
Congenital cataracts are a leading cause of childhood 
blindness with a prevalence of 0.63 to 9.74/10,000 around the 
world [1]. In China, the estimated prevalence is 4.24/10,000 
[2]. Up to 25% of congenital cataracts are considered to be 
inherited. The most frequent mode of inheritance is autosomal 
dominant, but X-linked and autosomal recessive transmis-
sion modes have also been reported [3]. Congenital cataracts 
may occur alone (which accounts for approximately 70% of 
congenital cataract cases) or be accompanied by other ocular 
abnormalities (which accounts for approximately 15% of 
congenital cataracts), such as microcornea, microphthalmia, 
ocular coloboma, aniridia, retinal degeneration, and so on. In 
another 15% of cases, cataracts are one part of a multisystem 
genetic disorder [4].

To date, 45 genetic loci and 38 specific genes have 
been reported to be linked with non-syndromic congenital 
cataracts. These genes include lens-related crystallin, 
connexin, cytoskeleton-related genes, transcription factors, 
and a variety of other genes. Mutations in crystallin genes 
account for the majority of hereditary congenital cataracts 

[5]. Because more than 40 loci can lead to congenital cata-
racts, high-throughput sequencing is an efficient method for 
detecting pathogenic genes and mutations. Next-generation 
sequencing (NGS) can save time and money, as well as 
offer adequate genetic information. We have successfully 
used NGS to investigate hereditary retinal diseases, such as 
retinitis pigmentosa [6], Leber congenital amaurosis [7], and 
Usher syndrome [8]. Therefore, we used NGS with targeted 
exon capture to explore the genetic defects in patients with 
congenital cataracts in this research study.

METHODS

Clinical evaluation: Eleven patients from four unrelated 
Chinese families and two simplex cases [8 males, 5 females; 
mean age ± standard error of the mean (SEM): 40.4 ± 15.6 
years, range: 21–72 years] were recruited from the clinic at 
the Department of Ophthalmology at Peking Union Medical 
College Hospital (PUMCH). Ophthalmic examinations, 
including best-corrected visual acuity (BCVA), intra-
ocular pressure (IOP), slit-lamp biomicroscopy, and indirect 
ophthalmoscopy were performed. Photographs of the anterior 
segment and fundus were taken if possible. Four patients 
underwent B-ultrasonography examination. The study 
adhered to the ARVO statement on human subjects and was 
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approved by the Institutional Review Board of PUMCH. All 
research subjects provided written informed consent.

Genomic DNA preparation: Peripheral blood from all patients 
and any available unaffected family members (including 
patient II:3, patient II:8, and patient III:4 from family A and 
patient I:2 and patient II:3 from family D) was collected. 5 ml 
peripheral blood was drawn from elbow vein of each subjects 
and was preserved at 4 ℃ prior to use. Genomic DNA was 
extracted from peripheral leukocytes using a commercial 
kit (QIAamp Blood Midi Kit; Qiagen, Hilden, Germany) 
according to the manufacturer’s protocol. The brief proce-
dures were as follows: 200 µl QIAGEN Protease, 2 ml blood 
sample and 2.4 ml Buffer AL were mixed then incubated at 
70 °C for 10 min. 2 ml 100% ethanol was added then the 
mixture was added into the QIAamp Midi spin column and 
centrifuged at 1207 xg for 3 min. 2 ml Buffer AW1 was added 
into column then centrifuged at 2717 xg for 1 min and 2 ml 
Buffer AW2 was added then centrifuged at 2717 xg for 15 
min. 300 µl Buffer AE was added into the column, incubated 
at room temperature for 5 min, then centrifuged at 2717 xg 
for 2 min. The eluate was reloaded into the column and the 
procedure was repeated then DNA was got.

