD ►► N/A Telomere attrition

BRAF, B-Raf proto-oncogene; Bcl-2, B cell lymphoma 2; GVHD, graft-versus-host disease; HCT, haematopoietic cell transplantation; miRNA, 
micro RNA; N/A, not available.
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of telomerase, hTERT, including small molecule inhibi-
tors, antisense oligonucleotides, immunotherapies, gene 
therapies and G-quadruplex stabilisers. Preclinical studies 
with hTERT peptides have led to the creation of vaccines 
that target telomerase, including GV-1001, GRNVAC1 
and Vx-001. Normally, a self-antigen molecule, hTERT 
can stimulate specific cytotoxic T lymphocytes through 
major histocompatibility complex presentation, leading 
to tumour cell lysis.

Many epigenetic modifications occur during normal 
cellular ageing. Overall, global hypomethylation, CpG 
island hypermethylation and changes in histone methyl-
ation increase with normal ageing.63 While CpG hyper-
methylation is a component of drug-induced cytotoxicity 
that is damaging to cancer cells and thus advantageous 
in the treatment of cancer, it may also be a toxic side 
effect in normal cells of patients receiving such drugs. 
DNA hypermethylation at CpG islands is induced in 
human cells after exposure to each of the following 
commonly used cancer chemotherapy agents: topoisom-
erase II inhibitors, antibiotics, microtubule inhibitors, 
DNA cross-linking agents, hydroxyurea, antimetabolites 
and methotrexate.73 Clinically relevant drugs reported 
as DNA hypomethylating agents include azacitidine and 
decitabine, hydralazine and MG98.74 While these agents 
may be effective in making cancer cells more susceptible 
to cytotoxic damage, they may also accelerate ageing 
changes in normal cells. Furthermore, the same epigen-
etic alterations that are targeted by some anticancer drugs 
are likely involved in the development of new secondary 
cancers.52

The involvement of miRNAs has been implicated in 
senescence and ageing. Inhibitors for oncogenic miRNAs 
and limitations of tumour suppressor miRNAs are being 
developed for potential use in various cancer treat-
ments as correcting abnormal miRNA expression holds 
potential for overcoming resistance in certain types of 
cancer cells. miRNA-29 has shown promise in modifying 
lung cancer cells.75 Expression profiles of miRNAs are 
different in lung cancer and normal lung. The enforced 
expression of miRNA-29 in lung cancer restores normal 
patterns of DNA methylation and induces expression of 
several tumour suppressor genes. miRNA-451 also holds 
potential to decrease cancer cells’ resistance to treat-
ment.65 Transfection of breast cancer cells resistant to 
doxorubicin with this miRNA results in increased sensi-
tivity to chemotherapy.

‘Stem cell exhaustion’ refers to the replicative stress of 
transplanted haematopoietic stem cells (HSCs) following 
haematopoietic reconstitution after HCT.59 Stem cells 
may effectively undergo the normal ageing process at 
an accelerated rate, leading to premature bone marrow 
failure. A single serial transplantation causes a large 
decline in HSC repopulating ability, and transplantation 
effectively causes an acceleration of the normal ageing 
process.56 The administration of doxorubicin to c-kit 
positive human cardiac progenitor cells (hCPCs) leads 
to the expression of the senescence markers p16INK4a 

and γH2AX, suggesting that anthracycline cardiomyop-
athy is caused by depletion of the hCPC pool (stem cell 
exhaustion).76

After HCT, prevalence of myelodysplasia and secondary 
malignancies increases, likely induced by conditioning 
agents used in HCT and excessive proliferative stress 
following HCT.77 Newer non-myeloablative and reduced 
intensity preparative regimens for allogeneic HCT induce 
less toxicity and treatment-related mortality in recipients. 
While myeloablative conditioning is based on high-dose 
drug toxicity to haematopoietic stem cells, non-myeloab-
lative conditioning utilises immunosuppression, resulting 
in a state of mixed chimerism (at least early after trans-
plantation).77 However, telomeres are comparably 
shortened in recipients of both non-myeloablative and 
myeloablative conditioning, suggesting that the primary 
mechanism of telomere shortening is accelerated prolif-
eration rather than the cytotoxic effects of myeloablative 
conditioning drugs.

Androgens have been used to treat various bone 
marrow failure syndromes, such as dyskeratosis congenita, 
since the 1960s. It has been used in patients who cannot 
undergo HCT. The proposed mechanism of sex hormone 
therapy is upregulation of telomerase gene expression.78 
In a recently published clinical trial, patients with telo-
meropathies received daily doses of the synthetic sex 
hormone danazol for 24 months, and about 40% demon-
strated a gain in telomere length from baseline.79 Addi-
tional study of sex hormones as potential mitigators of 
telomere attrition in patients at risk for acquired telo-
meropathy, including those receiving cancer therapies, 
is warranted. This study points towards potential future 
strategies with sex hormones to mitigate telomere attri-
tion in patients at risk for telomeropathy, including those 
receiving cancer therapies.

As many cancer treatments appear to induce an accel-
erated ageing-like state, interventions that target funda-
mental ageing processes may have a role in cancer 
survivors.45 80–82 Since many cancer therapies induce 
cellular senescence,  among the most promising agents 
are senolytics, drugs that selectively eliminate senes-
cent cells and SASP inhibitors, which blunt local and 
systemic effects of the SASP.45 81 83 These agents alleviate 
frailty, restore progenitor function, reduce insulin resis-
tance, rescue cardiac and vascular dysfunction, decrease 
adverse effects of RT and reduce osteoporosis in a variety 
of animal models of ageing and disease. Senolytics  are 
effective when administered intermittently, potentially 
reducing toxicity, and resistance to these drugs is unlikely 
to develop as, unlike cancer cells or microbes, senescent 
cells that do not divide.81 83

Discussion
Despite the negative sequelae that many cancer ther-
apies lead to or accelerate, it must be emphasised that 
these therapies are indeed valuable and worthwhile to 
countless patients with cancer. Ageing is a natural and in 
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some ways desirable phenomenon; however, we believe 
that a decline in health that mimics age-related illness is 
a negative consequence experienced by many recipients 
of cancer treatment. Recognising this phenomenon and 
understanding the mechanisms underlying it offer an 
opportunity for the development of alternative therapies 
and ameliorating medications. We believe that cancer 
survivors deserve long-term follow-up for mitigation of 
the late effects.

Conclusion
Our expert review of the associations of cancer treatments 
with accelerated ageing reveals that multiple ageing 
pathways contribute to late complications in cancer 
survivors. A variety of chemotherapeutic agents have 
been implicated in the pathogenesis of senescence and 
acquired telomeropathies, which culminate in morbidity 
and mortality due to frailty phenotypes and ageing-asso-
ciated diseases. Our search also identified a paucity of 
long-term cancer survivorship studies evaluating ageing 
parameters (telomeres, p16INK4a+ senescent cells, miRNA, 
methylomes) in the context of clinical outcomes. Future 
research to better understand mechanisms of accelerated 
ageing-like phenotypes is essential for oncology commu-
nity as well as from a public health and health policy 
perspective. The ultimate goal of these studies will be 
to prevent late complications using early interventions 
including lifestyle changes and medications (eg, andro-
gens, mTOR inhibitors and senolytic drugs).
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