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Abstract

Estimating the false discovery rate (FDR) among a list of tandem mass spectrum identifications is 

mostly done through target-decoy competition (TDC). Here we offer two new methods that can 

use an arbitrarily small number of additional randomly drawn decoy databases to improve TDC. 

Specifically, “Partial Calibration” utilizes a new meta-scoring scheme that allows us to gradually 

benefit from the increase in the number of identifications calibration yields and “Averaged TDC” 

(a-TDC) reduces the liberal bias of TDC for small FDR values and its variability throughout. 

Combining a-TDC with “Progressive Calibration” (PC), which attempts to find the “right” number 

of decoys required for calibration we see substantial impact in real datasets: when analyzing the 

Plasmodium falciparum data it typically yields almost the entire 17% increase in discoveries that 

“full calibration” yields (at FDR level 0.05) using 60 times fewer decoys. Our methods are further 

validated using a novel realistic simulation scheme and importantly, they apply more generally to 

the problem of controlling the FDR among discoveries from searching an incomplete database.
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1 Introduction

In tandem mass spectrometry analysis, the problem of inferring which peptide was 

responsible for generating an observed fragmentation spectrum is crucial to any subsequent 

analysis about the presence or quantity of peptides and proteins in the complex mixture 

being analyzed. Unfortunately, this spectrum identification problem is difficult to solve 

because, for any given spectrum, many expected fragment ions will not be observed, and the 

spectrum is also likely to contain a variety of additional, unexplained peaks.

The most common approach to the spectrum identification problem is peptide database 

search. Pioneered by SEQUEST [7], the search engine extracts from the peptide database all 

“candidate peptides” defined by having their mass lie within a pre-specified tolerance of the 
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measured mass of the intact peptide (the “precursor mass”). The quality of the match 

between each of these candidate peptides and the observed fragmentation spectrum is then 

evaluated using a score function. Finally, the best-scoring peptide-spectrum match (PSM) for 

the given spectrum is reported, along with its score.

Sometimes the reported PSM is correct—the peptide assigned to the spectrum was present in 

the mass spectrometer when the spectrum was generated—and sometimes the PSM is 

incorrect. Ideally, we would report only the correct PSMs, but obviously we are not privy to 

this information: all we have is the score of the PSM, indicating its quality. Therefore, we 

report a thresholded list of top-scoring PSMs, together with the critical estimate of the 

fraction of incorrect PSMs in our reported list. This work focuses on methods for carrying 

out this discovery and error estimation procedure.

The problem of controlling the proportion of false discoveries has been studied extensively 

in the context of multiple hypotheses testing (MHT), starting with the seminal of work 

Benjamini and Hochberg [3]. Specifically, they introduced a simple procedure that allows us 

to decide which null hypotheses we reject (thus declaring them as “discoveries”) so that the 

FDR, which they defined as the expected value of the proportion of false discoveries (FDP), 

is bounded by a pre-determined level α.

The mass spectrometry community, however, relies mostly on other methods to control the 

FDR. The main reason is that the MHT context is predicated on associating a p-value with 

each tested null hypothesis, indicating how unlikely that result is assuming the hypothesis is 

truly a null one. Until recently, no such p-values were computed in the PSM context. 

Moreover, while considerable effort has of late been invested in computing such p-values 

[14, 1, 9, 15, 16, 12], we recently showed that there are further subtle but fundamental 

differences between the MHT context and the PSM one, implying that we typically cannot 

use FDR controlling procedures that were designed for the MHT context [?].

Instead, the most widely used FDR controlling procedure in this context is a decoy-based 

protocol called target-decoy competition (TDC), proposed by Elias and Gygi [5]. The target 
in TDC refers to the real peptide database of interest, and the decoy is a database of 

randomly shuffled or reversed peptides. The method consists of searching a given set of 

spectra against the concatenated target-decoy database and retaining the single best-scoring 

PSM for each spectrum. As a result of this selection, any optimal target PSM that scores less 

than the corresponding optimal decoy PSM is eliminated from consideration. Subsequently, 

at a given score threshold, the number of accepted decoy PSMs provides an estimate of the 

number of false discoveries, or accepted incorrect target PSMs [4, 10, 6].

The quality of an FDR controlling procedure (more precisely, of a discovery and FDR 

controlling procedure) can be evaluated along at least three orthogonal dimensions. First, we 

can gauge the procedure's power: how many (correct) target discoveries, or spectra 

identifications, does it report at a given FDR threshold? Second, we can analyze the 

accuracy of the procedure: how close is the actual FDR to the estimated one? In determining 

the accuracy we ask whether the method is biased or not, where liberally biased methods 

(those that underestimate the FDR) are particularly undesirable because they instill in the 

Keich and Noble Page 2

Res Comput Mol Biol. Author manuscript; available in PMC 2018 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



user more confidence than is due. Third, in addition to controlling bias, we also prefer 

methods that exhibit less variability, since exceedingly high FDP could have substantial 

impact on any downstream analysis.

