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Abstract. Deep brain stimulation (DBS) of the subthalamic nucleus (STN) reduces motor symptoms in most
patients with Parkinson disease (PD), yet may produce untoward effects. Investigation of DBS effects requires
accurate localization of the STN, which can be difficult to identify on magnetic resonance images collected with
clinically available 3T scanners. The goal of this study is to develop a high-quality STN atlas that can be applied
to standard 3T images. We created a high-definition STN atlas derived from seven older participants imaged at
7T. This atlas was nonlinearly registered to a standard template representing 56 patients with PD imaged at 3T.
This process required development of methodology for nonlinear multimodal image registration. We demon-
strate mm-scale STN localization accuracy by comparison of our 3T atlas with a publicly available 7T atlas.
We also demonstrate less agreement with an earlier histological atlas. STN localization error in the 56 patients
imaged at 3T was less than 1 mm on average. Our methodology enables accurate STN localization in individuals
imaged at 3T. The STN atlas and underlying 3T average template in MNI space are freely available to the
research community. The image registration methodology developed in the course of this work may be generally
applicable to other datasets. © 2018 Society of Photo-Optical Instrumentation Engineers (SPIE) [DOI: 10.1117/1.JMI.5.1.015002]
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1 Introduction
Deep brain stimulation (DBS) of the subthalamic nucleus (STN)
reduces motor symptoms in Parkinson disease (PD). Undesir-
able side effects include changes in mood and cognition.1,2

Variability of stimulation site relative to the STN may account
for inconsistent effects on movement, cognition, and mood.3–7

Studying these effects requires accurate postoperative localiza-
tion of electrodes relative to the STN, and this requires neuro-
imaging methods to precisely identify the STN.

Current imaging methods inadequately permit unambiguous
identification of the STN in individual patients. Specifically, the
STN cannot be directly identified in magnetic resonance images
(MRIs) acquired with conventional 1.5T and 3T scanners
because of insufficient contrast.8 Two indirect strategies cur-
rently in clinical practice circumvent this limitation. First, the
STN may be localized in relation to identifiable fiducials, e.g.,
the anterior commissure.9 However, individual variability in
STN anatomy and its relation to manually identified landmarks
limit the accuracy of this approach. Alternatively, individual
MRIs may be registered to a brain atlas in which the STN has
been delineated.10 Atlas-based localization eliminates subjectiv-
ity in the delineation of anatomical structures such as the STN.
However, to be useful, the atlas must be well matched to the
population being studied, i.e., patients with PD, since the con-
trast properties of the STN and its shape may be population-
specific.

Yelnik et al.11 developed an atlas based on MRIs in which
they delineated the STN and basal ganglia using histological

sections of the same patient. More recently, STN localization
has been improved by exploiting T2* contrast;12–14 this strategy
is especially effective with high-field (7-Tesla) MRI, both in
vivo15–18 and ex vivo.19 Several alternative atlases have been cre-
ated but assessing the extent to which these atlases are consistent
remains a challenge.18,20–22

Here, we address the above-described challenges by creating
a high-definition STN atlas based on in vivo 7T MRI. The 7T
images are linked by image registration to an averaged template
representing patients with PD imaged at 3T. In brief, our strategy
involves three steps: (1) a “probabilistic” STN atlas representing
normal older individuals was generated using high-resolution
7T MRI;23 (2) an average template was created using conven-
tional 3T MRI acquired in a clinical PD population; and (3) the
7T and 3T results were mutually coregistered using a nonlinear
registration technique. The same technique may be used to warp
clinical MR images to the 3T template or to coregister alterna-
tive atlases. This registration method also estimates alignment
accuracy at each locus.

2 Methods

2.1 Imaging

MRI data contributing to the present results were obtained in
two cohorts scanned at Stanford University (SU) and at
Washington University (WU). All studies were approved by
the local Institutional Review Boards, all participants signed
written informed consent, and data were deidentified prior to
sharing.
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2.1.1 SU dataset

Nine participants had imaging at the Stanford University Lucas
Center using a GE 7T Discovery 950 whole-body MR scanner
(GE Healthcare, Waukesha, Wisconsin) equipped with a 32-
channel receiver coil and a quadrature transmit coil (Nova
Medical Inc., Wilmington, Massachusetts). High contrast visu-
alization of the STN, red nucleus (RN), and substantia nigra
was obtained with a whole-brain, coronal, magnetization-
prepared fluid-attenuated inversion recovery sequence (Cube
T2-weighted FLAIR, field of view of 179 mm × 179 mm ×
173 mm, acquisition matrix 224 × 224 × 216 reconstructed to
256 × 256 × 216, acquisition resolution 0.8 mm × 0.8 mm ×
0.8 mm reconstructed to 0.7 mm × 0.7 mm × 0.8 mm, echo

