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ABSTRACT: Normal aging is associated with both structural changes in many brain regions and functional 

declines in several cognitive domains with advancing age. Advanced neuroimaging techniques enable 

explorative analyses of structural alterations that can be used as assessments of such age-related changes. Here 

we used voxel-based morphometry (VBM) to investigate regional and global brain volume differences among 

four groups of healthy adults from the IXI Dataset: older females (OF, mean age 68.35 yrs; n=69), older males 

(OM, 68.43 yrs; n=66), young females (YF, 27.09 yrs; n=71), and young males (YM, 27.91 yrs; n=71), using 3D 

T1-weighted MRI data. At the global level, we investigated the influence of age and gender on brain volumes 

using a two-way analysis of variance. With respect to gender, we used the Pearson correlation to investigate 

global brain volume alterations due to age in the older and young groups. At the regional level, we used a 

flexible factorial statistical test to compare the means of gray matter (GM) and white matter (WM) volume 

alterations among the four groups. We observed different patterns in both the global and regional GM and 

WM alterations in the young and older groups with respect to gender. At the global level, we observed 

significant influences of age and gender on global brain volumes. At the regional level, the older subjects showed 

a widespread reduction in GM volume in regions of the frontal, insular, and cingulate cortices compared to the 

young subjects in both genders. Compared to the young subjects, the older subjects showed a widespread WM 

decline prominently in the thalamic radiations, in addition to increased WM in pericentral and occipital areas. 

Knowledge of these observed brain volume differences and changes may contribute to the elucidation of 

mechanisms underlying aging as well as age-related brain atrophy and disease. 
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In the human brain, magnetic resonance imaging (MRI) 

has revealed morphometric brain changes due to 

development and aging [1-3]. Various studies show that 

there is a significant link between age and cognitive 

functions such as memory, language, attention, thinking, 

and executive skills [4-6]. The many investigations of the 

human brain over the past several decades have broadened 

our understanding of the brain and contributed to the 

monitoring of clinical treatment effects in many brain 

diseases in aging individuals, including Alzheimer's 

disease, Parkinson's disease, schizophrenia, dementia, 

depression, and multiple sclerosis. In addition, several 

research groups have investigated the effects of age on 

gray matter density [7], cortical thickness [8], white 

matter signal abnormalities [9], and alterations in 

structural and functional brain systems [10]. 
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In the present study, we investigated the differences 

in global and regional brain volume alterations between 

young and older adults with respect to gender. We used 

structural magnetic resonance imaging (sMRI) data 

because of its advantages (including good tissue contrast 

and excellent spatial resolution without radiation 

exposure), which are lacking in positron emission 

tomography and single photon emission computed 

tomography modalities. The location-specific measures 

derived from sMRI are influential biomarkers for 

assessments of brain volume alterations. 

Voxel-based morphometry (VBM) was developed 

as an advanced method for performing group-wise 

comparisons of sMRI scans [11]. Briefly, VBM assesses 

whole-brain structures with voxel-by-voxel comparisons 

that can be used to compare tissue concentrations or 

volumes between subject groups to distinguish structural 

alterations [12]. The VBM technique has been widely 

used to assess the gray matter (GM) and white matter 

(WM) alterations in various brain diseases such as 

Alzheimer's disease [13-15], Parkinson's disease [16], and 

epilepsy [17]. We used the VBM technique in the present 

study to determine the overall and regional brain volume 

differences among healthy male and female young (~late 

20s) and older (~late 60s) individuals. 

 

 

 
 
Figure 1. The general structure of proposed analysis procedure. 

 

MATERIALS AND METHODS 

 

Image acquisition and subjects 

 

The data in the context of the present study were acquired 

from the publicly accessible IXI Dataset (brain-

development.org/ixi-dataset/). The MRI scans were 

acquired from three sites with 1.5 and 3T scanners 

(FoV = 256 mm × 256 mm, matrix 

size = 0.9375 × 0.9375 × 1.2 mm3). Details of the IXI data 

and scan parameters are at: (http://biomedic.doc.ic.ac.uk/ 

brain-development/index.php?n = Main.Datasets). 

