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Abstract

The central nervous system is composed of many individual units – from cells to areas – that are 

connected with one another in a complex pattern of functional interactions that supports 

perception, action, and cognition. One natural and parsimonious representation of such a system is 

a graph in which nodes (units) are connected by edges (interactions). While applicable across 

spatiotemporal scales, species, and cohorts, the traditional graph approach is unable to address the 

complexity of time-varying connectivity patterns that may be critically important for an 

understanding of emotional and cognitive state, task-switching, adaptation and development, or 

aging and disease progression. Here we survey a set of tools from applied mathematics that offer 

measures to characterize dynamic graphs. Along with this survey, we offer suggestions for 

visualization and a publicly-available MATLAB toolbox to facilitate the application of these 

metrics to existing or yet-to-be acquired neuroimaging data. We illustrate the toolbox by applying 

it to a previously published data set of time-varying functional graphs, but note that the tools can 

also be applied to time-varying structural graphs or to other sorts of relational data entirely. Our 

aim is to provide the neuroimaging community with a useful set of tools, and an intuition 

regarding how to use them, for addressing emerging questions that hinge on accurate and creative 

analyses of dynamic graphs.

INTRODUCTION

The mammalian brain is a complex system, composed of many individual units (cells, neural 

ensembles, voxels, or areas) that are intricately connected with one another [1, 2]. 

Understanding this system requires complementary studies from both reductionistic and 

holistic perspectives [3, 4]. Reductionistic approaches are critically necessary to understand 

the structure and function of individual units, while holistic approaches are critically 

necessary to understand how those individual units function in the context of others [5]. 

Historically, constructing and testing hypotheses regarding systems or subsystems of 

interconnected units has proven challenging, in large part due to a dearth of appropriate 
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theories and associated computational tools [6]. Recent developments in network science [7] 

provide a wealth of potentially useful solutions to this problem by representing complex 

systems as graphs in which nodes (units) are connected by edges (interactions). This 

network representation forms a natural mathematical framework in which to couch holistic 

inquiries into the nature of the brain [8–10] and can be flexibly applied to neural data 

collected across spatial and temporal scales [11], across species [12], and across cohorts [13, 

14].

One canonical form of interest to neuroscientists is the functional graph in which cells, 

neural ensembles, voxels, or areas are connected to one another by estimates of their 

functional (rather than structural) interactions [15, 16]. At the neuronal scale, a functional 

edge might be an estimate of similarity in firing patterns [17, 18], while at the large scale, it 

might be an estimate of similarity in BOLD time series [19] or ECOG signals [20–22]. 

Irrespective of spatial scale, when considering how to build a functional network 

representation from neural data, one is faced with the natural question of whether a single 

representation will suffice, or whether an ensemble of representations is required. Early but 

very important work in this field focused on constructing a single representation [23–26], in 

which an edge summarized functional interactions between two neural units over a fixed 

time period. However, this approach is incompatible with the emerging interests in 

understanding the network dynamics – and not just its structure – that support cognition 

[27]. Indeed, querying (i) fluctuations in an animal’s emotional or cognitive state [28–30], 

(ii) the manner in which an animal transitions between tasks [31, 32], or (iii) the variations 

in functional network architecture that are characteristic of perception and processing [33], 

learning [34, 35], development [36, 37], aging [25, 38], or disease progression [39] all 

require an assessment of a network’s dynamics.

The last several years have seen a proliferation of approaches to quantitatively describe time-

varying patterns of functional connectivity [11, 40, 41]. Powerful tools to understand 

dynamic connectivity patterns draw on efforts in statistics, physics, engineering, 

mathematics, computer science, and social science. Some tools are of a more applied flavor, 

such as independent components analysis [42] and machine learning [43], while others are 

more closely tied to pure theory, such as graph theory [44] and and causal inference [45]. In 

some ways the distinction between these two types of approaches is reminiscent of the 

distinction between model-free versus model-based learning [46]: graph theory-based 

approaches assume a formal graph model of the data, while some other approaches seek to 

learn a model directly from the data. Though each approach has its benefits, we focus our 

exposition here on the graph-based approach due to the recent explosion of tools developed 

by the applied mathematics community to study dynamics graphs – also called temporal 
networks [47, 48]. These advances form a potentially powerful toolset for the contemporary 

neuroscientist, paving the way to more sophisticated approaches to data analysis and to 

hypothesis development.

Here we offer a didactic piece that describes dynamic graphs, discusses how to visualize 

them, surveys dynamic graph measures, and demonstrates their application to a previously 

published neuroimaging data set. We devote slightly less real estate to tools that have already 

been applied to neuroimaging data, and slightly more real estate to tools that have not yet 
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been applied in this area. Along with this exposition, we offer a publically-available 

MATLAB toolbox (see Appendix and[49]) so that the reader can immediately apply these 

measures to their own data to address their own hypotheses. The piece can be thought of as a 

mathematical reference and does not attempt to provide new neurophysiological insights (we 

leave the latter to future forays by interested readers). Finally, we note that although we 

illustrate these tools in the context of time-varying functional brain graphs, the toolset is 

flexible and can be applied to questions regarding time-varying structural or morphometric 

graphs as well.