time¼ 109.5 ms, repetition time¼ 8000 ms, inversion time ¼
2135 ms, bandwidth 62.50 Hertz∕pixel, scan time 5 min 24 s23).
Each participant also had 3T T1-weighted FSPGR (fast spoiled
gradient echo) scan on a GE Discovery MR750 scanner
(General Electric, Milwaukee, Wisconsin) (TI 300 ms, TR
8.4 ms, TE 1.8 ms, flip angle 15 deg, 22 cm field of view,
acquired resolution, 1.5 mm × 0.9 mm × 1.1 mm) to enable
cross-modal registration of the T2-weighted 7T images. Data
from two participants were excluded owing to ventriculomegaly
or excessive head motion. Thus, the useable SU data set com-
prised seven normal participants (five female, age 66� 7 years).

2.1.2 WU dataset

At WU in St. Louis, a separate group of 56 (24 women) patients
with PD (age 67� 6 years) had scans on a Siemens 3T
MAGNETOM Trio scanner (Erlangen, Germany). Each patient
had one T1-weighted scan (3D MP-RAGE, 0.9 mm cubic iso-
tropic voxels, TR 2.4 s, TE 3.14 ms, inversion time 1 s, flip
angle 8 deg) and one T2-weighted scan (3D SPACE, 0.9 mm
cubic isotropic voxels, TR 3.2 s, TE ¼ 461 ms, and flip angle ¼
120 deg).

2.2 Spatial Alignment

2.2.1 Spatial registration algorithms

We used a combination of affine and nonlinear transforms for
all spatial registrations. Essential image registration schemes
are presented in Fig. 1. Expanded methodological details are
given in Appendix D. All transforms were computed using
the conjugate metric gradient objective function [cmg; see
Appendix A(a)]. We chose cmg as the voxel similarity measure
as it works well for cross-modal registration.24 Nonlinear
warping was implemented using multiscale block matching
[Appendix A(b)] to optimize the cmg measure (hence, bm-
cmg). The rationale for developing bm-cmg is discussed below
(see Sec. 4). In all registrations, affine transformation was used
to initialize the nonlinear stage as this approach produces the
best results for subcortical structures.25 The bm-cmg algorithm
automatically estimates the nonlinear registration error at each
voxel [Appendix A(c)]; these values play a role in the selection
of target images (see Appendix D). When applying a chain of
transforms, we computed transform composition prior to resam-
pling step, to eliminate the loss of spatial resolution. For exam-
ple, to resample a T2-weighted image in atlas space, the relevant
transform was computed as T2w→ T1w→ template, where the
template is T1-weighted. All present resampling steps were
computed using trilinear interpolation.

2.3 Creating STN “Probabilistic” Atlas from SU 7T
Images

2.3.1 Creating average template images

T1w (SPGR) and T2w (MP-FLAIR) images from each partici-
pant were coregistered by means of rigid body transforms with
six degrees of freedom (DOF) [Fig. 1(a)] for each of the seven
SU participants. The participant with the best-defined STN was
selected as the T2w warp target (SU_7T_T2w_t) for the remain-
ing six participants. Registration of individual T2w images to

Fig. 1 Registration schemes used in average template creation. Arrows indicate information flow; image
stacks represent iteration over all individuals in a given cohort. (a) Creating T1- and T2-weighted average
templates. Both SU and WU templates were created according to this scheme. (b) Identifying WU par-
ticipant for the registration target for refined WU templates. Orange indicates WU data, green indicates
SU data.
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the selected target (SU_7T_T2w_t) was computed using bm-
cmg. The warped T2w images then were intensity normalized
to equate the mean voxel value over individuals and averaged
to create the 7T T2-weighted template (SU_7T_T2w_T)
[Figs. 1(a) and 2]. We computed a matching T1-weighted tem-
plate (SU_3T_T1w_T) also by averaging T1w images warped
to the T2w target by composition of transforms (i.e., T1w →
T2w → SU_7T_T2w_t), followed by intensity normalization
and averaging as for the T2w images. Thus, we created
SU_7T_T2w_T and SU_3T_T1w_T (averaged T1- and T2-
weighted template images), in SU data space, i.e., in register
with SU_7T_T2w_t. The SU_3T_T1w_T template was very
well matched to the SU_7T_T2w_t target image, the main
difference being suppression of voxelwise noise (Fig. 2).

2.3.2 Creating STN atlas from 7T images

For each of the seven 7T participants, three experienced neuro-
anatomists delineated the left and right STN on T2w images (in
native space) using FSLView.26 STN boundaries were corrected
for topological irregularities by removal of spikes and filling of
holes. Spikes were defined as labeled voxels with two or less
labeled neighbors in the immediate 6-voxel neighborhood
and four or less labeled neighbors in the full 26-voxel neighbor-
hood. Similarly, holes were defined as unlabeled voxels with
three or more labeled voxels in the immediate neighborhood
and 14 or more labeled voxels in the full neighborhood. Two
iterations of topology correction were applied to each manually
segmented STN region.