As summarized in Table 1, we selected a total of 277 

healthy subjects from the IXI Dataset and categorized 

them into the following four age/gender groups: older 

females (OF, mean age 68.35 yrs; n=69), older males 

(OM, 68.43 yrs; n=66), young females (YF, 27.09 yrs; 

n=71), and young males (YM, 27.91 yrs; n=71). There 

was no significant difference in age between the OF and 

OM groups or between the YF and YM groups. 

http://biomedic.doc.ic.ac.uk/%20brain-development/index
http://biomedic.doc.ic.ac.uk/%20brain-development/index
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Table 1. The characteristics of the four groups of healthy subjects from the IXI Dataset 

 

 

Older females 

(n=69) 

Older males 

(n=66) 

Young females 

(n=71) 

Young males 

(n=71) 

Age (yrs) 

Range 

68.35 ± 5.80 

(60–86) 

68.43 ± 6.21 

(60–86) 

27.09 ± 3.59 

(20–34) 

27.91 ± 3.79 

(20–34) 

 

All data are mean ± standard deviation (SD). 

 

Methodology 

 

Figure 1 illustrates the major components of the 

methodology used in this study, including the acquisition 

of MRI scans, the VBM analysis, and the statistical 

analysis of brain volumes in the young and older groups 

with regard to gender. 

The MRI preprocessing was performed using the 

Computational Anatomy Toolbox (CAT12; 

http://dbm.neuro.uni-jena.de/cat) [18] and Statistical 

Parameter Mapping (SPM) software ver. 12 

(http://www.fil.ion.ucl.ac.uk/spm). Briefly, all MRI scans 

were segmented into WM, GM, and cerebrospinal fluid 

(CSF) components using the unified segmentation model 

[19], and then modulated and normalized into a Montreal 

Neurological Institute (MNI) template. 

To provide a more regional and nonlinear 

deformation and to increase the intersubjective alignment 

of the MRI scans, we applied the DARTEL approach in 

the spatial normalization stage. The DARTEL approach 

helps optimize the sensitivity of such analyses by using 

the Levenberg-Marquardt strategy [20]. In addition, the 

DARTEL approach can provide more precise spatial 

normalization to the template compared to the 

conventional algorithm [21-23]. The details of a 

comparison of the DARTEL approach and the standard 

registration methods were as described [24]. 

In this study, we used the GM and WM images. 

Finally, with the use of an 8-mm full width at half 

maximum (FWHM) Gaussian isotropic kernel, the 

segmented GM and WM images were spatially smoothed. 

The smoothed, modulated, DARTEL-warped and 

normalized GM and WM modalities were used for our 

statistical analysis through a flexible factorial in the 

SPM12 program. Regional GM and WM alterations were 

generated by a voxel-based analysis over the whole brain. 

The absolute threshold for masking was adjusted to 0.2 to 

avoid possible edge effects between GM and WM or CSF. 

Group comparisons were assessed with the use of a 

family-wise error (FWE) at a threshold of p˂0.05, 

corrected for multiple comparisons; statistical 

significance was determined using an extent threshold of 

100 adjacent voxels. 

In addition, to explore the regional GM and WM 

differences, we identified the global brain tissue volumes 

in the two older subject groups versus the two young 

groups with regard to gender. In this manner, we 

calculated the absolute GM volume (GMV), the absolute 

WM volume (WMV), and the absolute CSF volume as 

well as the total intracranial volume (TIV) of each subject. 

The TIV was calculated as the sum of the GMV, WMV, 

and CSF volumes. In order to correct for variation in the 

subjects' head sizes, we also calculated the normalized 

GM (nGM) and normalized WM (nWM) by dividing the 

individual subjects' GMV and WMV values by each 

subject's respective TIV value. 

 

Statistical analysis 

 

To assess the influence of two independent variables (age, 

gender) on global brain variables, we performed a two-

way analysis of variance (ANOVA). Two levels of age 

(young and older) and gender (female and male) were 

examined. Between-group differences in global brain 

variables among or between groups were examined by an 

ANOVA followed by Tukey's multiple comparison test. 

We used the Pearson correlation test to investigate the 

association between brain volume changes and age. All 

statistical analyses were performed using Statistical 

Package for Social Sciences software (SPSS, ver. 16.0; 

SPSS, Chicago, IL) with p˂0.05 as the significance level. 