The remainder of this paper is structured as follows. First, we describe different ways of 

visualizing dynamic graphs and discuss the advantages and disadvantages of each. Next, we 

discuss how to encode a dynamic graph and then describe several basic dynamic graph 

notions and measures including time-respecting paths, latency, and centrality. We then move 

on to a discussion of null models and additional measures including temporal small-

worldness and dynamic modular structure. Finally, we outline a few natural scenarios in 

which dynamic graphs could be constructed to address hypotheses regarding brain structure 

and function as well as the neurophysiological mechanisms of behavior and disease.

VISUALIZING DYNAMIC GRAPHS

Given data as a dynamic graph, a first inclination is to find a way to visualize the 

information. For simplicity we will assume that this graph is undirected and binary, and that 

edges can exist at any of some finite number of timepoints. We may naturally imagine 

viewing the dynamic network as a movie where edges and nodes come in and out of view. 

Yet a movie may be difficult to create, complicated to process, or not feasible to publish in 

print, so we instead look to study the frames, or snapshots of the dynamic network at each 

timepoint, as seen in Fig. 1a. While this approach certainly captures information from the 

time dimension, it becomes less helpful as the number of timepoints increases. Particularly 

for sparse dynamic networks, it may be more useful to visualize a collapsed, static graph 

(Fig. 1b), specifically the time-aggregated graph, where edges exist between two nodes if 

they are connected at any point in the dynamic network [47] (toolbox function 

timeAggregate bin). Note this time-aggregated graph is created from a dynamic network 

describing the data, instead of the more traditional approach of creating a single graph by 

assigning edge weights to the average value of the connection across all time points, thus 

averaging out the dynamics. In the time-aggregated graph, edge weights could be assigned 

by the time of edge appearance or frequency of edges within the dynamic network. We then 

gain a more succinct and holistic view of the dynamic network, yet lose comprehension of 

temporal structure. As a third option, we could also explicitly visualize the time dimension 

by plotting the dynamic network as a sequence of edges or contacts over time, giving a view 

of the network that is similar to that of a circuit-board (Fig. 1c). This approach is optimal for 

small, sparse dynamic networks, though quickly becomes overwhelming as the number of 

nodes and contacts grows. More methods for visualization exist, but, for the optimal 

representation, one should consider the size and density of the given data.

One example of data suitable for a dynamic network encoding is functional magnetic 

resonance imaging (fMRI) data. Here we illustrate dynamic graph approaches using fMRI 
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scans collected as individuals learned to play a sequence of finger movements [50]. The 

time-dependent levels of neural activity from N = 112 cortical and subcortical brain regions 

were estimated from indirect measurements of blood-oxygen-level dependent (BOLD) 

signal collected over ten time windows in each of four training sessions. Functional 

connectivity between brain regions was estimated with a magnitude squared coherence of 

wavelet coefficients [51], resulting in an N × N coherence matrix for each time window in 

each training session. While prior studies have examined these coherence matrices as fully 

weighted graphs, for the didactic purposes of this tutorial we simplify the data by binarizing 

the dynamic network, keeping only the top 10% of entries in each coherence matrix. Prior 

analyses of this data provided insight into how individuals learned on short (within one 

session) and long (across multiple sessions) timescales [50, 52–54]. For this type of data, a 

fourth type of visualization is available, namely a visualization that places nodes in their true 

anatomical locations and draws lines between connected nodes. In Fig. 1d we show this 

exact type of visualization for a dynamic network from one individual from the first session 

as a sequence of brain graphs. We choose to color nodes according to prior observations on 

these same data: the presence of two groups (modules) of densely connected brain regions, a 

group of motor regions, which we color in green, and a group of visual regions which we 

color blue [50]. All other regions, shown in red, were not found to have any particular 

allegiance to either module.

BASIC MEASURES

In this section, we discuss how to encode a dynamic graph and then describe several basic 

dynamic graph notions and measures including time-respecting paths, latency, and centrality.

Encoding data as a dynamic graph

Data to be analyzed as a dynamic graph may arrive in different formats, including a 

sequence of matrices or a list of edges and times. Thus, before we begin any calculations, we 

might wish to transform the information into a standard – and efficiently stored – object. For 

a static graph, this is simply G = (V, E), where the graph G is defined by a set of vertices V 
and edges E : V ×V → ℝ. For a dynamic graph, we could record G0, G1, …GT as an N × N 
binary matrix for each time-point t = 0, 1, …, T, but it is more memory-efficient to record 

instead the list of contacts and the time at which these contacts occur. For a dynamic 

network, a contact is a triple (i, j, t) indicating the existence of an edge between nodes i and j 
(or from node i to node j in the directed case) at time t. Then the set of contacts in our 

dynamic network is called the contact sequence and this is how we will record and work 

with our dynamic network (toolbox function array-ToContactSeq). Note that this can be 

expanded to include more information, such as edge weight or time delay required to 

traverse the edge, by defining contacts to be tuples (i, j, t, w1, w2, …, wk) for the additional 

measures wm.

With our dynamic network efficiently encoded, we can begin to ask questions about its 

structure and evolution. At the level of individual nodes, many measures are intuitively 

generalizable as a function of time, for example the clustering coefficient [55]. Similarly, we 

can also track global measures – such as the network efficiency [56] – across time as well. 
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However, not all measures can (or should) be simply extended in this way, because it ignores 

the evolution of the network from one timepoint to the next. Indeed, by ignoring the 

temporal dependencies between consecutive graphs, one is assuming that each observation is 

independent from the others; not only does this lead to inaccuracies in statistical testing and 

inference [57, 58], but it also means that the investigator is unable to identify temporal 

motifs (analogous to topological motifs studied in static graphs [59, 60]) – characteristic 

changes in or reconfigurations of the network that may happen with some unexpectedly high 

or low frequency [61, 62]. Dynamic graph metrics address these limitations by explicitly 

accounting for the fact that the set of graphs is ordered in time. Due to their enhanced 

statistical rigor, we focus solely on dynamic graph metrics in this review.