To evaluate consistency of delineations, the corrected labels
(1 = STN; 0 = not STN) were compared across neuroanatomists
using Dice coefficients. The Dice coefficient27 is a standard
measure of volume overlap used to compare manual segmenta-
tions [Appendix B(a)]. The average Dice coefficient over all
STN delineations of the SU data was 0.65 with topology cor-
rection and 0.62 without (see Fig. 3 and Table 1). Dice coeffi-
cients tend toward low values for small structures and lower
voxel resolution.28 Therefore, we also evaluated the mean
surface distance (msd)29 [see Appendix B(b)], which provides

Fig. 2 Creation of SU_7T_T2w_T template. (a) Triplanar view of registration target (SU_7T_T2w_t).
(b) Averaged SU_7T_T2w_T template. Both images are in 7T data space. From left to right: coronal,
axial, and sagittal (right hemisphere). Note well-matched anatomical detail achieved by bm-cmg and
improved contrast to noise ratio. The cross-hair is centered on the right STN.

Fig. 3 Interrater agreement between raters R1, R2, and R3, delineat-
ing the STN in seven SU_7T_T2w images. The error bars denote
±2.7 standard deviations. Red “+” are outliers.
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a complementary measure of segmentation consistency. The
msd is computed as the average mismatch between surfaces of
three-dimensional (3-D) segmentation masks. The msd over all
STN delineations of the SU data was 0.58 mm.

A preliminary consensus STN segmentation was constructed
by majority vote (all labels summed, then voxels below 2 dis-
carded). These results (one label per participant bilaterally) then
were warped to SU data space and summed. This summation
generated an image with voxel values in the range [0 to 21].
Voxels having value less than or equal to 6 were discarded and
the result was blurred with Gaussian kernel of 0.75 mm in each
direction (FWHM of 1.3 mm in 3-D) and intensity scaled to
produce STN “probabilistic” labels in the range [0.0 to 1.0]
(Fig. 4).

2.4 Creating Average 3T Template in the WU PD
Cohort

We created an average WU template in two stages, as detailed in
subsequent sections. In brief, at the first stage, provisional T1w
and T2w templates were created [Fig. 1(a)], and the STN was
delineated on the T2w template. By applying the template →
individual image transform, we obtained a rough provisional
template-based STN delineation in each WU participant. At
the second stage [Fig. 1(b)], each WU T1w patient’s image
was independently coregistered to the SU_3T_T1w_T template,
and a provisional STN delineation was compared to the
SU atlas-based delineation obtained in the previous section.
Comparing provisional WU and SU STN delineations as well
as evaluation of whole-brain cross-image similarity, determined
the WU T1w patient best matching the SU template. This patient
was used as the target to create the final (definitive) WU average
T2w and T1w templates.

2.4.1 Provisional WU templates

The WU 3T T1-weighted and T2-weighted data were mutually
coregistered following the scheme in Fig. 1(a). For each of the
56 patients, the T1w (MP-RAGE) and T2w (3D SPACE) images
were coregistered by means of 6-DOF rigid body transforms.
One patient with age-appropriate ventricular atrophy was provi-
sionally selected to serve as the warp target (WU_3T_T2w_t)
for the remaining 55 patients. The entire WU 3T T2-weighted
and T1-weighted dataset was registered to the provisional target
(WU_3T_T2w_t), intensity normalized and averaged (as for
the SU data) to produce provisional 3T T2- and T1-weighted
templates (WU_3T_T2w_T and WU_3T_T1w_T).

2.4.2 Selecting WU target for the refined WU template

The definitive 3T warp target was selected by identifying
the patient anatomically most similar to the SU warp target
(SU_7T_T2w_t), with anatomical similarity determined by
Dice coefficient and cmg score as follows. First, the STN was
roughly delineated in the provisional 3T template (WU_3T_
T2w_T) by the same three raters (average Dice coefficient was
0.4), with majority vote delineation obtained as before. This
delineation was transformed to each of WU T1w individual sub-
ject spaces. Second, each WU patient’s T1-weighted image was
12-DOF affine transform registered to the SU_3T_T1w template
[Fig. 1(b)]. Finally, each WU T1-weighted image, along with its
rough STN delineation, was resampled to the SU_3T_T1w tem-
plate space. This enabled us to compute for each WU patient:
(1) the cmg objective function between T1w image and the SU
T1w template, and (2) the Dice coefficient between rough WU
STN delineation and SU 7T STN atlas. The patient with one of
top five Dice scores and the highest cmg score was then selected
as the definitive warp target to create the refined WU average
template using the same registration scheme [Fig. 1(a)].