 

RESULTS 

 

Global differences in brain volume 

 

Whole-brain analyses help provide a reliable indication of 

total brain volume differences (in accord with age and 

gender) which occur in the entire brain. As described 

above in Section 2.2, we calculated the nGM and nWM in 

order to correct for variations in head size. Here we report 

the statistical results related to the influence of age and 

gender on global brain tissue volumes (i.e., the nGM, 

nWM and TIV) as well as the correlations between age 

and global brain tissue volume differences with respect to 

gender. 

http://dbm.neuro.uni-jena.de/cat
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Figure 2.  The box plots for the OF, YF, OM, and YM subjects. The box plots for the OF, YF, OM, and 

YM subjects' (A) normalized GM, (B) normalized WM and (C) total intracranial volume (TIV). Significance 

was determined by an ANOVA followed by Tukey's post-hoc test. *p<0.05, **p<0.001. 

 

The influence of age and gender on global brain volumes 

Table 2 presents the ranges of the whole-brain tissue 

volumes in the four subject groups. Regarding the nGM, 

the main effect of the age level yielded an F-ratio of 

F[1, 273] = 894.60, p<0.001, indicating a significant 

difference in nGM between the young subjects (mean 

[M] = 0.462, SD = 0.020) and the older subjects 

(M = 0.389, SD = 0.021). The main effect of gender 

yielded an F-ratio of F[1, 273] = 25.25, p<0.001, 

revealing a significant difference in nGM between the 

female (M = 0.432, SD = 0.042) and male subjects 

(M = 0.420, SD = 0.040). The interaction effect between 

age and gender on nGM was not significant: 

F[1, 273] = 0.079, p=0.77. 

In a direct comparison of the YF versus OF subjects, 

the average values of nGM were 0.468 ± 0.022 and 

0.399 ± 0.025 (mean difference [MD] = 0.073, p˂0.001), 

whereas the average nGM values of the YM and OM 

subjects were 0.455 ± 0.012 and 0.383 ± 0.016 

(MD = 0.072, p˂0.001), respectively. Figure 2A shows 

the normalized GM box plots for the four subject groups. 

Regarding the nWM, the main effect of age yielded 

an F-ratio of F[1, 273] = 30.39, p<0.001, indicating a 

significant difference between the young subjects 

(M = 0.344, SD = 0.017) and the older subjects 

(M = 0.333, SD = 0.016). The main effect of gender 

yielded an F-ratio of F[1, 273] = 5.90, p<0.05, 

demonstrating a significant difference in nWM between 
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the females (M = 0.336, SD = 0.015) and males 

(M = 0.341, SD = 0.019). There was a significant 

interaction of age and gender on the nWM: 

F[1, 273] = 9.52, p<0.05. 

In our direct comparison of the YM and OM 

subjects, the groups' average nWM values were 

0.349 ± 0.013 and 0.332 ± 0.017 (MD = 0.017, p˂0.01), 

respectively. However, there was no significant difference 

in the average nWM values of the YF and OF groups. 

Figure 2b shows the normalized WM box plots of the four 

age  gender groups. 

Regarding the TIV, the main effect of age showed 

an F-ratio of F[1, 273] = 5.54, p<0.05, i.e., a significant 

difference between the young subjects (M = 1548.60, 

SD = 142.19) and the older subjects (M = 1512.40, 

SD = 149.93). The main effect of gender had an F-ratio of 

F[1, 273] = 127.30, p<0.001, revealing a significant 

difference in TIV between the female (M = 1449.80, 

SD = 119.08) and male subjects (M = 1613.90, 

SD = 124.77). The interaction effect was not significant: 

F[1, 273] = 0.78, p = 0.37. 

In our direct comparisons between the YF versus OF 

subjects and the YM versus OM subjects, there were no 

significant differences in the average of TIV values. This 

absence of significant differences in TIV showed that the 

two female groups (YF and OF) were comparable with 

respect to head size, as were the two male groups (YM 

and OM). Figure 2c shows the TIV box plot for each 

group. 

 

 

 

Table 2. The range of global volume measurements for the young and older female and male subjects 

 
 Older females  

(n=69) 

Young females 

(n=66) 

Older males 

(n=71) 

Young males 

(n=71) 

GM (ml) 562.59 ± 50.08 689.66 ± 59.77 614.28 ± 60.11 739.58 ± 56.97 

WM (ml) 476.56 ± 44.65 499.70 ± 52.09 533.98 ± 57.17 568.6425 ± 53.71 

TIV (ml) 1425.90 ± 108.93 1473.12 ± 124.58 1602.91 ± 132.94 1624.20 ± 116.68 

nGM 0.399 ± 0.02 0.468 ± 0.02 0.383 ± 0.01 0.455 ± 0.01 

nWM 0.334 ± 0.01 0.339 ± 0.01 0.332 ± 0.01 0.349 ± 0.01 

 

All data are mean ± SD. GM: gray matter; WM: white matter; TIV:  total intracranial volume; nGM: normalized gray matter; 

nWM: normalized white matter. 