Time-respecting paths

Paths and connectivity within a static graph can be indicative of trajectories of information 

spreading. In a dynamic network, the time dimension induces an additional restriction on 

connectivity. For example, in Fig. 2a (left), we see the time-aggregated graph of our model 

dynamic network from Fig 1. The edges highlighted in green and purple connect as two 

valid paths in this static network. Yet, we see in Fig. 2a (right) when looking at the sequence 

of contacts that the purple path is not a valid path in the dynamic network. Said another way, 

if information was sent from node 3, it could not reach node 8 via this sequence of contacts. 

Conversely, information from node 8 could reach node 6 by following the sequence of green 

contacts. Such a collection of contacts is called a time-respecting path. Precisely, a time-

respecting path is a sequence of contacts (n0, n1, t0), (n1, n2, t1), …, (nk−1, nk, tk−1) such that 

ti < ti+1 for all i = 0, …, k − 2. Defined in this way, these time-respecting paths must agree 

with the “arrow of time,” thereby making them particularly useful for the study of 

information flow in dynamic networks (related toolbox functions isStronglyConnected, 
isWeaklyConnected, makeReachabilityArray).

The notion of a time-respecting path provides important intuitions regarding the similarities 

and differences between static and dynamic graphs. Returning to the model dynamic 

network in Fig 2a, note that we have a time-respecting path from node 3 to node 6 and from 

node 8 to node 6, yet no path exists from node 3 to node 8. Unlike in static graphs, time-

respecting paths in dynamic networks are not required to be transitive. That is, if a path from 

node a to node b exists and a path from node b to node c exists, this does not imply the 

existence of a path from node a to node c. Thus, when studying systems from both static and 

dynamic perspectives, it is important to maintain accuracy in interpreting the potential utility 

of paths for information transmission.

The notion of time-respecting paths can also allow us to study the reachability of a node, 

which may be an important indicator of its function. For example, a brain region that can be 

reached from many other regions via time-respecting paths may have a significant role in 

information integration. Then, the set of nodes that can reach our node of interest also 

becomes a key feature. For example, in Fig. 2b, we ask which nodes connect to the peach 

node through time-respecting paths by t = 7. In other words, at t = 7, which nodes could be 

the source of the peach node’s view of the system? This is called the source set of the peach 

node, and those within this set are circled in peach once they participate in a time-respecting 
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path to the peach node (function source-Set ). We have chosen a specific timepoint in this 

example, but one could record this at each point in time. Then for each node, the size and 

composition of the source set could inform that node’s function. In our example empirical 

fMRI network, throughout one session we calculate the size and makeup of the source set 

for nodes in the visual and motor groups (Fig. 2c). We see that a larger fraction of the visual 

group (blue) than of the motor group (green) is part of the source set for visual regions, and 

conversely for the motor regions. This intuitively makes sense, as we might expect visual 

regions to be contacted by many visual regions and vice versa for the motor regions.

We could now invert the source set concept and look forward instead of backward in time for 

a node. Instead of who connects to a node, we can ask who can this node influence? If the 

gold node in Fig. 2d learns something new just before t = 8, we can look forward in time and 

find the other nodes with which the gold node can share this new information. We call this 

the set of influence: the collection of nodes reachable via time-respecting paths beginning no 

earlier than a given time t, which we illustrate as all nodes circled in gold at the final 

timepoint in Fig. 2d (function setOfInfluence). Similar to the source set, we can calculate the 

number and makeup of this set as we vary t. In our example empirical fMRI data, we see 

that, as time increases, the visual regions influence many of the visual and motor regions, 

while the motor regions are more often connecting to strictly motor regions. With a 

deferential nod to notions from astrophysics, Holme and Samaraki describe these two sets, 

the source set and the set of influence for a node at a particular time, together as “light 

cones” which either could have affected the current state of the node or will be affected by 

the current state of the node [47].

Latency and centrality

The notions in the previous section provided us with information about the connectivity of 

nodes in a dynamic graph. Next we turn to questions related to the speed at which those 

nodes might communicate. In a static network, the number of edges within a path defines the 

path length, while in a dynamic network we can additionally record the duration of the path. 

We call the difference in time between the first and last contact the temporal path length 
[63]. For particularly efficient systems, one might expect information to travel along the 

shortest – or more precisely, the fastest – path within the dynamic network. Then, the 

distance between two nodes can be measured with temporal path length. We use the term 

latency (or temporal distance [63]) of nodes i and j to refer to the shortest time it takes to 

move from node i to node j (function latency).