2.5 Connecting the SU and WU Data Spaces

We next applied bm-cmg to nonlinearly register the SU_
3T_T1w_TandWU_3T_T1w_T templates. The resulting defor-
mation field established the relation between the WU and SU
data spaces. Alignment of SU_7T_T2w_T and WU_3T_T2w_T
templates was verified visually by overlaying their edge
maps (Fig. 5). Visual inspection of the 3T WU data in 7T
SU data space indicated satisfactory alignment of brain bounda-
ries, general gyral anatomy, and third and fourth ventricles.
Additionally, the RN (clearly identifiable on both templates)
was delineated on SU_7T_T2w_T and WU_3T_T2w_T and

Table 1 Interrater Dice coefficient between bilateral STN delinea-
tions on SU 7T T2-weighted individual images, averaged over 7 SU
participants. The three raters are R1, R2, and R3.

Raters Dice, original
Dice, topology

corrected

R1 ↔ R2 0.55 0.6

R1 ↔ R3 0.71 0.74

R2 ↔ R3 0.59 0.61

Fig. 4 Probabilistic representation of the STN in SU data space. From left to right: coronal, axial, sagittal
(right hemisphere), and sagittal (left hemisphere).
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the RN segmentations were compared (Fig. 6). This comparison
yielded a Dice coefficient of 0.87 and msd of 0.37 mm.

2.6 Connecting the SU and WU Data to MNI152
Space

Finally, the WU_3T_T1w_T template was aligned (12-param-
eter affine) to the MNI152_T1_0.5 mm average template

(obtained via FSL 5.0) and the resulting transform was applied
to the WU_3T_T2w_T template. Then, the WU_3T_T1w_T →
MNI152_T1 transform was composed with the nonlinear SU→
WU transform. The composed transform was applied to the SU_
7T_T2w_T template to obtain WU 3T STN atlases in MNI152
space (Figs. 7 and 8). This STN “probabilistic” atlas, along with
the SU_7T_T2w_Tand 3T_T2w_T templates in MNI152 space,
are publicly available in Ref. 30. The atlas is provided with

Fig. 5 (a) WU_3T_T2w_T averaged template. (b) SU_7T_T2w_T averaged template. From left to right:
sagittal, coronal, and axial plane views. The red outlines are edge maps computed by FSL Slicer tool on
the WU 3T template and duplicated on the SU 7T template. Note good match achieved by bm-cmg
(whole-brain averaged alignment error = 1.3 mm).

Fig. 6 Subcortical structures in WU data space. The following structures were delineated in SU space
and resampled in WU space: STN (yellow) and RN (red). For comparison, RN was directly delineated on
the WU_3T_T2_T template (green). (a) WU_3T_T2_T template; (b) SU_7T_T2_T template resampled in
WU space. From left to right: axial, coronal, sagittal (right hemisphere), and sagittal (left hemisphere).
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binary STN labels, obtained by thresholding to match target
volume as described in Appendix C. The same procedure can
be used to create binary STN labels in any image space using
this atlas.

3 Results

3.1 Estimation of Error in the Nonlinear Registration
of Individual WU 3T T2w Images to the
WU_3T_T2_T Template

Since all present transforms are invertible, an estimate of trans-
form error can be obtained by composing any transform (affine
or nonlinear) with its inverse. In theory, this composition gen-
erates the identity transform. In practice, deviation from the
identity provides an estimate of computed transform error. Thus,
the precision of alignment of individual T2w images to the
WU_3T_T2w_T template by bm-cmg was estimated by com-
puting the nonlinear T2w → WU_3T_T2w_T transform (see

Sec. 2.3.2), then independently computing the inverse WU_3T_
T2w_T → T2w transform and composing the results [see
Appendix A(c) for details]. In this manner, we estimated the
average across subjects of the misalignment between source
and target images, expressed as a Euclidean distance at each
voxel. We designate this quantity the voxelwise average align-
ment error (AAE). AAE maps were computed for each T2w
image contributing to the WU_3T_T2w_T template. The mean
AAE for the 56 T2w images aligned to WU_3T_T2w_T tem-
plate was 1.3 mm evaluated over the whole brain. The same
quantity evaluated over the STN was 0.62� 0.7 mm.

3.2 Comparison to Previously Published Atlases

We compared the present results to two other STN atlases. We
first compared to an established, single-subject, histological
atlas (Mai),31 and then to a recently published basal ganglia
atlas of 12 healthy control subjects based on high-definition
7T MRI (Wang).17 To enable these comparisons, we registered

Fig. 7 (a) WU 3T and (b) SU 7T T2-weighted templates in MNI152 space. MNI152 plane coordinates are
shown under each slice. Edge maps (red contours) were defined on the 3T template and duplicated on
the 7T template.