The primary contributions of this paper are two novel procedures for improving decoy-based 

FDR control procedures in the context of the mass spectrum identification problem. The first 

procedure—partial calibration—yields improved statistical power relative to TDC; the 

second procedure—averaged TDC (a-TDC)—yields reduced variance. Both procedures 

maintain the asymptotic unbiased control of the FDR of TDC, and a-TDC mitigates much of 

the liberal bias of TDC observed at small FDR values [11].

Partial Calibration

The partial calibration procedure is motivated by our recently described calibration method 

[12]. We showed that calibrating the scores (placing the scores of all PSMs on the same 

scale regardless of the spectrum involved) can substantially increase the power of TDC.3 For 

example, we found that when calibrating the popular XCorr score [7], using the same set of 
spectra the number of discoveries at 1% FDR increased in the range of 12-31% [12]. 

However, since our calibration method relied on searching 10,000 randomly generated decoy 

databases (obtained by repeatedly shuffling each peptide of the target database), our 

procedure was computationally extremely demanding.

In this work, we show that the advantages calibration offers can be gradually realized 

starting with a relatively modest requirement of one additional decoy set and increasing 

according to the user's computational resources. In a nutshell, partial calibration uses the 

calibrating decoys to convert the raw scores into empirical p-values. However, whereas our 

original approach employed the commonly used method of replacing the raw score with the 

empirical p-value, here we keep both and use a two tiered scoring scheme. The primary 

score is the empirical p-value, with ties resolved by the secondary score, which is the raw 

score. This new primary-secondary scheme allows us to use as few as a single calibrating 

decoy in a meaningful way. Previously, in such a case roughly half the (null) scores would 

have one p-value (0) and the other half would have a different p-value (1), so very little 

could have been done with this data.

By allowing us to benefit from any number of calibrating decoys, partial calibration raises 

the question of how many calibrating decoy sets are “enough.” One option is to let our 

computational resources determine the number of decoys we can afford to generate for the 

given data. However, the downside of this strategy is that for some datasets and FDR 

thresholds we would spend too much effort, whereas in other cases we would still achieve 

sub-par results. An ideal approach would allow us to intelligently trade off between 

statistical power and computational expense.

Here we propose an ad hoc method, called “progressive calibration” (PC), that employs a 

doubling strategy to dynamically determine the number of calibrating decoys our partial 

3More rigorously we say that the scoring function of an optimal PSM is “calibrated” if the distribution of the score of an optimal PSM 
in a randomly drawn decoy database is invariant of the spectrum itself.
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calibration procedure should use. The method works by factoring in the user's computational 

limits, the particular dataset at hand, and the range of FDR values the user is interested in. 

The latter is a particularly important factor because, empirically, the law of diminishing 

returns, in terms of number of discoveries per number of calibrating decoys, kicks in much 

sooner for higher FDR levels.

Averaged TDC

The second primary procedure, a-TDC, is motivated by simulations that show that, for sets 

of 1000 spectra, the actual FDP among the PSMs selected by using TDC with an FDR 

threshold of 0.05 can readily be ±50% of that level, and this problem gets much worse for 

smaller-sized sets of spectra and tighter FDR levels [11]. Although calibration can somewhat 

reduce TDC's variability [12], even if we achieve perfect calibration we still cannot get 

around the inherent decoy-dependent variability of TDC.

a-TDC gets around this problem by applying TDC to the target database paired with a small 

number (np) of randomly drawn “competing” decoy databases and “averaging” the results. 

Clearly, averaging will reduce the TDC variance, but the challenge is to make sense of this 

averaging, especially because the list of TDC discoveries varies with each competing decoy 

database.

One might be tempted to define this list of “average target discoveries” as all the target 

PSMs that outscore the majority of their decoy competitions. That is, a target PSM is an a-

TDC discovery if it is a (TDC) discovery in more than np/2 of the np concatenated target-

decoy searches4. While intuitively appealing, when paired with the equally appealing 

averaging of the (TDC) estimated FDR, this approach quickly becomes too liberal: the FDR 

is underestimated.

We therefore devised a more nuanced approach which sequentially constructs its target 

discovery list starting from the highest target PSM score. Our method then goes through the 

decreasing target PSM scores, ensuring that the number of discoveries at the current score 

level does not deviate from the average number of (TDC) target discoveries, at the same 

score level, across our np independent TDC procedures. In order to meet this guarantee, a-

TDC occasionally needs to filter out or reject a target PSM as it goes down the list. At that 

point, the PSM that is selected for rejection is the one with the smallest score among all 

hitherto selected target discoveries that lost the most decoy competitions (Sec. 2.4).

At this point there are several plausible ways to define the corresponding a-TDC estimate of 

the FDR among its list of discoveries. We settled on the ratio between the average number of 

decoy discoveries across the np independent TDC procedures, and the actual number of a-

TDC discoveries. Importantly, this definition makes a-TDC with a single decoy (np = 1) 

identical to TDC.