Defining latency as the measure of shortest temporal distance allows us to extend notions of 

centrality to dynamic networks (though not the only extension, as we will later see). Recall 

that in a static network, the betweenness centrality of a node can be defined as the fraction of 

shortest paths passing through that node, or

CB(i) = ∑
i ≠ j ≠ k

σ j, k(i)
σ j, k

, (1)
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with σj,k being the number of shortest paths between nodes j and k and σj,k(i) being the 

number of shortest paths passing through node i [64, 65]. Using the definition of temporal 

path length, we can compute the same notion but for dynamic networks [66] by swapping 

the shortest path for the fastest path within a specified time window. In this way, we see the 

temporal betweenness centrality can be written as

CB(i, t) = ∑
i ≠ j ≠ k

σ j, k(i, t)
σ j, k(t) , (2)

if we let σj,k(t) be the number of fastest paths from node j to node k beginning no earlier 

than time t (function betweennessCentrality). In Figure 3a, we illustrate these concepts for 

the toy dynamic graph shown in Figure 1a–c. Specifically, we show dynamic network 

features used in the calculation of betweenness centrality for a single node in the graph: 

highlighted nodes and edges participate in fastest paths involving the node of interest. An 

interesting alternative definition of temporal betweenness centrality swaps the fastest time-

respecting paths for the shortest topological time-respecting paths: those with the fewest 

hops throughout the dynamic network [47].

While quantifying and understanding the shortest paths between nodes could be quite 

interesting, we might also wish to measure how far all other nodes are from a node of 

interest. In static graphs, we know this as closeness centrality, defined as

CC(i) = N − 1
∑ j ≠ id(i, j) , (3)

where d(i, j) is the distance (path length) between node i and node j, and N the number of 

nodes in the network. When considering dynamic graphs, we could simply swap d(i, j) here 

for the latency between node i and node j, which takes into account the whole dynamic 

network. But if information is given to node i at some time t, it might be more relevant to 

measure how fast this information from node i will reach the rest of the nodes. For this 

reason, we define the forward latency τ(i, j, t) as the time it takes to reach node j from node i 
via a time-respecting path beginning no earlier than t [63]. If node i and node j are 

disconnected, τ(i, j, t) = ∞. Now we can substitute τ(i, j, t) for d(i, j) in Eq 3 to recover the 

temporal closeness centrality,

CC(i, t) = N − 1
∑ j ≠ iτ(i, j, t) , (4)

for node i and time t [67–70]. Because in practice we often observe disconnected nodes, we 

alter Eq. 4 slightly by taking the mean of the inverse distance
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CC(i, t) = 1
N − 1 ∑

j ≠ i

1
τ(i, j, t) , (5)

which allows us to account for disconnected nodes more cleanly (function 

closenessCentrality) [63].

While several other notions of centrality exist for temporal networks [71], we will describe 

only two more in this review, chosen based on their theoretical relevance to neuroimaging 

data and neuroscientific hypotheses. Within a complex system such as the brain, we often 

simplify information pathways by assuming that only paths of shortest length or shortest 

time are essential. However, it is intuitively plausible that information can in fact follow any 

and all paths, but perhaps those of longer length are less critical than those of shorter length.

To formalize this idea, we can assign a weight αk to paths of length k, α ∈ (0, 1). This gives 

a richer perspective on how well node i could potentially communicate with node j. 
Following [35], we compute the product of matrix resolvents

P: = (I − αA(1))(I − αA(2))…(I − αA(T)), (6)

for the binary matrices A(1), A(2) …, A(T) encoding the binary temporal slices of the 

network at each timepoint. To avoid underflow and overflow, P is normalized

Q = P
‖P‖2

, (7)

so that the entry Qi,j describes the ability of node i to communicate with node j through 

paths of all lengths. Then we have the broadcast centrality of node i,

b(i): = ∑
j = 1

N
Qi, j, (8)

and flipping the direction by summing over the rows we recover the receive centrality of 

node i,

r( j): = ∑
i = 1

N
Qi, j (9)
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describing the ability of all other nodes to communicate with node j (function 

broadcastReceiveCentrality). Together these two measures quantify how well nodes can 

reach and be reached by others along paths of all lengths.

Returning to our example empirical dynamic graph obtained from fMRI data, we observe 

the highest broadcast centrality in a broad swath of posterior parietal cortex extending to the 

posterior temporal fusiform cortex. By contrast, we observe the highest receive centrality in 

a broad swath of somatomotor and premotor cortex extending to the anterior supramarginal 

gyrus. Note that these anatomical distributions are complementary to but not redundant with 

the anatomical distributions of betweenness centrality and closeness centrality, which tend to 

display high values in frontal cortex and motor cortex. These differences are due to inherent 

differences in the underlying mathematical formulation: the broadcast and receive centrality 

capture the two sides of dynamic communicability [72] and can be used to probe how 

individual brain regions distribute information across the network and across time.

NULL MODELS AND ADDITIONAL MEASURES

Null models

While summary statistics of dynamic networks offer insight into the temporal network 

structure, it is also critical to determine whether the architecture we observe differs 

significantly from that expected under an appropriate statistical null model. Addressing this 

question requires that we define and exercise dynamic network null models. For static 

graphs, common null models include the Erdös-Rényi random graph model [73], the ring 

lattice [74], and the configuration model [75], to name a few. In principle, each of these 

static graph models can be extended to temporal graph models. However for simplicity, here 

we will focus only on the two most common dynamic network null models.