Fig. 8 Subcortical structures in MNI152 space. From left to right: coronal, axial, sagittal (right hemi-
sphere), and sagittal (left hemisphere). MNI152 plane coordinates are shown under each slice.
Green: STN originally delineated on the SU_7T_T2w_T template; blue: RN originally delineated on
the SU_7T_T2w_T template; red: RN originally delineated on the WU_3T_T2w_T template.
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both of these alternative atlases to our WU_3T_T2w_T tem-
plate, as described below.

3.2.1 Coregistering to Mai atlas

Since registering an MRI directly to a histological atlas is chal-
lenging, we coregistered our WU_3T_T2w_T template to an
image set that was previously coregistered to the Mai histologic
atlas. This dataset included clinical images acquired in a sepa-
rate cohort of 84 PD patients undergoing DBS electrode implan-
tation at WU, as described in Ref. 32. The dataset includes
presurgical, full brain T2-weighted MRIs acquired with a
Siemens Vision 1.5T scanner (TR 8.9 s, TE 0.09 s, flip
angle 180 deg, magnetic field strength 1.5T, 1 mm × 2 mm ×
2 mm voxels) and postoperative CT images (Siemens Somatom
Plus 4 scanner, 0.5 mm × 0.5 mm × 2 mm voxels, 120 kV,
360 milli-Amp-sec). In comparing STN localizations obtained
by the Mai atlas versus the present method, we duplicated the

method of Videen et al. in which each patient’s anatomy was
registered to the Mai atlas via the postoperative CT. Thus, the
Mai → CT transform was taken as a starting point. Registration
of MRI data to the Mai atlas then proceeded as follows. First,
the postsurgical CTwas rigidly coregistered to the T2wMRIs of
the same patient by optimizing cmg. Second, each T2w image
was nonlinearly registered to the WU_3T_T2w_T template;
the mean AAE of this operation was 0.71 mm evaluated over
the STN. Finally, the Mai → WU_3T_T2w_T transform was
obtained as Mai → CT → T2w → WU_3T_T2w_T.

3.2.2 Coregistering to Wang atlas

We also compared our method to the STN atlas of Wang et al.17

We nonlinearly registered the WU_3T_T2w_T template to the
Wang high-definition, T2-weighted 7T template (available in
Ref. 33) using affine transformation followed by nonlinear
bm-cmg.

Fig. 9 Volume-matched STN boundaries defined in three atlases and represented in MNI152 space. The
underlay is the WU_3T_T2w_T template in MNI152 space. Green: histologic atlas (Mai); yellow: current
result; red: previously published 7T atlas (Wang). MNI152 plane coordinates are shown for each row.
From left to right: coronal, axial, and sagittal (right hemisphere).
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3.2.3 Atlas comparison results

To enable an unbiased cross-atlas comparison, we transformed
the image data to MNI152 0.5 mm isotropic voxel space
using the same WU_3T_T2w_T → MNI152 linear transform
described in Sec. 2.6. Transformed probabilistic structure
masks (Fig. 9) were thresholded to match the volume of original
STN labels in original space, as detailed in Appendix C. The
resulting msd, Dice coefficient, and Euclidean distance between
the centers of mass for all available structures are summarized in
Table 2. Inspection of these results (Fig. 9) suggests comparable
STN localization using either our new method or the atlas of
Wang et al. Somewhat more discrepancy was apparent in com-
parisons involving the histologic (Mai) atlas.

4 Discussion

4.1 Summary

We present methodology for creating a high-definition, 3T prob-
abilistic STN atlas derived from in vivo 7T MRI data.23 We
delineated the STN in 7T images in seven healthy individuals,
then utilized a nonlinear registration method to create an average
template derived from 7T images. This template then was non-
linearly coregistered to a 3T template representing the PD pop-
ulation. We then applied a volume preserving threshold to obtain
a binary mask of the probabilistic STN. The 3T STN template
enables localization of the STN in individuals with voxel-scale
accuracy. We also aligned our 3T template to two other atlases
and compared the resulting binary STN segmentations in a
common space. We demonstrate high overlap of the STN with
a publicly available 7T atlas and lower overlap using prior meth-
odology based on a histological atlas.

4.2 Limitations of Prior STN Atlases

Localizing the STN in clinical MRI is challenging owing to the
limited contrast provided by 1.5T or 3T scanners.8 Inhomo-
geneous iron content of the STN34,35 and small structure size
contribute to this challenge. These difficulties can be addressed
by localizing the STN using an appropriate atlas template.
However, the accuracy of atlas-based localization in an individ-
ual depends on the quality of the atlas. A large proportion of
human STN atlases currently in use was derived from ex vivo
sections of a single brain.11,31,32,36–41 The utility of such histo-
logical atlases is limited by out-of-plane distortions, in-plane
tears, and inconsistent staining.42 Moreover, the utility of single-
subject atlases is limited by STN shape variability across

individuals and age groups.18,20–22 The present probabilistic
atlas based on population averages of in vivo images avoids
these limitations.