Library preparation and targeted sequencing: For 
sequencing, 1 μg of the DNA sample from the proband of 
each family was sheared into fragments that were 200–500 
bp long. The sheared fragments received blunt-end repair, 
and Klenow exonuclease was used to add a single-adenine 
base to the 3′ ends. Then, adapters (Illumina, San Diego, CA) 
were ligated to the repaired ends, and the DNA fragments 
were amplified in a PCR after ligation. PCR conditions were: 
denaturing at 98 °C for 2 min followed by 8 cycles of 98 °C 
for 30 s, 65 ℃ for 30 s and 72 °C for 1 min, then a final exten-
sion step at 72 °C for 10 min. The targeted DNA was captured 
using a customized panel of 762 genes, which included all the 
known genes related to eye diseases and sequenced by the 
Illumina HiSeq X Ten machine [9]. All the genes we detected 
are listed in Appendix 1.

Bioinformatics analysis: Sequencing data were analyzed 
with NextGene V2.3.4 software (Softgenetics, State College, 
PA), and the reads were compared to the reference sequence 
of hg19 from the University of California Santa Cruz 
(UCSC) Genome Browser. A comparison was conducted in 
the 1000 Genomes Project database, the Single Nucleotide 
Polymorphism database (dbSNP), and the Exome Aggrega-
tion Consortium database (ExAC) to exclude nonpatho-
genic polymorphisms. Polyphen2, Sorting Intolerant From 
Tolerant (SIFT), and Mutation Taster were used to predict 
damaging missense mutations. We also analyzed the results 
in the Human Gene Mutation Database (HGMD) to confirm 

whether the pathogenic mutations we found had been reported 
before. The ProtScale program was used to predict protein 
hydrophobicity.

PCR and Sanger sequencing: PCR and Sanger sequencing 
were conducted for all patients and available unaffected 
subjects to determine segregation. The primer sequences are 
listed in Appendix 2. The final volume of 50 µl for each reac-
tion contained 25 µl 2× Taq PCR master mix, 21 µl double-
distilled water (ddH2O), 40 ng genomic DNA, and 10 pmol 
of primer. PCR reactions were performed with denaturing at 
94 °C for 5 min, followed by 30 cycles 94  °C for 30 s, 60  °C 
for 30 s and 72  °C for 45 s. A final extension step at 72 °C 
was performed for 7 min. After purification, the amplicons 
were sequenced using forward primers. The sequences were 
assembled and analyzed using Lasergene SeqMan software 
(DNASTAR, Madison, WI) and were compared to reference 
sequences.

RESULTS

Clinical findings: We investigated 11 patients with congenital 
cataracts from four Chinese families and some of their unaf-
fected family members, as well as two simplex cases. Bilateral 
cataracts were revealed in 11 patients, and unilateral cataracts 
were found in the other two. Extralenticular abnormalities can 
also be found in patients with congenital cataracts. Micro-
cornea, which occurred in 12 of 13 patients, was the most 
frequent concomitant disorder. Ocular colobomas involving 
different structures, including the iris, choroid, macular, and 
optic disc, were found in five subjects. The concise clinical 
findings for the patients are displayed in Table 1.

In family A, patient II:2 developed disciform and 
granular pacification in the center and inferior region of the 
lens nucleus. A fundus photograph revealed optic disc and 
macular colobomas. We could see an enlarged optic disc with 
a bowl-shaped excavation in the center and preserved neural 
tissue in the surrounding area for both eyes. Additionally, 
there was a round coloboma of the choroid in the macular 
region with some irregular pigments for the right eye (Figure 
2). Microcornea was found in all patients in family A, and 
nystagmus and blepharoptosis were observed for patient II:2 
and patient III:1.

In family B, the affected members were diagnosed with 
congenital cataracts, microcornea, and posterior segment 
coloboma. Due to the invisible fundus, we used B-ultraso-
nography to assess the posterior segment of the eye. B-ultra-
sonography exhibited a focal and irregular introcession in the 
eyeball wall for both eyes of patient II:2 and the right eye of 
patient III:1, which probably conformed to posterior segment 
coloboma (Figure 3). Patient II:2 developed glaucoma with 

http://www.molvis.org/molvis/v23/977
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an intraocular pressure of 29 mmHg for the right eye and 
53 mmHg for the left eye.