The degree-preserving configuration model is popular in studies of static graphs because it 

retains an important aspect of the graph’s topology: its degree sequence. However, in a 

dynamic graph the problem becomes a bit more difficult: we have both edge connectivity 

and the time dimension which could be randomized. To construct a null model that is most 

similar to the configuration model for static graphs, we will perform a random rewiring of 

edges occurring at the same timepoint. More explicitly, for each timepoint t we imagine the 

static graph Gt. We visit each edge of Gt and randomly reassign one end node of this edge to 

another node within Gt, as seen in Fig. 4a. We call this the randomized edges (RE) model 

following [47] (related variants to this model are sometimes also called connectional null 

models). Importantly, this null model preserves the contact time component (function 

randomizedEdges). An alternative is to instead randomize the time at which each contact 

occurs, giving us the so-called randomly permuted times (RP) model (Fig. 4b) (related 

variants to this model are sometimes also called temporal nul models). This model destroys 

the true temporal contact patterns while preserving overall event rates (function 

randomPermutedTimes) [47].
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To further illustrate how the RE and RP models alter the temporal structure observed in the 

original dynamic network, we can calculate the temporal correlation coefficient C = 1
N ∑iCi

where

Ci = 1
T − 1 ∑

t = 1

T − 1 ∑ j Ai, j(t)Ai, j(t + 1)
[∑ j Ai, j(t)][∑ j Ai, j(t + 1)] , (10)

for one subject in the example empirical dynamic graph estimated from fMRI data and for 

the RP and RE models that were generated from this same graph (function 

temporalCorrelation) [76]. Intuitively, we can think of Ci as the average topological overlap 

of node i’s neighbors between two successive timepoints. As expected, we see in Fig 4c that 

both the RP and RE models have lower values of C than the original dynamic network, 

indicating that the dynamic graph of the true data is smoothly reconfiguring while the 

dynamic graphs of the null models are not.

Temporal small-worldness

One context in which null models become particularly important is in testing and 

quantifying the small-worldness of dynamic graphs. Over the last decade, evidence has 

continued to mount suggesting that neural systems across different species and spatial scales 

display small-world properties in both structure and function [77, 78]. Yet, little is known 

about whether or not these systems have temporal small-worldness.

We can recall that the common manner in which one calculates small-worldness for static 

graphs depends upon estimating the clustering coefficient and the characteristic path length 

for the original network and appropriate null models [79–81]. Naturally, if we could 

generalize each of these to include the time dimension, then we could straightforwardly 

calculate small-worldness for dynamic graphs as well. First, following [76] we use the 

temporal correlation coefficient in place of the clustering coefficient. If a brain region has a 

high temporal correlation coefficient, then its neighbors persist throughout time in a 

predictable manner, thereby indicating robust local connections. Next we extend the average 

shortest path length to temporal networks, giving us the characteristic temporal path length, 

or

L = 1
N − 1 ∑

i, j
d(i, j) (11)

where recall d(i, j) refers to the temporal distance (or latency) between two nodes in the 

network [76].

Now that we have a measure of temporal clustering and of temporal path length, we next 

turn to the question of whether those values are different than that expected in a random 

network null model. Specifically, we recall that networks are said to show the small-world 
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property if 
c/crand
l/lrand

> 1 where crand is the static clustering coefficient expected in a random 

network null model and lrand is the static characteristic path length expected in a random 

network null model. Extending this notion to dynamic graphs, we can use either the RE or 

the RP model as the dynamic network null model, and then compute the temporal small-

worldness as 
C /CRE
L/LRE

 or 
C /CRP
L/LRP

 where C is the temporal correlation coefficient and L is the 

characteristic temporal path length (function temporalSmallWorldness). In Figure 4c we 

apply these notions to the example empirical dynamic graph estimated from the fMRI data, 

and observe that the temporal small-worldness decreases with increasing number of trials 

practiced.

Temporal Community Structure

The measures we have discussed thus far have been either focused on individual nodes in the 

graph or on global, summary statistics of the graph as a whole. Yet an important feature in 

many networks, particularly in networks representing neurophysiological systems, is 

mesoscale architecture [82]. Perhaps the most commonly studied type of mesoscale 

architecture in such networks is community structure [83–85]: where nodes can be sorted 

into groups displaying dense intra-group connectivity and sparse inter-group connectivity. 

Multiple methods for extending community detection to dynamic networks exist [11, 86–

89], and we refer the reader to these resources for more detailed discussions of these 

methods. Here, we assume that one has applied a dynamic extension of community detection 

techniques to one’s data and has an estimate of each node’s affiliation to communities as a 

function of time. Under these assumptions, we will focus on three metrics that can be used 

to characterize the fine scale changes of communities across time.

First, given a community assignment as in Fig. 5a, we expect some nodes to likely remain 

within a single community for all timepoints, while others may change communities often. 

Within the brain, a node that changes communities multiple times may be modulating 

multiple processes [90] and may consequentially be essential for adaptive behavior [58]. For 

example, in the toy dynamic graph displayed in Fig. 5b, we see the orange node changes 

communities three times within the time window, while the blue node remains within the 

same community. We can quantify this property with the notion of node flexibility, defined 

as the number of times that a node actually changed communities, normalized by the number 

of times that the node could have changed communities. That is, if node i changed 

communities m times, the flexibility of node i is

f i = m
T − 1 (12)

where recall T is the number of timesteps. Then the flexibility F of the dynamic network is 

the average of fi over all nodes [58]. According to this definition, we see the orange node in 

Fig. 5b has high flexibility, while the blue node has low flexibility.
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Yet, simply counting the number of community affiliation swaps for a given node may mask 

important information. If, for instance, a node of interest swaps back and forth between only 

two communities, it will have high flexibility but if many other communities exist we cannot 

infer that it participates in many processes. We see that the node marked in blue in Fig. 5c 

switches between communities 2 and 3 six times throughout the course of the network (Fig. 