3T imaging has been used to create average STN atlases12,28

that are well matched to the contrast properties of 3T scanners.
Imaging at 7T provides better delineation of the STN. However,
7T scanners currently are not available in the clinical setting.
Our approach combines STN delineation at 7T with template
creation at 3T. Although this approach entails a rather elaborate,
multimodal image registration scheme, we show that the average
STN localization error attributable to nonlinear image registra-
tion is 0.71 mm, which is less than the voxel size of typical clini-
cal images (0.9 mm).

The comparisons reported in Table 2 suggest that atlases
derived from MRI (Ref. 17 and the present work) consistently
localize the STN and RN with discrepancies on the order of
1 mm. Somewhat more discrepancy, on the order of 2 to
3 mm, was observed in comparisons to the method of Videen
et al.,32 which utilizes the histological atlas of Mai.31 This
greater discrepancy may reflect divergent contrast of subcortical
structures in histological sections versus MRI. It is more likely
that anatomical distortions owing to postmortem fixation are
responsible. Additionally, the Mai atlas represents a 24-year
old individual whereas the typical PD patient is considerably
older, a key point since the STN shifts laterally with age.18

This age-dependence is taken into account in the current work
as well as in the probabilistic atlas of Wang et al.17 Overall, our
results suggest that MRI may be better suited for the construc-
tion of atlases intended to localize in vivo the STN in a clinical
population. Additional studies are needed to investigate the
extent to which such atlases are consistent. To facilitate this
effort, we also made our atlas freely available to the research
community. Ideally, these atlases should be compared using
visualization tools, e.g., Ref. 43 and collated with DBS electro-
physiology, diffusion MRI tractography, and ex vivo histology.

4.2.1 bm-cmg

Multimodal, nonlinear image registration is challenging.44,45

Our initial attempts to compute nonlinear transforms using some
available tools with default parameters46–48 to coregister WU
and SU datasets were not successful. Previously, we had an
extensive experience with the cmg objective function for cross-
modal affine registration, which has provided robust and reliable
results in over 40 peer-reviewed publications within as well as
outside our institution, e.g., Refs. 49 and 50. Since multireso-
lution block matching approach45 was successfully used previ-
ously for coregistering deep brain structures (e.g., Yelnik,
Bardinet11), we elected to combine this approach with cmg
objective function in the bm-cmg algorithm. Combined with
template refining strategy, this approach appeared to perform
well in coregistering WU and SU datasets.

4.3 Cross-Modal Coregistering of Different Patient
Cohorts

We hypothesized that if WU template registration target was
anatomically close to the SU template image, higher nonlinear
coregistration accuracy could be achieved. We then developed a
strategy to select a subject from the WU cohort most similar to
the SU template (Sec. 2.4), to serve as such target. This simi-
larity was determined in two ways. First, each WU T1w image
was linearly coregistered to the SU template, with higher value

Table 2 Comparison of structures delineated in three atlases,
resampled in MNI152 space. Comparison measures: (1) mean sur-
face distance (msd), (2) Dice coefficient, and (3) Euclidean distance
between the centers of mass (ΔCOM), reported separately for each
side. “7T3T” refers to the current results.

Structure Atlases
msd
(mm) Dice

ΔCOM
left (mm)

ΔCOM
right (mm)

STN 7T3T ↔ Wang 0.57 0.67 1.27 0.71

RN 7T3T ↔ Wang 0.35 0.83 0.42 0.31

STN 7T3T ↔ Mai 0.76 0.60 0.86 2.1

STN Wang ↔ Mai 0.8 0.52 2.06 2.4
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of cmg objective function between the WU image and SU tem-
plate identifying higher similarity. Second, we obtained approxi-
mate STN mask in each WU image using a provisional
nonlinear T2w template. Although STN could not be identified
directly on individual images, the provisional T2w template had
enough contrast to make approximate delineation possible. The
result was resampled to each subject’s space by previously com-
puted nonlinear transform. We then computed Dice scores
between STN delineation on each individual WU image and SU
template using the same linear transforms to resample.

5 Conclusions
We confirm that accurate delineation of STN is feasible using
MRI acquired at 7T.23 We extend this principle by creating a
coregistered atlas representing 56 patients with PD scanned
at 3T. The 3T atlas is suitable for localizing the STN in individ-
uals with clinically available scanners. In particular, this atlas is
intended for use in future studies targeting the STN with DBS
electrodes. Technical advances developed in the course of this
work include a nonlinear, multimodal registration technique
(bm-cmg) and an approach to evaluate discrepancies in the
localization of brain structures across different atlases.