All patients from family C and family D had congenital 
cataracts and microcornea. Complications of cataract 
extraction surgery, such as retinal detachment and corneal 
degeneration, were observed in two patients. Patient II:1 from 
family C had bilateral glaucoma with an intraocular pressure 
of 34 mmHg for the right eye and 39 mmHg for the left eye. 
Unilateral mild to moderate cataracts and significantly ocular 
coloboma were revealed in two simplex cases. Simplex case 
1 had an inferior iris and choroid coloboma for both eyes. 
The appearance of coloboma was observed in the right eye 
of simplex case 2 (Figure 4). We could see an enlarged, verti-
cally oval, and excavated optic disc of the right eye, which 
meant there was an optic disc coloboma. Two focal irregular-
shaped colobomas of the retina and the choroid were also 
observed near the vascular arcade. The retinal vessels in the 
posterior pole were disordered, and a normal macular struc-
ture was not observed. No other ocular abnormalities were 
found in the left eye of simplex case 2, except a relatively 
small and crowded optic disc.

Mutation analysis: Using next-generation sequencing, we 
identified five mutations in crystallin genes, including one 
nonsense mutation, one frame-shift mutation, and three 
missense mutations that were predicted by three software 
programs to be pathogenic. These mutations included four 
novel mutations: CRYBB2 (ID: 1415, OMIM: 123620): 
c.446G>T, p.(Gly149Val); CRYBB1 (ID: 1414, OMIM: 
600929): c.688C>T, p.(Arg230Cys); CRYGC (ID: 1420, 
OMIM: 123680): c.432C>G, p.(Tyr144Ter); and CRYGC: 
c.130delA, p.(Met44CysfsTer59). We also identified one 
previously reported mutation: CRYAA (ID: 1409, OMIM: 
123580): c.61C>T, p.(Arg21Trp). We found a variance in the 
CRYGC gene: c.G143A, p.(Arg48His), which was consid-
ered to be an SNP in the dbSNP. However, the variance 
was thought to be a pathogenic mutation in two previous 
studies [10,11]. The variances and the results of the predic-
tive programs are listed in Table 2. We confirmed that the 
affected family members carrying the same mutations and 
the unaffected family members are wild-types using Sanger 
sequencing (Figure 1). Sequence tracings of the proband of 
each family are shown in Figure 5. We also detected several 
variants for other genes associated with eye disease. Detailed 
information about these mutations is listed in Appendix 3. We 

Figure 2. Ocular photographs of 
patient II:1 from family A. A and 
B: Photographs of the anterior 
segment of the left eye, showing a 
congenital nuclear cataract. C and 
D: Fundus photographs of the right 
and left eyes, respectively, showing 
optic disc coloboma for both eyes 
and macular coloboma for the right 
eye.

http://www.molvis.org/molvis/v23/977
https://www.ncbi.nlm.nih.gov/omim/?term=123620
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used the ProtScale program to predict the protein hydropho-
bicity for these mutants in the study. The prediction results of 
the ProtScale program showed that the two missense muta-
tions (CRYBB2: p.(Gly149Val) and CRYBB1: p.(Arg230Cys)) 
have substantially higher hydrophobicity compared to the 
wild-type genes (Appendix 4).

DISCUSSION

In this study, we summarized a cohort of Chinese patients 
with congenital cataracts and studied the phenotypes and 
genotypes. To find the underlying genetic defects, NGS was 

applied to search for pathogenic variations in known patho-
genic genes.

The phenotypes of the patients were relatively compli-
cated because other ocular abnormalities, such as micro-
cornea and ocular coloboma, were observed. Microcornea 
is possibly caused by an arrest in growth of the cornea after 
the fifth gestational month [12] and is not rare in patients 
with congenital cataracts with mutations in crystallin genes 
[13-21]. Coloboma is an ocular abnormality that can affect 
many structures, such as the iris, choroid, retina, and optic 
nerve. Typical colobomas result from defective closure of 
the fetal optic fissure and are located in the inferior and 

Figure 3. B-ult rasonography 
images of patients from family B. A 
and B: Images of the right and left 
eyes, respectively of patient II:2. C 
and D: Images of the right and left 
eyes, respectively, of patient III:1. 
The B-ultrasonography images 
show posterior segment coloboma 
for both eyes of patient II:2 and 
the right eye of patient III:1. Focal 
and irregular introcessions in the 
eyeball wall are marked with red 
arrows.