5a, bottom) while the orange node of Fig. 5c switches only four times, yet it is at least once 

a member of all four communities. To better describe this difference we can define node 
promiscuity as

ψ i = k
K (13)

for node i which participates in k of K total communities [91]. Then the promiscuity Ψ of 

the dynamic network is the average of all ψi. Intuitively, while flexibility may give one a 

basic intuition regarding how changeable the community structure is, promiscuity gives one 

an understanding of how distributed a node’s allegiances are to all communities over time.

Since we can measure how nodes change communities across time, we now might ask how 

groups of nodes change (or do not change) communities. We can assume brain regions that 

most often change communities in a coordinated fashion are more likely to be involved in 

the same processes. We define node cohesion as the number of times a node changes 

communities mutually with another node [92]. We illustrate this notion pictorially in Fig. 5d, 

where the two orange nodes change communities together, while the blue nodes switch 

communities independently of each other. In this case, we say the orange nodes are cohesive 

and the blue nodes are disjoint (or have a low cohesion strength). Using these measures we 

can probe community dynamics at a finer scale than is possible using community 

assignments alone.

CONTEXTS FOR THE APPLICATION OF DYNAMIC GRAPH METRICS

Now that we have described dynamic graph metrics from a mathematical point of view and 

have illustrated their application to both toy networks and empirical dynamic graphs 

estimated from fMRI data, we now turn to outlining and discussing a few natural scenarios 

in which dynamic graphs could be constructed to address hypotheses regarding brain 

structure and function, as well as the neurophysiological mechanisms of behavior and 

disease. These scenarios are not meant to be comprehensive, but are simply meant to provide 

the reader with some intuitions about potential application areas.

Cross-scale, Cross-species

While we have illustrated these techniques and tools in the context of an fMRI data set, it is 

important to note that the field of network neuroscience – which could benefit greatly from 

dynamic graph tools – extends far beyond human imaging [2]. Arguably even more 

fundamental are the connectivity patterns characteristic of neuronal circuits, which are 

measureable, manipulable, and dissectable in non-human animals [93, 94]. This small-scale 
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circuitry displays rich network architectures that can vary over time, development, and 

species [12] and can be explained to some extent by gene co-expression [95, 96]. Indeed, 

prior evidence demonstrates that local cortical circuits display highly nonrandom features of 

synaptic connectivity [97, 98], characterized by motifs [60], distant-dependent architecture 

[99], redundancy [100], modularity [101], and core-periphery structure [102]. A particularly 

interesting set of questions lies in whether and how dynamic graph architectures are 

conserved across species and to what extent they vary. One might hypothesize that temporal 

small-worldness – like static small-worldness – may be a common design principle across 

mammalian brains [77, 78], arbitrating a dynamic tradeoff between temporal cost and 

temporal efficiency [103, 104].

Cognitive Processes

Many cognitive processes are explicitly thought of as dynamic processes, requiring time-

dependent changes in information acquisition or retrieval, followed by processing or 

encoding, to enable responses or decisions. Recent work has demonstrated that functional 

network architecture in the human brain changes appreciably during such tasks, particularly 

in those that require higher-order cognitive processing like memory [31, 105], attention [30, 

106], learning [34, 35, 107, 108], action planning and execution [109], internally-oriented 

cognition [110], cognitive flexibility [31], executive function [111], and task-switching 

[112]. These types of processes are therefore naturally encoded in dynamic graphs in which 

the layers of the graph represent time windows, and the edges in the graph represent 

functional (or effective) connections between neural signals measured from fMRI, EEG, 

MEG, ECoG, or fNIRS in humans, or calcium transients, local field potentials, or spike 

trains in non-human animals. A particularly interesting open question is whether and how 

these processes are modulated by mood [28, 113] or levels of arousal [114, 115]. One might 

hypothesize that mood instability could manifest as decreases in the temporal correlation 

coefficient and increases in the temporal path-length, leading to a more random temporal 

graph. This hypothesis could be tested in future work.

Development and Aging

While cognitive processes are accompanied by changes in functional network architecture 

over relatively short time scales (seconds, minutes, hours), other natural processes evolve 

over relatively long time scales (months, years, decades). Normal human development and 

aging are examples of such long-term processes, and recent evidence has begun to map out 

changes in both structural and functional brain network architecture that track with age 

[116]. Whether the time frame is fetal development [117, 118], child and adolescent 

development [36, 37], or the full lifespan [38, 119, 120], patterns of connectivity reconfigure 

in a manner that at least partially explains changes in cognitive abilities. A particularly 

striking example is the emergence of cognitive control over development, which has inspired 

a range of network-based theories pointing towards a critical role for variations in network 

structure [121, 122], network function [123, 124], and network dynamics [125, 126]. The 

dynamic graph metrics discussed here offer an interesting and novel framework in which to 

probe the relationship between network change and the emergence of cognitive control in 

fronto-parietal circuitry. In particular, one might hypothesize that the receive centrality of the 

fronto-parietal network decreases over development, while the broadcast centrality (possibly 
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marking the potential for top-down control) of this same network increases over 

development. Future work could test this hypothesis explicitly and also test whether the 

temporal trends in broadcast and receive centrality differ in children with psychosis [127] 

and those with executive function deficits [128].