Appendix A: Method for Nonlinear Multimodal
Registration

a cmg Voxel Similarity Measure
The objective function is

EQ-TARGET;temp:intralink-;e001;63;425η ¼
R j∇I1jj∇I2jcos2 θd3rR j∇I1jd3r

R j∇I2jd3r
; (1)

where ∇I1 and ∇I2 are intensity gradients of images I1 and I2,
cos θ ¼ ð∇I1Δ∇I2Þ∕j∇I1jj∇I2j, and integration spans over all
voxels defined in both images. In the original description of the
cmg voxel similarity measure, all registrations were effected by
12-parameter affine transforms.24 The cmg is closely related to a
previously described voxel similarity measure.51

b Nonlinear Alignment Method
Our nonlinear registration method employs multiscale block
matching (bm) with Gaussian smoothing of median-filtered vec-
tor field obtained at different resolutions. This approach is sim-
ilar to that described in Ref. 52, but uses the cmg measure as the
objective function. bm-cmg starts by decomposing alignment
source and target images into a multiscale pyramid with three
levels. At each level, optimal local displacement is sought
between blocks of integer voxel size that approximately match
8-mm isotropic cubes at the highest resolution. The displace-
ment is estimated using a simplex method53 with variable voxel
step. The resulting deformation grid at the current scale is
median filtered and smoothed with isotropic Gaussian kernel,
initializing the optimization at the next scale.

bm-cmg was implemented in C++ using in-house image
processing software libraries along with newmat54 for matrix
processing and simplex optimization implementation described
in Ref. 53. The current implementation reads/writes images in
4dfp format compatible with Analyze 7.5 and FSLView.

c Estimation of Nonlinear Alignment Error at
each Voxel

Let there exist a smooth isomorphic warp vector field ŴAB from
image A to image B, estimated at the center of each voxel by
a computed approximation W̃AB. Without the loss of generality,
we can assume that both A and B are sampled in the same space
and prealigned by an affine transform. For locus XA in A, coor-
dinates of matching loci X̃B and X̂B in B can be expressed as

EQ-TARGET;temp:intralink-;e002;326;659X̃B ¼ XA þ W̃ABðXAÞ; X̂B ¼ XA þ ŴABðXAÞ; (2)

where W̃ABðXAÞ is the warp vector applied to XA. Let also
ŴBA ¼ Ŵ−1

AB be approximated by independently computed
warp field W̃BA. The error vector W̃AB of mapping XA then
can be defined as

EQ-TARGET;temp:intralink-;e003;326;582EABðXAÞ ¼ X̂B − X̃B ¼ ŴABðXAÞ − W̃ABðXAÞ: (3)

Now, if we apply W̃BA to X̃B, and denote the transform error as
EBA, we obtain from Eqs. (2) and (3), using Taylor series expan-
sion of ŴBAðX̃BÞ,
EQ-TARGET;temp:intralink-;e004;326;516

EBAðX̃BÞ ¼ ŴBAðX̃BÞ − W̃BAðX̃BÞ ≈ ŴBAðX̂BÞ − EABðXAÞ
∘ ∇ŴAB − W̃BAðX̃BÞ; (4)

where ∘ is the Schur (elementwise) product. Accordingly,
EQ-TARGET;temp:intralink-;e005;326;453

EABðXAÞ þ EBAðX̃BÞ ≈ −XA − EABðXAÞ
∘ ∇ŴAB − W̃ABðXAÞ − W̃BAðX̃BÞ:

(5)

Since the bm-cmg warp field gradient, j∇ŴABj, is small,
smooth, and slowly varying (with the average of 0.05 and maxi-
mum of 0.3 in our experiments), we can estimate the AAE for
W̃AB and W̃BA by combining Eqs. (4) and (5).
EQ-TARGET;temp:intralink-;e006;326;341

jEðXAÞj ¼
1

2
jEABðXAÞ þ EBAðX̃BÞj ≈

1

2
jXA þ W̃ABðXAÞ

þ W̃BAðX̃BÞj: (6)

In other words, the AAE at locus XA for independently com-
puted warp fields W̃AB and W̃BA can be estimated from warping
this locus to B and then back to A, and evaluating one half of the
resulting displacement from the original position.

Appendix B: Comparison of Binary Labels

Dice Coefficient
For two binary masks L1 and L2, Dice coefficient

27 is computed
as

EQ-TARGET;temp:intralink-;e007;326;156DðL1; L2Þ ¼
2jL1 ∩ L2j
jL1j þ jL2j

: (7)

Mean Surface Distance
Given a locus p and surface S, the Euclidean distance from p to
S is defined as
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EQ-TARGET;temp:intralink-;e008;63;752dðp; SÞ ¼ min
s∈S

dðp; sÞ; (8)

where d is unsigned Euclidean distance, s is a locus on S.
Further, by surface SðMÞ of a binary mask M without holes,
we understand all labeled voxels with background voxels in
the immediate neighborhood. Now consider two simply con-
nected binary labels with surfaces S1 and S2. The mean distance
md between S1 and S2