4For reference, Supp. Tab. 1 provides a summary of our notations.
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Verification

We apply our novel procedures—partial calibration (and its adaptive variant, PC) and a-TDC

—to real as well as simulated data. Most simulations of the spectrum identification problem, 

carried out by us as well as others, have used calibrated scores. However, because much of 

our work here is dedicated to the effects of partial calibration, it was crucial to develop a 

simulation procedure using uncalibrated scores.

The simulated data supports our claim that our procedures control the FDR on-par or better 

than TDC does, and both the real and simulated data show that a-TDC reduces the 

variability of TDC and that partial calibration can yield a sizable increase in the number of 

target discoveries. In addition, we observe that, for a typical FDR range of interest, PC 

allows us to enjoy most of the gains offered by the our original, brute-force calibration 

procedure, while employing significantly fewer than 10,000 decoys.

2 Methods

2.1 TDC, FDR estimation, and target discoveries

An FDR controlling procedure returns a list of discoveries together with an estimate of the 

FDR among the reported discoveries. In particular, TDC defines its list of T (ρ) discoveries 

at score level ρ as all target PSMs with score ≥ ρ that outscore their corresponding decoy 

competition (i.e., they remain discoveries in the search of the concatenated database). 

Denoting by D (ρ) the number of decoy discoveries at score level ρ in the concatenated 

search, TDC estimates the FDR in its target discovery list as .

Often, the user is more interested in specifying a desired FDR level τ. In this context the 

score threshold that corresponds to an (estimated) FDR level of τ is 

. We refer to T (τ), the number of target discoveries at 

(estimated) FDR level τ, as short for T (ρ (τ)), the number of discoveries at score level ρ(τ), 

and similarly for the list of actual target discoveries at FDR level τ. For computational 

efficiency we limited our attention to a predetermined set of FDR values (Supp. Sec. 1.1). 

Note that the latter relation between τ and ρ(τ) is defined for any FDR estimation method 

and is not specific to TDC.

2.2 Calibrating and competing decoys

Let Σ denote the set of spectra generated in the experiment. We associate with each spectrum 

σ ∈ Σ its optimal matching peptide in the target database, which we loosely refer to as the 

“target PSM,” or just the “target score,” w(σ), when we refer to the score of that PSM.

Similarly, we assume that each spectrum σ is searched against two sets of randomly drawn 

decoy databases that, in practice, are generated by independently shuffling each peptide in 

the target database. The sets are statistically identical but we refer to one, , as the 

“calibrating” set of decoy databases and the other, , as the “competing” set of 

decoys. The distinction between the two sets of decoys is based on the different roles they 
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play. The calibrating decoys are used to calibrate the scores whereas the competing decoys 

are used for estimating the FDR using target decoy competition.

The score of the optimal match to σ in  is denoted by , and similarly  is the 

score of the optimal match to σ in . For each fixed σ the distribution of  (with 

respect to a randomly drawn decoy) is identical to that of . Importantly, since we do not 

assume that the score is necessarily calibrated, the said distribution can vary with the 

spectrum σ.

2.3 Partial calibration

By “partial calibration” we refer to a procedure that allows us to convert a raw score into a 

new score that is “more calibrated.” We prefer to be somewhat vague on what exactly the 

latter means but, intuitively, it means that the distribution of the decoy scores z (σ) is “less 

varied” with respect to the spectrum σ.

Our specific procedure here first uses the calibrating scores associated with the spectrum σ, 

, to assign to each observed competing decoy score  or target score s = w 
(σ) a new, primary score, qσ(s). This primary score is equivalent to the p-value of s with 

respect to the empirical cumulative distribution function (ECDF) constructed from the 

calibrating scores:

The secondary score assigned to s is the score s itself.

Using our primary-secondary score we define a new linear order, ≻, on the set of all 

observed target and competing decoy scores as follows. Let si be a score of an optimal PSM 

involving the spectrum σi. Instead of using the raw scores s1 and s2 to determine the order, 

we now say s1 ≽ s2 if qσ1 (s1) > qσ2 (s2), or if qσ1 (s1) = qσ2 (s2) and s1 ≥ s2.

Technically, we implement the new order, ≻, by first converting all observed target scores, 

 = {w (σ) : σ ∈ Σ}, and competing decoy scores, , into 

ranks, where the rank of 1 corresponds to the smallest observed score and the rank of |Σ| (np 

+ 1) corresponds to the largest observed score. We then map each observed raw score s 
associated with the spectrum σ to the partially calibrated score
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where r (s;  ∪ Ƶp), is the rank of the raw score s in the list of |Σ| (np + 1) observed target 

and competing decoys scores. It is easy to see that, given the set  ∪ Ƶp, for any observed 

pair of scores s1 and s2 from that set, s1 ≽ s2 if and only if ψσ (s1) ≥ ψσ (s2).

If the size of the calibrating set nb is very large then, assuming s1 ≠ s2, it is very unlikely that 

qσ1 (s1) = qσ2 (s2) and the new ordering will coincide with the one determined by the 

spectrum specific ECDFs that was used in our previously described calibration procedure 

[12]. At the other extreme end, when there are no calibrating decoys we revert to the 

ordering determined by the raw score. All other cases in some sense interpolate between 

these two extremes, with more weight placed on the ECDF the more refined it is.