Disease Processes, Disease Progression, Response to Therapy

While child-onset psychosis is one condition that may be characterized by altered network 

dynamics, other neurological disorders and psychiatric disease may also display similar or 

inherently different sorts of changes [14, 129]. Indeed, recent evidence has demonstrated 

alterations in the functional network architecture most characteristic of individuals with 

Alzheimer’s disease, Parkinson’s disease, and epilepsy to name a few [13]. Interestingly, 

network architecture can be used to track seizure dynamics [20–22] or the progress of 

atrophy and dementia [39]. Less is known about whether and how network architecture or 

dynamics could be used to track rehabilitation after stroke [130] or response to therapeutic 

interventions including physical therapy [131], brain stimulation [132], and neurofeedback 

[133, 134]. Some work suggests that changes in motor behavior are characterized by 

reconfiguration of functional network modules [50, 58] and that modularity predicts a 

person’s response to cognitive training after brain injury [135]. It would be interesting to 

explicitly test whether the reconfigurations that are most benefitial to stroke rehabilitation 

are characterized by high flexibility, promiscuity, or cohesion, and whether the relationship 

between rehabilitation and network reconfiguration is always linear or is better characterized 

as an inverted U-shaped curve.

Extensions to Other Sorts of Graphs

While we have focused our exposition on functional dynamic graphs, it is important to note 

that dynamic graphs can be constructed from many other sorts of data as well. Perhaps the 

simplest example is a dynamic graph constructed from structural (diffusion imaging 

tractography) data acquired either over age [38] or training [136]. But one could also 

consider setting aside the brain entirely and studying network patterns in symptomatology, 

covariance in markers of mood, or patterns of behavior [137, 138], where dynamic graphs 

could provide insight into skill acquisition or adaptive decision-making.

CONCLUSION

In summary, we have provided a tutorial on what a dynamic graph actually is, how to 

visualize it, and how to characterize it. In particular, we describe several basic dynamic 

graph notions and measures including time-respecting paths, latency, centrality, clustering, 

characteristic temporal path length, and dynamic modular structure, and we also discuss null 

models and measures that depend on them, such as temporal small-worldness. We outline a 

few natural scenarios in which dynamic graphs could be usefully constructed and studied, 

and we provide a publically-available MATLAB toolbox to enable the reader to immediately 

apply these tools to their data. Our aim is to provide the neuroimaging community with both 

tools and intuition, and to support the growing interest in addressing neuroscientific 

questions that hinge on detailed analyses of dynamic graphs.
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Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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APPENDIX

Toolbox Details

The MATLAB toolbox described contains 32 functions for the analysis and visualization of 

dynamic graphs and can be downloaded at this location [49]. Throughout the main text we 

note which of the described metrics have associated functions within the toolbox. 

Importantly, our toolbox is neither the only software nor the most sophisticated package for 

dynamic network visualization and analysis. Instead, it is intended to serve as a useful 

collection of basic methods and metrics relevant to common neuroscientific questions. A 

few of the many additional resources available include the Social Network Image Animator 

(SoNIA) [139], the Multilayer Analysis and Visualization Platform (muxviz) [140], Gephi 

[141], and CASOS [142].

Metrics and Definitions

Initial definitions Given a dynamic network, we call the vertex set V, with |V | = N. Edges exist 
between vertices at any of timepoints 1, 2 …, T. May be represented as a sequence 
of N × N adjacency matrices A(1), A(2), …, A(T ).

Contact An edge between two vertices at a specified time.

Contact sequence A list of contacts within the dynamic network specified as tuples (i, j, t) for 
contacts between nodes i, j at time t.

Time-aggregated graph Summary static graph of dynamic network with edges existing between nodes i, j if 
i and j connect at any timepoint within the dynamic network.

Time-respecting path A sequence of contacts (n0, n1, t0), (n1, n2, t1) … (nk−1, nk, tk−1) with ti < ti+1 for i = 
0, …, k − 2.

Source set The set of vertices that can reach a given node via time-respecting paths 
terminating no later than some time t.

Set of influence The set of vertices which can be reached from a given node through time-
respecting paths starting no earlier than some time t.

Temporal path length The difference in time between the last and first contact of a time-respecting path 
[63].

Latency The temporal path length of the fastest path between two nodes. Also known as 
temporal distance [63].

Forward Latency Denoted τ(i, j, t), the time needed to reach node j from i along time-respecting 
paths beginning no earlier than t [63].

Betweenness centrality For node i and timepoint t,

CB(i, t) = ∑
i ≠ j ≠ k

σ j, k(i, t)
σ j, k(t)

with σj,k the number of shortest paths between nodes j, k beginning no earlier than 
t, and σj, kt, i the number of such paths that pass through node i [66].

Closeness centrality For node i and time t,
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CC(i, t) = 1
N − 1 ∑

j ≠ i

1
τ(i, j, t)

[63].

Broadcast centrality Given node i, the broadcast centrality is

b(i): = ∑
j = 1

N
Qi, j

where Qi,j is the normalized ability of node i to communicate with node j (See Eq. 
7) [35].