Figure 4. Fundus photographs of 
simplex case 2. A: Right eye. B: 
Left eye. The fundus photographs 
of simplex case 2 show optic disc 
coloboma for the right eye and a 
relatively normal phenotype for the 
left eye.

http://www.molvis.org/molvis/v23/977
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infranasal areas of the globe. Atypical coloboma is located 
elsewhere and has an unclear mechanism [22,23]. We can 
infer that defective closure of the optic fissure may not to be 
the reason colobomas arose in these patients because only one 
of the patients had typical coloboma, whereas the other four 
were atypical. Apart from colobomas, two patients had glau-
coma. Patient II:1 from family C developed high IOP after 
cataract surgery, so we think the high intraocular pressure is 

a complication of cataract surgery. Patient II:2 from family 
B had had poor vision since childhood and occasional mild 
distending pain in both eyes since she turned 50 years old, 
but she did not visit a doctor until 2013. Therefore, we did 
not know exactly when her IOP increased, and the type of 
glaucoma could not be confirmed. Either primary open angle 
glaucoma (POAG) or high IOP related to congenital cataracts 
is possible.

Figure 1. Pedigrees of four Chinese 
families. A–D: Pedigrees of family 
A through family D, respectively. 
Squares and circles indicate men 
and women, respectively. Filled and 
empty symbols indicate affected 
and unaffected members, respec-
tively. Deceased individuals are 
indicated with slashes. Probands 
are indicated with arrows.

Figure 5. Chromatograms of all 
detected mutations. A: Sequence 
for patient III:2 from family A. 
B: Sequence for patient III:1 from 
family B. C: Sequence for patient 
II:1 from family C. D: Sequence 
for patient II:1 from family D. E: 
Sequence for simplex case 1. F: 
Sequence for simplex case 2. The 
arrow indicates the mutation.
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Using NGS, we identified five pathogenic mutations 
and one variation in crystallin genes. Crystallin is a major 
component of lens proteins that constitutes more than 90% of 
water-soluble lens proteins. There are mainly three types of 
crystallins in human lenses, including α-, β-, and γ-crystallin, 
which are encoded by 11 crystallin genes [24]. Destruction or 
structural abnormalities of crystallins will result in irregular 
arrangement of lens fibers and lead to opacity in the lens [25]. 
The p.(Arg21Trp) mutation of the CRYAA gene is a hotspot 
mutation that can give rise to congenital cataracts, and pheno-
typic heterogeneity was found in these mutants [13,14,19,26]. 
Except this one mutation, the other four mutations have not 
been reported before. A nonsense mutation and a frame-shift 
mutation of the CRYGC gene (p.(Tyr144Ter) and c.130delA) 
were identified in family C and family D. When considering 
the severity of these two kinds of mutations, we have confi-
dence that they are pathogenic. Two missense mutations were 
identified in family B (CRYBB2: p.(Gly149Val)) and simplex 
case 1 (CRYBB1: p.(Arg230Cys)). The prediction results for 
hydrophobicity show that both mutants have higher hydro-
phobicity that may influence the structure and function of the 
protein and lead to opacity in the optic lens.

The CRYGC variation Arg48His had an allele frequency 
of 1.74% (shown in ExAC). However, this variation has been 
reported twice as a pathogenic mutation in previous studies 
[10,11]. Manoj Kumar et al. suggested that the p.(Arg48His) 
mutant changes the hydrogen bonds between Arg48 with 
several other amino acids and leads to an increase in 

hydrophobicity, which influences the solubility and stability 
of the γ-C crystallin [10]. There are different prediction 
outcomes for different software programs. Polyphen2 and 
SIFT showed that the mutation is nonpathogenic, but Muta-
tion Taster predicted that the mutation causes disease. Family 
members of this patient were not available for testing; thus, we 
could not collect clinical and genetic information. Therefore, 
the pathogenicity of this variance is not clear. Perhaps more 
experiments should be conducted to explore the relationship 
between the p.(Arg48His) variant and disease.