Two points are worth noting. First, if the raw score is already calibrated then our partial 

calibration procedure will leave it calibrated. More precisely, recall that we defined the 

optimal PSM score function as calibrated if the distribution of z(σ), the score of the optimal 

match to σ in a randomly drawn database, , is invariant of the spectrum σ. Assuming that 

the calibrating decoys are drawn at the same time as , our new score ψ will also be 

calibrated. Second, the definition of ψσ (s) allows us to efficiently utilize an increasing 

number of calibrating decoys – a fact that we will return to when discussing progressive 

calibration.

2.4 Averaged TDC

The a-TDC procedure begins with repeatedly applying TDC to the target database t paired 

with each of the np independently drawn (competing) decoy databases , for i = 1,…, np. 

Let Ti (ρ) and Di (ρ) denote the number of target, respectively, decoy discoveries at level ρ, 

that are reported by TDC in the ith application. Recall that Di (ρ) is used to estimate Fi (ρ), 

the corresponding number of false target discoveries, and note that the reported list of target 

discoveries typically changes with each decoy database.

Let ρi denote the decreasing target PSM scores, and let  and 

 be the average of numbers of target and decoy discoveries, 

respectively, at level ρi across our np TDC procedures. Our a-TDC procedure sequentially 

constructs its discovery list (and simultaneously its filtered target PSMs list), ensuring that 

its number of discoveries at level ρi, T (ρi), does not deviate from  (apart from the 

inevitable difference due to rounding).

When a-TDC determines that it needs to filter out a target PSM, it rejects the PSM with the 

lowest partially calibrated score  among all hitherto selected target 

PSMs with raw score s ≥ ρi. Note that the latter partially calibrated score is with respect to 

the competing decoys rather than the usual calibrating decoys, and that the rank component 

of the score is taken only with respect to the target scores. In other words, the rejected PSM 

is the one with the smallest raw score among all remaining target discoveries scoring ≥ ρi 

that lost the most decoy competitions. Finally, a-TDC estimates the FDR in its level ρi 

discovery list as  (Suppl. Alg. 1).
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2.5 Progressive calibration with mean cutoff criterion

Progressive calibration (PC) starts with zero calibrating decoys (raw scores) and goes 

through several cycles of essentially doubling the number of calibrating decoys. At the ith 

cycle we randomly draw 2i−1 additional calibrating decoy databases and search each of our 

spectra against these databases. Thus, after the ith doubling, for each spectrum we have a set 

of 2i − 1 calibrating decoy scores, which contains the corresponding calibrating decoy set of 

the previous doubling cycle. The process terminates if the cutoff criterion below was 

engaged, or the maximal number of calibrating decoys was reached (2047 for our 

simulations and 10,000 for the real data).

Adjusting the partially calibrated score to take into account the newly drawn set of decoys 

PSM scores, in each of PC's doubling cycles, is straightforward due to the identity

(1)

which in turn implies

Hence, we only need to compute the ranks, r (s;  ∪ Ƶp) for all s observed target scores, , 

and competing decoy scores, Ƶp , once and then update  using (1).

We will see below (Fig. 1) that for some combinations of data and FDR levels, partial 

calibration can achieve near optimal results with very few calibrating decoys. In other cases, 

and particularly for very small FDR levels, achieving near optimal results requires many 

more calibrating decoys. Taking this into account, PC's stopping criterion focuses only on 

the mean increase in the number of discoveries for FDR levels in a range that is specified by 

the user (≥ 0.05 in our experiments). The exact details are in Supp. Sec. 1.2.

Note that the above cutoff criterion applies regardless of whether the FDR estimation is done 

using TDC or a-TDC. In addition, we only engage the cutoff criterion from the third 

doubling cycle onward (so we use at least seven calibrating decoys).

2.6 Simulations using uncalibrated scores

One can readily simulate raw decoy scores by searching real spectra against randomly 

shuffled versions of real peptide databases, but it is less clear how to simulate target PSM 

scores while still knowing which ones are “correct” and which are “false.” Here we 

accomplish this by first sampling the optimal PSM scores using a variant of our previously 

described calibrated sampling scheme [13], where false PSMs are drawn from a null 

distribution and correct PSM are drawn from an alternative, beta distribution, and each 

spectrum has a fixed number of candidate peptides it can match. We then convert, these 
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calibrated PSM scores to raw scores using a spectrum specific transformation modeled after 

a real data set, as explained next.

We begin with associating with each spectrum from the real set (here we used the yeast 

dataset, Supp. Sec. 1.4) an ECDF constructed from a sample of 10K optimal decoy PSM 

scores, which are obtained by searching the spectrum against 10K randomly shuffled 

versions of the target database. While we could have converted the calibrated scores to raw 

scores using the quantiles of this spectrum-specific ECDF, this would have limited the 

granularity of our score when analyzing the often encountered high scoring correct PSMs.