 

The correlation between the global brain tissue volume 
changes and age 

To determine the effect of age on brain tissue volume 

changes, we estimated the correlation between age and 

global brain tissue volumes among the subject groups. 

Figure 3a–f illustrates the results of the correlation 

analysis of nGM, nWM, and TIV values in accord with 

age and gender. 

Regarding the nGM (Fig. 3A, B), there was a strong 

negative correlation between age and nGMV in the young 

subjects (females: r (n=71) = −0.42, p<0.001; males: r 

(n=71) = −0.33, p<0.001) and in the older subjects 

(females: r (n=69) = −0.60, p<0.001; males: r 

(n=66) = −0.58, p<0.001). In the comparison of the nGM 

changes, the statistical analysis revealed a significant 

linear reduction with age in the older subjects as well as 

in the young subjects. In comparison to the males, this 

decrease was steeper in the females in both the older and 

young groups. 

Regarding the nWM (Fig. 3C, D), we observed a 

weak interaction between nWM and age in the young 

subjects (females: r (71) = 0.03, p = ns; males: r 

(71) = 0.15, p = ns). Notably, the Pearson correlation test 

revealed a significant negative interaction between nWM 

and age in the older subjects (females: r (69) = −0.25, 

p<0.05; males: r (66) = −0.62, p<0.001), and this decrease 

was significantly steeper in the males compared to the 

females. There was no significant relationship between 

TIV and age in the various groups (p = ns) (Fig. 3E,F). 
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Figure 3. Plots of brain volumes vs. age in the young and older groups with respect to gender.  (A) normalized 

GMV in the young subjects, (B) normalized GMV in the older subjects, (C) normalized WMV in the young subjects, 

(D) normalized WMV in the older subjects, (E) TIV in the young subjects, and (F) TIV in the older subjects. 

 

Regional differences in brain volume 

 

GM regional differences 

Figure 4 shows the results of the group comparison of GM 

volume between the older and young subjects with respect 

to gender as well as the F-test results for the four groups. 

The VBM analysis revealed a diffuse and age-related 

reduction in the GM volume prominently in the frontal, 

insular, and cingulate cortex in both genders. In contrast, 

the occipitoparietal areas, medial temporal structures, and 

subcortical gray matter were relatively spared the age-

related reduction in both genders. No significant 

interaction of age  gender regarding the reginal GM 

volume was observed. The reverse contrast showed no 

significant GMV reduction in the young subjects 

compared with the aging subjects. 

 

WM regional differences 

 

Figure 5 illustrates the results of the group comparisons of 

WM volume between the older and young subjects by 

gender as well as the F-test results among the four groups. 
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The VBM analysis revealed an age-related decline in the 

WM volume, prominently in the thalamic radiations. In 

contrast, there was an increase in WM volume in the 

paracentral and occipital areas in both the female and male 

subjects. No significant interaction of age  gender was 

observed regarding reginal WM volume. 

 

 

 
 
Figure 4. Group comparisons of GM volume alterations by VBM using SPM12 and 

DARTEL (FWE corrected at p˂0.05 with extend threshold K = 100). (A) F-test results for 

the four groups, (B) OF vs. YF, and (C) OM vs. YM. Warm and cool color scales show negative 

and positive correlations with age and volume, respectively 
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Figure 5. Group comparisons of WM volume alterations by VBM using SPM12 and 

DARTEL (FWE corrected at p<0.05 with extend threshold K=100). (A) F-test results 

of the four groups, (B) OF vs. YF, and (C) OM vs. YM. Warm and cool color scales show 

negative and positive correlations with age and volume, respectively.  
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DISCUSSION 

 

Our present findings indicate significant differences in the 

regional and global brain tissue volumes between our 

young and older subjects with respect to their gender. 

Further investigations of brain tissue volume differences 

between young and older individuals could lead to a better 

understanding of the normal aging process and clarify the 

pathology of age-associated neurological diseases. 

Several studies investigated the influence of aging on 

brain structures over time [8, 25-30]. Our present 

findings showed different global and regional patterns of 

GM and WM differences in healthy young and older 

individuals with respect to gender, as discussed in detail 

below. 