29 is computed as

EQ-TARGET;temp:intralink-;e009;63;659mdðS1; S2Þ ¼
1

jS1j
Z

S1

dðp; S2Þdp; (9)

where the surface distance from p ∈ S1 to S2 is averaged over all
points in S1. Symmetric version of this measure, referred to as
mean surface distance (msd), is defined as

EQ-TARGET;temp:intralink-;e010;63;576msdðS1; S2Þ ¼
1

2
½mdðS1; S2Þ þmdðS2; S1Þ�: (10)

Appendix C: Thresholding Nonlinearly
Transformed Labels to Match Target Volume
Defining structure boundaries in target image space requires
binarization of resampled probabilistic structure labels. This
operation potentially changes the volume of a structure, in our
experience, by as much as 40%. To avoid this complication, the
following iterative procedure was adopted to correctly choose
the binarization threshold: (a) binarize the mask in the target
space using an initial seed threshold value, (b) compute the vol-
ume of the inverse image of this label in the original space by
integrating the transform’s inverse Jacobian over the thresh-
olded mask, and (c) adjust the threshold using a gradient descent
strategy, targeting the volume in original (untransformed) space.
Steps (a)–(c) are repeated until convergence is reached. The
resulting binary mask thus always has the volume of the original
mask scaled by the transform scale factor.

Appendix D: Expanded Methodological
Details

1. Create SU 7T Average Template and Probabilistic
STN Atlas.

a. For all seven SU participants, coregister (6-param-
eter affine transform) the T1w and T2w images
[Fig. 1(a)].

b. Select, from among the 7 T2w images, the
SU_7T_T2w target (SU_7T_T2w_t) according to
following criteria:

Low noise, artifact free T1w and T2w
Normal ventricles
Good STN contrast

c. For the other six participants, compute the non-
linear transform (warp), T2w → SU_7T_T2w_t;
compute, by composition of transforms, the corre-
sponding T1w transform as T1w → T2w → SU_
7T_T2w_t.

d. For all seven participants, transform the T2w and
T1w images to 7T target space.

e. Scale the intensity of each transformed image to
match average intensity across all seven images.

f. Average the transformed images over the seven
participants to create SU_3T_T1w_T and SU_7T_
T2w_T average templates in SU target space
[Fig. 1(a)].

g. Delineate (using the three-rater, majority vote algo-
rithm) the STN in the SU_7T_T2w_T average
template.

2. Create WU 3T Average Template and Probabilistic
STN Atlas in Register with the SU 7T Template.

a. For all 56 WU patients, coregister (6-parameter
affine transform, cmg objective function) the T1w
and T2w images.

b. Select a provisional WU_3T_T2w target (WU_
3T_T2w_t) from the 56 patients according to
following criteria:

Low noise, artifact free T1w and T2w
Normal ventricles
No obvious asymmetries

c. For the other 55 WU patients, compute the nonlin-
ear transform, T2w → WU_3T_T2w_t; compute,
by composition, the corresponding T1w transform
as T1w → T2w → WU_3T_T2w_t.

d. For all 56 WU patients, transform the 3T T2w and
T1w images to WU target space.

e. Average the transformed images over all 56 WU
patients to create WU_3T_T1w_T and WU_3T_
T2w_T average templates in WU target space.

f. Delineate (using the three-rater, majority vote algo-
rithm) the STN in the WU_3T_T2w_T average
template; delineation is possible in the average
owing to enhanced contrast to noise ratio.

g. For all 56 WU patients, compute the 12-parameter
affine transform, T1w → SU_3T_T1w_T by
optimization of the cmg objective function. These
results will be used later to select the patient with
the definitive WU_3T_T2w_t.

h. For all 56 WU patients, invert the (nonlinear)
T2w → WU_3T_T2w_T transform to obtain WU_
3T_T2w_T→ T2w; compose transforms WU_3T_
T2w_t→ T2w→ T1w→ SU_3T_T1w_T to obtain
WU_3T_T2w_t → SU_3T_T1w_T [Fig. 1(b)];
resample the WU STN delineation (obtained in
step f) in SU_7T_target space.

i. For all 56 WU patients, compute the Dice
coefficient between the WU and SU STN
delineations.

j. Select the five patients with the highest Dice
coefficient.

k. Of these five patients, select the one with the great-
est optimized (WU) T1w → SU_3T_T1w_T cmg
objective function value (η) this 12-parameter
affine transform was previously computed in step g.
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The T2w of the selected patient becomes the defini-
tive WU_3T_T2w target (WU_3T_T2W_t).

l. Compute the definitive WU average STN template
by repeating steps (c–e).

m. Connect the WU and SU target spaces by comput-
ing the nonlinear WU_3T_T1w_T → SU_3T_
T1w_T transform; transforms linking all WU and
SU, T1w and T2w images, now are defined by
transform composition.
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