Therefore, to preserve the necessary granularity in our scoring function we instead relied on 

the observation that the distribution of the null optimal PSM scores of a specific spectrum 

can often be well approximated by a Gumbel EVD [16]. Specifically, we fitted a location-

shifted and scaled Gumbel distribution to each of our spectrum-specific ECDFs generated by 

the yeast real data. We then randomly associated the fitted Gumbel distributions to our 

simulated spectra and used the quantiles of those fitted distributions to convert our initially 

sampled calibrated scores (Supp. Sec. 1.3). Using this approach our simulated raw scores 

inherit the uncalibrated nature of the real yeast data.

2.7 Real data analysis

We analyze three real data sets, derived from yeast, C. elegans (worm), and Plasmodium 
falciparum (“malaria”). For each of these three sets, we conducted 2000 independent 

experiments, each of which consisted of randomly drawing 10 distinct competing decoys 

from a pool of 1K such decoys. We then applied partial calibration to both the target and the 

competing decoy PSM scores, using an increasing number of calibrating decoys, which were 

randomly drawn from a pool of 10K such decoys. We next applied a-TDC (using the 10 

drawn competing decoys) and TDC (using just the first of those competing decoys) to the 

increasingly calibrated data, noting the number of discoveries and virtually applying PC to 

the data. Further details are provided in Supp. Sec. 1.4.

3 Results

3.1 Partial calibration yields more statistical power

The effectiveness of our partial calibration scheme is demonstrated by our new raw score 

simulation method. For example, looking at the mean number of TDC target discoveries 

across 10K runs, each of which simulated a set of spectra of size 10K with 50% native 

spectra (these are spectra for which the correct peptide is in the target database), we find that 

this mean consistently increases with the number of calibrating decoys (Fig. 1B). Moreover, 

for FDR levels which are not very small, much of that increase can be realized with a 

relatively small number of calibrating decoys, e.g., at an estimated FDR level of 0.05 using 

no calibrating decoys (raw score) the mean number of TDC discoveries is 3317, but using 31 

calibrating decoys it rises to 3726 (12% increase) and with 63 decoys it is at 3942, which is 

98% of the maximal 4038 average discoveries (22% increase over the raw score) obtained 

when using 2047 calibrating decoys (Fig. 1B). Of course, the increase in the mean number 
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of discoveries varies with the parameters of the problem, but our simulations show a 

consistent increase with the number of calibrating decoys (Supp. Fig. 1).

The accuracy of TDC, in terms of the actual FDR (as estimated by the empirical mean of the 

FDP across 10K samples) over the nominal threshold, seems largely unchanged by the 

increase in the number of calibrating decoys (Fig. 1A and Supp. Fig. 2, middle curves). At 

the same time, as expected, the variability of the estimate decreases slightly with the 

increased calibration (same figures, upper and lower set of curves).

3.2 Averaged TDC

With calibrated scores—Fig. 2A demonstrates that a-TDC reduces the variability in 

FDR estimation, even when the score is perfectly calibrated. This reduction is more 

pronounced with smaller sets of spectra and smaller FDR levels (Supp. Fig. 3). As a 

consequence, the variabilities in the reported number of discoveries as well as of false 
discoveries are also reduced (Fig. 2B, and Supp. Fig. 5 and 7). These variance reductions 

imply that the actual list of target discoveries should also exhibit reduced variability 

compared with single-decoy TDC, although we did not try to quantify this effect here.

Interestingly, a-TDC also typically mitigates much of the previously noted liberal bias of 

TDC [11], as can be seen in the set of middle curves of Fig. 2A and Supp. Fig. 3, which 

compare the empirical FDR (average of the FDP with respect to 10K independently drawn 

sets) with the selected FDR threshold (nominal level) using TDC as well as a-TDC with 3, 

10 and 100 decoys.

With raw scores—As expected, when using a raw, uncalibrated score, a-TDC reduces 

TDC's variability even slightly more effectively (Fig. 2C, and Supp. Fig. 4, 6, and 8). 

Unexpectedly however, a-TDC also becomes slightly conservative as the number of 

competing decoys increases (Fig. 2C, and Supp. Fig. 4). In spite of this trend, with the 

exception of very small estimated FDR levels, where TDC is clearly liberally biased, a-TDC 

is typically making at least as many true discoveries as does TDC. Moreover, there are cases 

in which the number of true discoveries increases with the number of competing decoys that 

a-TDC utilizes, and in particular, in those cases it is typically making more true discoveries 

than TDC does (Fig. 2D and Supp. Fig. 9).