 

GM differences 

 

In our global GM analysis, the two-way ANOVA revealed 

significant influences of age and gender on global nGM 

volumes, in that the young subjects had superior total 

normalized GM volumes compared to the older subjects 

(i.e., YF and YM vs. OF and OM), and the female subjects 

showed higher nGM compared to the males (YF and OF 

vs. YM and OM). 

In the direct comparisons between the YF and OF 

subjects and between the YM and OM subjects, we 

observed superior total nGM volumes in the young 

females and young males compared to the older females 

and aging males, respectively (Fig. 2A). In addition, the 

correlation test showed that the normalized GM volume 

decreased linearly with age; this decrease was steeper in 

the females not only among the older subjects but also in 

the young group (Fig. 3A, B). Regarding the regional GM 

changes, we observed significant GM volume reductions 

in the frontal, insular, and cingulate cortices and a 

preservation of GM volume reductions in the 

occipitoparietal areas and subcortical regions among the 

older subjects compared to the young subjects of both 

genders. 

These findings are generally in line with those of 

other studies which reported a linear negative association 

between GM volume and age for most cortical regions, 

prominently in the frontal and insular areas [26, 29-31]. 

Our results are also in agreement with other studies that 

demonstrated a preservation of the GM volume in specific 

structures (such as limbic and paralimbic brain structures) 

over the aging process[29, 31-33]. Consequently, it can be 

hypothesized that there are no significant alterations in 

limbic structures in older individuals with advancing age 

unless the alterations are due to specific neuropathological 

processes such as those related to cerebrovascular disease 

[34] or Alzheimer's disease [35]. 

 

WM differences 

 

In our global WM analysis, the two-way ANOVA showed 

significant influences of age and gender on global nWM 

volumes, in that the young subjects showed higher nWM 

volumes compared to the older subjects (i.e., YF and YM 

vs. OF and OM), and the males showed slightly higher 

nWM volumes compared to the females (YM and OM vs. 

YF and OF). 

In our direct comparison of the YF versus OF and 

YM versus OM groups, we observed a significant 

difference in nWM volumes between the older and young 

subjects among the males. Conversely, the difference in 

normalized WM volumes between the older and young 

subjects among the females was not significant (Fig. 2b). 

The reason(s) for this discrepancy between the genders 

are not clear, but may be related to the influence of sex 

hormones [36, 37]. 

Our analyses also demonstrated that there was no 

significant correlation between nWM volume changes 

with age in the young subjects (Fig. 3C) of both genders. 

The correlation test showed a significant negative 

association between nWM volume changes with age only 

in the older group for both genders, and this was 

significantly steeper in the male subjects (Fig. 3D). 

With respect to regional WM differences, we 

observed a widespread reduction of WM volume 

prominently in the thalamic radiations. In contrast to some 

studies of healthy aging which describe only a decrease of 

WM in normal aging [31, 38, 39], we also observed 

significant WM increases in the pericentral and occipital 

areas among our older subjects compared to the young 

subjects, of both genders. The reason for this increase may 

be due to the ongoing maturation of the white matter 

during normal aging [40]. Our findings are broadly 

consistent with previous studies [20, 40] that reported a 

linear negative WM volume reduction associated with 

advancing age in anterior thalamic radiations, the internal 

capsule, cerebral peduncle, cerebellum, and external 

capsule among older subjects and a slight WM volume 

increase in bilateral corona radiata in the older subjects. 

In future research, a diffusion tensor imaging 

analysis [41] between young and aging subjects with 

respect to gender should be considered. Another priority 

will be to use an individual network analysis [42] to 

determine the structural brain network differences 

between young and aging individuals with the 

consideration of gender. 

 

Conclusion 

 

In conclusion, we assessed regional and global brain 

tissue volume differences by conducting a VBM analysis 

of healthy young and older subjects of both genders. Our 
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statistical analyses revealed different patterns of age-

associated alterations in both gray and white matter 

volumes in the young and older subjects. On the global 

level, we examined the effects of age and gender on 

normalized gray and white matter volumes as well as the 

total intracranial volume. We also explored the 

association between brain tissue volume changes with age 

in young and older subjects with respect to gender. We 

investigated the regional gray and white matter volume 

changes that had occurred in the brains of healthy subjects 

with age compared to those of young subjects, in both 

genders. Our findings indicate that there is a significant 

effect of brain volume changes during the aging process. 

Thus, the knowledge of brain volume changes and 

differences may contribute to a better understanding of the 

roots of health and disease in the later stages of life [43, 

44]. 
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