The correlation between mutations in crystallin 
genes and extralenticular  signs, especially coloboma, is 
quite confusing. As we know, crystallin genes are mainly 
expressed in lenses. Therefore, whether these mutations 
are associated with complicated extralens abnormalities is 
unknown. However, in several previous studies, crystallin 
genes were slightly detected in non-lens tissues, especially 
in mammal retinas [27-30], and α-crystallin was suggested 
to play a role in antiapoptosis [31,32]. Perhaps these findings 
may help explain the appearance of the extralens phenotypes 
in this study. As shown in Table 3, some mutations in crys-
tallin genes with rare extralenticular abnormalities have been 
reported previously [19,26,33-36]. These cases suggest the 
complicated phenotypes are related to congenital cataracts 
but are not an isolated disease. However, we could not rule 
out the possibility that additional phenotypes are caused by 
novel genes or even have nothing to do with heredity, espe-
cially when some of these abnormalities are variable within a 

Table 3. Mutations identified in crystallin genes leading to congenital cata-
ract accompanied with other ocular abnormalities.

Gene Mutation Ocular abnormalities Area Reference

CRYAA p.(Arg12Cys)
Congenital cataract, microcornea, macrocephaly; colo-
boma, glaucoma Canada [33]

CRYAA p.(Arg21Trp) Congenital cataract; microphthalmia, glaucoma Korea [26]

CRYAA p.(Arg21Trp)
Congenital cataract; microcornea(1/9), inferior iris 
coloboma(1/9) Denmark [19]

CRYAA p.(Arg116Cys)
Congenital cataract, iris coloboma; 
microphthalmia(2/12) France [34]

CRYBA2 p.(Val50Met) Congenital cataract; myopia, glaucoma Uruguay [33]
CRYBA4 p.(Leu69Prp) Congenital cataract, microphthalmous India [35]
CRYBB1 p.(Val96Phe) Congenital cataract, glaucoma; microcornea USA [33]

CRYBB2
p.(Arg145Trp), p.(Gln147Arg) 
and p.(Thr150Met) Congenital cataract, microphthalmia; glaucoma(6/10) Jewish [36]

CRYBB3 p.(Val194Gly) Congenital cataract; glaucoma(2/5) Italy [33]
CRYGD p.(Arg140Ter) Congenital cataract, hyperopia, strabismus Jewish [33]

CRYGC p.(Tyr139Ter)
Congenital cataract; microphthalmia/microcornea, 
corneal opacity, glaucoma USA [33]

Variable features within the family are noted in italics and the proportion is shown in brackets if there is a description in the literature.
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family. Rare variants in other ocular disease genes were also 
identified which may offer some clues for the noncataractous 
phenotype; however, whether these variants are associated 
with the noncataractous phenotype is difficult to confirm. In 
conclusion, the relationship between complicated phenotypes 
and mutations in crystallin genes are not explicit. Thus, more 
cases should be included, and more experiments should be 
performed to verify this connection.

In summary, we examined a cohort of Chinese patients 
with congenital cataracts and studied the phenotypes and 
genotypes. We described a special phenotype of congenital 
cataracts associated with macular and optic disc colobomas. 
Four novel mutations and one reported mutation were identi-
fied in these patients. Although the pathogenic mechanism of 
crystallin gene mutants is not clear, the findings in this study 
may provide clues for further research to verify the exact role 
of crystallin genes in the formation of congenital cataracts 
and development of the eye.

APPENDIX 1. GENES ASSOCIATED WITH 
INHERITED EYE DISEASES.

To access the data, click or select the words “Appendix 1.”

APPENDIX 2. PRIMERS USED FOR POLYMERASE 
CHAIN REACTION.

To access the data, click or select the words “Appendix 2.”

APPENDIX 3. VARIANTS OF THE PROBANDS 
DETECTED BY NGS

To access the data, click or select the words “Appendix 3.”

APPENDIX 4. PREDICTING RESULTS OF 
PROTSCALE

The predicting results of ProtScale showed that the mutant 
had a higher hydrophobicity compared with the wild-
type; A, hydrophobicity of wild-type (right) and CRYBB2: 
p.(Gly149Val) mutant (left); B, hydrophobicity of wild-type 
(right) and CRYBB1: p.(Arg230Cys) mutant (left). To access 
the data, click or select the words “Appendix 4.”
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