The a-TDC procedure yields more true discoveries than TDC when using an uncalibrated 

score because a-TDC benefits from the same effect that partial calibration does: by having a 

better way to order the PSMs. While, strictly speaking, a-TDC is not reordering the PSMs as 

partial calibration does, a-TDC selects the target PSMs for filtering based on the partially 

calibrated score with respect to the competing decoys; hence, a-TDC engages in implicit 

calibration.

a-TDC benefits from partial calibration—We next investigated the benefits of 

combining our two procedures, a-TDC and partial calibration. We find that, similar to TDC, 

a-TDC can gain a significant boost in statistical power, as can be seen by the increase in the 

number of target discoveries in Supp. Fig. 10. As expected from our analyses of a-TDC's 

performance, a-TDC's power advantage over TDC diminishes with the increase in the 
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number of calibrating decoys (Fig. 2E, Supp. Fig. 11). Indeed, when the score is perfectly 

calibrated a-TDC should not have more power than TDC does; regardless, for all degrees of 

calibration, a-TDC does exhibit reduced variability (e.g., Supp. Fig. 12). At the same time, 

a-TDC become less conservative with the increase in the number of calibrating decoys (Fig. 

2F, Supp. Fig. 13).

3.3 Progressive calibration dynamically decides how many decoys are sufficient

Progressive calibration can be quite effective in significantly reducing the number of 

calibrating decoys that we use while achieving near-optimal power. In Fig. 3A-B) we 

repeatedly simulated identifying 10K spectra (50% native) and used PC coupled with TDC 

to control the FDR. The experiment was repeated 10K times, and the average number of 

calibrating decoys determined by our PC procedure was only 117. Still, in terms of power 

little was lost: comparing the ratio of the number of (TDC) target discoveries our PC 

procedure made to the number of (TDC) target discoveries attained by the maximally 

considered 2047 calibrating decoys we find a median of 99.3% and 0.95 quantile of 98% for 

all nominal FDR levels ≥ 0.05. In other words, while using about 20 times fewer calibrating 

decoys, PC delivered 98% of the target discoveries at any estimated FDR level ≥ 0.05 in 

95% of our 10K experiments. For results using additional spectrum set sizes and proportions 

of native spectra see Supp. Fig. 14.

Our cutoff criterion is not infallible. Indeed, our simulations show that when the set of 

spectra or the number of correct PSMs is small, then progressive calibration might fail to 

achieve the near-optimal results TDC can achieve with “full” calibration. For example, for n 
= 500 and a native spectrum proportion of 10% (Supp. Fig. 15), the median increase (across 

10K experiments) in the number of TDC target discoveries made when using 2047 

calibrating decoys compared with using PC at FDR level 0.05 is 14%. The corresponding 

0.95 quantile is 60% additional discoveries; that is, in 5% of the experiments the increase in 

discoveries at FDR 0.05 is 60% or higher. One should, however, keep in mind that the mean 

number of additional discoveries the more intensive calibration effort yields here at FDR 

0.05 is about 5. Similarly, with 500 spectra and 50% native spectra, we see in 5% of the 

experiments an increase higher than 16% when using TDC with 2047 decoys (the median 

increase is only 1.5%).

It is not surprising that combining a-TDC with PC still offers reduced variability in FDR 

estimation compared to combining TDC with PC (Supp. Fig. 19). However, with its reduced 

variability a-TDC can also help us here in better identifying those cases where increased 

calibration can yield a non-negligible number of additional discoveries. For example, in the 

same experiment described above with 500 spectra, of which 50% are native, we find that in 

95% of the runs the increase in a-TDC discoveries using 2047 decoys over using PC at a 

nominal FDR level 0.05 is no more than 6.8% (Supp. Fig. 18), compared with 16% when 

using TDC. This experiment demonstrates that a-TDC is less likely to prematurely terminate 

the doubling cycle, and it translates here to observing in 5% of the experiments a 14% or 

more increase in the number of correct a-TDC target discoveries compared with TDC at the 

same FDR level of 0.05 (Supp. Fig. 3C, Supp. Fig. 20). Of course, this increase in correct 
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discoveries does not come for free: when using TDC to control the FDR, PC used an average 

of 123 calibrating decoys, whereas with a-TDC that number was 134.

3.4 Analysis of real data

Thus far, we have described analyses that were carried out with simulated data sets. We also 

carried out similar analyses using the three real data sets described in Supp. Sec. 1.4. Of 

course, when analyzing real data we do not know which of the discoveries are false, so 

instead we compare the reported number of discoveries. As outlined below, the results 

qualitatively agree with our simulations findings.

Consistent with the analysis of our simulations using raw scores, we see that the number of 

both TDC and a-TDC target discoveries increases with the number of calibrating decoys 

(Supp. Fig. 21). Specifically, using the malaria data and an estimated FDR level of 0.05, the 

mean number of TDC target discoveries gradually increases from 2434 when using no 

calibrating decoys to 2845 when using 10K calibrating decoys (17%, Fig. 4A). We observed 

a similar increase in the average number of discoveries at the same FDR level when using a-

TDC: 2433 to 2844 when increasing from 0 to 10K calibrating decoys. Also consistent with 

our simulations, we see that regardless of how well calibrated are our scores, a-TDC reduces 

the variability in the number of discoveries (Fig. 4B, Supp. Fig. 22).

We also observe in the real data that PC, especially combined with a-TDC, yields near 

optimal power with a significantly smaller number of calibrating decoys (Supp. Fig. 23). 