Receive centrality Given node j, receive centrality is defined

r( j): = ∑
i = 1

N
Qi, j

[35].

Temporal correlation coefficient Let Ai,j (t) be the connectivity of nodes i, j at time T. Then for node i,

Ci = 1
T − 1 ∑

t = 1

T − 1 ∑ j Ai, j(t)Ai, j(t + 1)
[∑ j Ai, j(t)][∑ j Ai, j(t + 1)]

[76].

Characteristic temporal path 
length

For a dynamic network,

L = 1
N − 1 ∑

i, j
d(i, j)

letting d(i, j) be the temporal distance between nodes i, j.

Temporal small worldness Let C, Crand be the average temporal correlation coefficient and L, Lrand the 
temporal characteristic path length for the dynamic network and randomized 
model, respectively. Then the temporal small worldness is

C /Crand
L/Lrand

[76].

Flexibility For node i, the flexibility is

f i = m
T − 1

where m is the number of times node i change communities [58].

Promiscuity The promiscuity of node i is
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ψi = k
K

with k the number of communities of which node i is a member and K the total 
number of communities in the dynamic network [91].

Cohesiveness The number of times a node changes communities mutually with another node 
[92].
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FIG. 1. 
Visualizations of dynamic networks. (a) Stacked static network representation of a dynamic 

network on ten nodes. (b) Time-aggregated graph of the dynamic network in (a). Any two 

nodes that are connected at any time in (a) are connected in this graph. (c) Visualization of 

the network in (a) as contacts across time. (d) Dynamic network of one individual during a 

motor learning task [50]. Green regions correspond to a functional module composed of 

motor areas, blue regions correspond to a functional module composed of visual regions, 

and red regions correspond to areas that were not in either the motor module or the visual 

module. Toolbox functions used to create this figure: randomDN, plotArcNetwork, 

plotDNarc.
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FIG. 2. 
Time respecting paths. (a) (Left) Time aggregated network from Fig. 1b with green and blue 

paths highlighted. (Right) Contact sequence plot from Fig. 1c with green and blue paths 

highlighted. (b) The source set of the peach node indicated with a peach ring. (c) 
Composition of the source set of nodes from the visual (left) and motor (right) modules of 

our example empirical fMRI data set, depicted across time. The gray line indicates the 

fraction of all nodes in the source set, while the blue and green lines represent the fraction of 

the visual and motor nodes within the source set, respectively. (d) Illustration of the set of 

influence (t − 8) of the gold node. Nodes within this set indicated with a gold ring at the time 

at which they can first be reached by the gold node. (e) Composition of the set of influence 

calculated from nodes within the visual (left) and motor (right) groups. As in (c), the fraction 

of all regions (gray), visual regions (blue), and motor regions (green) are plotted against 

time. Solid lines in (c) and (e) mark the average over subjects and trials, and shaded regions 

represent two standard deviations from this average. Toolbox functions used to create this 

figure: sourceSet, setOfInfluence.

Sizemore and Bassett Page 25

Neuroimage. Author manuscript; available in PMC 2019 October 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



FIG. 3. 
Centrality in dynamic networks. (a) Time window of the model network shown in Fig. 1a–c 

highlighting the fastest paths that pass through the maroon node, and therefore affect its 

betweenness centrality. (b) Schematic of closeness centrality for the maroon node in the 

model network. Closeness centrality measures the speed at which a node can reach all 

others: the time at which other nodes are first reached by node 2 determines its closeness 

centrality. Nodes are shown in color at the earliest time they are reached by node 2. (c–f ) An 

illustration of the notions of centrality for our example empirical fMRI data shown in Fig. 

1d. (c) (Left) Betweenness centrality for visual (blue) and motor (green) regions as a 

function of the number of trials practiced. (Right) Averaged betweenness centrality scores 

across trials practiced for each brain region. (d) Closeness centrality for visual and motor 

regions during learning (left), and (right) averaged over the number of trials as in (c). (e) 
Broadcast centrality for visual and motor regions during learning (left), and the same values 

now averaged over all trials (right). (f ) Receive centrality for visual and motor regions 

during learning (left), and the same values now averaged over all trials (right). Error bars 

indicate two standard deviations from the mean over subjects and trials practiced. Toolbox 

functions used to create this figure: betweenessCentrality, closenessCentrality, broad 
castReceiveCentrality.
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FIG. 4. 
Null models and their utility in measuring small-worldness in dynamic graphs. (a) 
Schematic of the edge rewiring process for the randomized edges (RE) model. (b) Schematic 

of the randomly permuted times (RP) model where contact times are permuted uniformly at 

random. (c) Temporal correlation coefficients for one session of a participant in the study 

(black dashed line), and the 100 runs of the RE and RP model created from this dynamic 

network. (d) Small-worldness calculations using either the RE (purple) or RP (blue) null 

model. Toolbox functions used include randomized-Edges, randPermutedTimes, 

temporalCorrelation, and temporalSmallWorldness.
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FIG. 5. 
Metrics associated with dynamic community structure. (a) Example dynamic network with a 

community partition: an assignment of nodes to communities (densely intraconnected 

groups of nodes) as a function of time. Node community assignments are shown both within 

a sequence of graphs (top), and as a heatmap (bottom). Examples of nodes with high 

(orange) and low (blue) values for associated metrics: (b) flexibility, (c) promiscuity, and (d) 
cohesion.
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