Specifically, the average number of calibrating decoys used by PC with a-TDC (10 

competing decoys) are: yeast 262 (278 with TDC), worm 235 (165), and malaria 165 (141). 

The corresponding power, expressed in terms of the median of the percentage of the number 

of discoveries made when using all 10K calibrating decoys, is: yeast 99.2% (99.3% for 

TDC), worm 98.8% (96.9%), malaria 99.3% (98.9%). This shows that typically PC yields 

almost maximal power (with respect to calibration) using a much smaller number of 

calibrating decoys.

Again we find that combining PC with a-TDC can reduce the number of premature stops in 

PC's doubling process. For example, in 100 of our 2K runs (5%) using the malaria data set, 

the number of TDC discoveries at FDR level 0.05 was at least 13% higher when using all 

10K calibrating decoys than when TDC used PC. Applying a-TDC, the corresponding 

increase was only 2.8% (Supp. Fig. 23) and this translated to a 12.2% increase in the number 

of a-TDC discoveries in 5% of our 2K runs (Supp. Fig. 4C).

Finally, even using a-TDC, PC can sometime terminate its decoy doubling procedure earlier 

than we would like. For example, applying a-TDC to the worm data set using all 10K 

calibrating decoys, we found that in 100 of our 2K runs (5%) there are at least 7.2% more 

discoveries than when using the number of decoys determined by PC (Supp. Fig. 23).

4 Discussion

We offer two novel methods that rely on additional decoy databases to improve on TDC, the 

most commonly used FDR controlling procedure for tandem mass spectrum identification. 
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The partial calibration procedure increases the power of TDC by using a primary-secondary 

score that implicitly interpolates between our original calibration procedure based on the 

spectrum-specific ECDF and the raw score. This primary-secondary score's flexibility allows 

us to gradually enjoy the increase in power that our original calibration procedure offers 

while investing significantly fewer computational resources: the procedure works even with 

a single calibrating decoy.

As we noted before [12], we are not the first to point out the value of calibration [10]. 

However, our approach is different because it does not assume a specific parametric family 

[15, 16] or require the introduction of a new score function [14, 9]. These previous 

approaches are less general, and in some cases they might partially fail [12], In contrast, our 

approach is generally applicable, albeit at a computational cost.

Our new a-TDC procedure helps reduce the decoy-dependent variability of TDC, both in 

terms of the composition of the reported list of discoveries, as well as in the associated FDR 

estimation. The impact of a-TDC is particularly noticeable for smaller datasets, and those 

are also the ones where the additional computational load of a-TDC is less prohibitive.

Interestingly, Barber and Candés recently proved that a slightly modified version of TDC, 

where one replaces TDC's estimated FDR of  with 

, does not suffer from the liberal bias that TDC exhibits for small 

FDR levels [2]. Our experiments above show that a-TDC is also able to mitigate much of the 

liberal bias of TDC and suggest that a-TDC does not result in the loss of power that is 

associated with the Barber and Candés correction.

An alternative to a-TDC to reduce variability would be to use multiple decoys in a 

concatenated search. In such an approach, instead of using, say, 10 decoy databases, each the 

same size as the target database, one can use a single decoy database that is 10 times larger 

than the target database. A simple adjustment to the estimated FDR makes this approach 

feasible; however, it has the obvious downside that the larger the decoy set is, the more 

target discoveries are lost. In comparison, the number of target discoveries a-TDC filters out 

is the average number that is filtered out by each of the individual TDC procedures (each 

using equal-sized sets of decoys and targets).

Note that there is some overlap in the goals of partial calibration and a-TDC: a-TDC can 

increase the number of discoveries in some cases, and calibration can also reduce variability. 

However, a-TDC will further reduce the variability even if the score is perfectly calibrated. 

In light of this observation, it would be particularly interesting to look into the balancing act 

of allocating extra decoys to a-TDC vs. partial calibration. An altogether different direction 

for future research on a-TDC is the theoretical asymptotic analysis of its performance as the 

number of competing decoys increases (and its potential connection with [8]).

We further introduce progressive calibration (PC), a method that attempts to find from the 

data what is the “right” amount of partial calibration we need to invest in. Based on a simple 

test of the increase in the number of target discoveries in each of its decoy-doubling cycles, 

PC can typically yield near-optimal power with significant computational savings. The 
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current stopping criterion employed by PC is ad hoc and could benefit from a deeper 

analysis in the future including, for example, considering a criterion based on the change in 

the discovery lists themselves rather than just the number of discoveries.

We analyzed all our methods using a novel simulation procedure that allows us to sample 

datasets that are realistically modeled after real ones. In particular, our samples capture the 

uncalibrated nature of commonly used scores like XCorr. Our findings in simulated data are 

echoed in the analysis of three real data sets, showing that our methods can positively impact 

real biological analysis.

We note that here we looked at improving TDC using additional, randomly shuffled decoys. 

it would be interesting to compare the resulting enhanced performance with adjusting the 

mix-max competing FDR controlling method [11] to allow it to utilize multiple decoys as 

well.

As noted, TDC is the standard procedure for controlling the FDR, although it is typically 

carried out using reversed rather than shuffled databases. We see no inherent difference 

between shuffling the peptides and reversing them, and moreover, while not exactly 

considering the shuffling procedure, Elias and Gygi noted that [5], “Despite their 

differences, the four decoy databases considered here—protein reversal, peptide pseudo-

reveral, random and Markov chain— yielded similar estimations of total correct 

identifications, and produced similar numbers of correct identifications.” More generally, the 

theoretical question of the applicability of TDC, which was raised in [8], has no particularly 

satisfying answer at this point. We currently view this as a modeling question: you cannot 

prove your model is suitable; rather, at best you can argue that it is. Regardless, the methods 

presented here improve on TDC whenever it is applicable.

Finally, we stress that these methods apply more generally than the spectrum identification 

problem. Indeed, as we recently argued, using TDC in this context is a special case of the 

problem of controlling the FDR among discoveries from searching an incomplete database 

[?]. In particular, our methods are relevant to controlling the FDR in peptide and protein 

identification, as well as in problems that arise in metagenomics sequence homology search 

and forensics.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. Partial calibration (TDC)
A The set of middle curves, which correspond to the log of the ratio between the empirical 

FDR and the nominal FDR level, essentially coincide for all considered numbers of 

calibrating decoys (the modest liberal bias of TDC for low FDR values is discussed in Sec. 

3.2). The set of lower and upper curves correspond to the log of the ratio of the 0.05 and 

0.95 quantiles of the FDP to the nominal FDR level. B The mean number of (TDC) target 

discoveries consistently increases with the number of calibrating decoys, although the law of 

diminishing returns is quite evident. A-B All means and quantiles are taken with respect to 

10K simulation runs using our raw score, each with 10K spectra, 50% native spectra. The 

number of calibrating decoys was varied from 0 to 2047 (see Methods for details).
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Fig. 2. Averaged TDC (a-TDC). A-D
Comparing the FDR controlling procedure of a-TDC with 1 (TDC), 3, 10, and 100 

competing decoys. E-F a-TDC with 10 competing decoys. A Plotted are the log of the ratios 

of the mean (empirical FDR, middle curves) as well as the 0.05 and 0.95 quantiles (upper 

and lower curves) of the FDP in the target discovery lists of each of the four procedures, to 

the nominal FDR level. Scores are calibrated. B The 0.05 and 0.95 quantiles of the number 

of target discoveries. Scores are calibrated. C Same as panel A, except the simulations were 

done using the raw (uncalibrated) score. D Shown are the logarithm of the median (middle 

curves), 0.05 and 0.95 quantiles of the number of true target discoveries reported by a-TDC 

(with 3, 10, and 100 decoys) over the corresponding number reported by TDC at the same 

FDR threshold. Scores are uncalibrated. E The log of the median of the ratio of the number 

of true a-TDC to TDC discoveries show that the power advantage of a-TDC over TDC 

diminishes with the increase in the number of calibrating decoys. F Coincidentally, a-TDC 

becomes less conservative: the middle set of curves show that the log of the empirical FDR 

(mean of FDP) over the nominal level increases toward 0 for small FDR levels. (The 0.05 

and 0.95 quantiles are also provided.) A-F All quantiles are taken with respect to 10K 

simulations, each with 10K spectra, 50% native spectra.
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Fig. 3. Progressive calibration (PC)
A The mean number of TDC discoveries using: 0 (raw score), 63, 127, 2047 calibrating 

decoys as well as the number determined by PC (63 and 127 are the number of decoys in the 

two cycles that bound the mean number of decoys used by PC in this experiment: 117). B 
The 0.05, 0.5, and 0.95 quantiles of the ratio of the number of TDC discoveries when using 

the maximal number of 2047 calibrating decoys to the number of discoveries found by PC. 

C The same quantiles of the ratio of a-TDC (10 competing decoys) to TDC correct 
discoveries (both with PC). A-C The vertical bars are located at 0.05, the minimal FDR level 

of interest for PC in this setup. All means and quantiles are taken with respect to 10K 

simulations using raw scores, each with 10K spectra in A-B, and 500 spectra in C, 50% 

native spectra in all.
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Fig. 4. Malaria data
A Partial calibration: the mean number of target discoveries in the malaria dataset increases 

with the number of calibrating decoys. B a-TDC is less variable than TDC: the 0.05 and 0.95 

quantiles of the number of a-TDC / TDC discoveries are compared (scores are calibrated 

using all 10K calibrating decoys). C Using PC a-TDC can have more power than TDC: 

plotted are the log of the ratios of the 0.05, 0.5 and 0.95 quantiles of the number of a-TDC 

(10 competing decoys) discoveries over the corresponding numbers for TDC discoveries. A-
C All quantiles are taken with respect to 2000 randomly drawn sets of competing decoys, as 

described in Supp. Sec. 1.4.
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