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Discovering viral genomes in 
human metagenomic data by 
predicting unknown protein 
families
Mauricio Barrientos-Somarribas1, David N. Messina   2, Christian Pou1, Fredrik Lysholm1,3, 
Annelie Bjerkner4, Tobias Allander4, Björn Andersson   1 & Erik L. L. Sonnhammer2

Massive amounts of metagenomics data are currently being produced, and in all such projects a 
sizeable fraction of the resulting data shows no or little homology to known sequences. It is likely 
that this fraction contains novel viruses, but identification is challenging since they frequently lack 
homology to known viruses. To overcome this problem, we developed a strategy to detect ORFan 
protein families in shotgun metagenomics data, using similarity-based clustering and a set of filters 
to extract bona fide protein families. We applied this method to 17 virus-enriched libraries originating 
from human nasopharyngeal aspirates, serum, feces, and cerebrospinal fluid samples. This resulted in 
32 predicted putative novel gene families. Some families showed detectable homology to sequences 
in metagenomics datasets and protein databases after reannotation. Notably, one predicted family 
matches an ORF from the highly variable Torque Teno virus (TTV). Furthermore, follow-up from a 
predicted ORFan resulted in the complete reconstruction of a novel circular genome. Its organisation 
suggests that it most likely corresponds to a novel bacteriophage in the microviridae family, hence it 
was named bacteriophage HFM.

Characterization of the human virome is crucial for our understanding of the role of the microbiome in health 
and disease. The shift from culture-based methods to metagenomics in recent years, combined with the devel-
opment of virus particle enrichment protocols, has made it possible to efficiently study the entire flora of human 
viruses and bacteriophages associated with the human microbiome. These methods have led to the discovery of 
numerous human viruses1 and human-resident bacteriophages2, and have made it possible to characterize the 
virus content of entire collections of clinical samples3,4.

Traditional characterization of virome datasets has largely relied on homology-based approaches5–8. These 
methods can accurately identify sequences from characterized virus families and distant relatives, but they are 
unable to annotate viral sequences that have little or no sequence similarity to known viruses. Therefore, a sub-
stantial fraction of microbiome datasets cannot be classified, despite the recent rapid increase of sequence infor-
mation in public databases. For instance, the recent identification of the crAssphage9 illustrates how sequence 
homology-based methods have failed to recognize a bacteriophage genome constituting 1.7% of all available fecal 
metagenomic data.

In viral-enriched metagenomics datasets, we expect that a fraction of these unclassifiable sequences originate from 
protein coding segments from unknown viruses and other kinds of “biological dark matter”9. Consequently, the detec-
tion of coding sequences with no homologs, or ORFans10, in such datasets can be a first step towards the discovery of 
novel viral species, since novel protein sequences can be used as anchors for the characterization of entire viral genomes.
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However, the discovery of novel ORFans in the “dark matter” fraction of metagenomic datasets is challenging. 
Due to technical limitations, such as insufficient coverage, short read lengths and sequencing errors, only partial 
ORFs can be reconstructed and the origin and function of incomplete genes are difficult to predict11.

Most current metagenomics gene finders rely on hidden Markov Models, which model statistical differences 
between coding and non-coding nucleotide frequencies and other features to estimate the probability that an 
open reading frame encodes a protein12–16. However, novel protein-coding genes can also be detected by the 
alignment of unknown related protein sequences, combined with the use of KA/KS ratios to detect sequences that 
are under selection pressure. The advantage of this method is that it searches for conserved signals directly within 
the dataset using a fixed statistical model, and thus do not depend on a previous training procedure. Ab-initio KA/
KS methods are best applied when analysing together diverse datasets, since it leverages protein diversity to make 
accurate predictions. For instance, this strategy was used by the Global Oceanic Survey (GOS), which identified 
~1700 putative novel ORFan protein families17.

In the present study, we applied a KA/KS – based strategy to detect ORFans in the “dark matter” fraction of 
virome datasets from human patients. The analysis resulted in the identification of 32 putative novel ORFan pro-
tein families with strong support, two of which could be assigned a viral origin. Additionally, PCR-based cloning 
and sequencing starting from one of the novel families resulted in the complete genome sequence of a previously 
unknown 5,752 bp circular genome present in the human digestive tract. Additional analysis suggests that this is 
the genome of a novel bacteriophage.

Results
Sample sequencing and preprocessing.  We analysed shotgun metagenomics datasets produced explic-
itly for viral discovery. Each library consists of DNA or RNA extracted from a pool of samples from patients with 
common clinical manifestations. This pooling strategy has proved to be a cost-effective strategy to identify novel 
viruses, since each sample is not sequenced individually, while preserving sensitivity18. Samples in this study orig-
inate from nasopharyngeal aspirates, serum, feces and cerebrospinal fluid (csf). Briefly, pools of patient material 
were subjected to filtration and nuclease treatment to enrich the viral fraction while depleting host and bacterial 
nucleic acid18. DNA and RNA libraries were prepared separately from each pool, yielding a total of 17 sequenced 
libraries. Table 1 summarizes the resulting sequencing data, and more detailed information about each library is 
presented in Supplementary Table S1.

All datasets were previously analysed with our previously published pipeline7, but a sizable fraction of 
remained unannotated. Therefore, we decided to combine the libraries to mine for putative novel protein families 
in the uncharacterized fraction. The outline of our pipeline is described in Fig. 1. The pre-processing steps are 
aimed at producing a non-redundant set of unclassifiable sequences for further investigation, and are analogous 
to homology-based analysis pipelines7,8. These include trimming adapters, removal of low complexity sequences 
and host contamination, extending reads via sequence assembly, and removing sequences with significant 
matches to NCBI nt and nr, since our aim was to investigate unannotated sequences. The quality and human 
sequence filtering resulted in the removal of 37% of the initial reads. The subsequent assembly of the remaining 
2.44 million reads produced 1.04 million contigs, increasing the average sequence length by 16%, to 278.6 nt, and 
significantly reducing redundancy. Still, 94% of the sequences after assembly were singletons, which is indicative 
of the complexity of the data set. Both contigs and singletons were included in our analyses. Finally, a conservative 
screening against NCBI nt and nr to discard all sequences that were classifiable by homology methods resulted in 
a final data set consisting of 402,288 sequences. We hypothesized that these sequences could be a rich source of 
putative novel protein families.

Protein family prediction.  To predict protein-coding sequences in the unannotated fraction, we based 
our strategy on RNAcode, a gene predictor that evaluates multiple sequence alignments using a KA/KS-based 
evolutionary model to distinguish between coding and non-coding sequences. In short (see Methods and sup-
plementary materials for additional results and description), we generated candidate protein families by building 
high-quality multiple sequence alignments from clusters of similar but divergent sequences. These alignments 
were subsequently evaluated with RNAcode for coding potential, and a calibration procedure allowed us to 
select a suitable threshold for using this method with short NGS reads. Finally, the adjusted RNAcode prediction 

Sample type DNA Libraries RNA Libraries 454 Platform Total Reads

Feces 1 1 Titanium 1 459 816

Serum 4 3 GS FLX & Titanium 1 095 915

Nasopharyngeal Swabs 2 2 GS & GS FLX 703 790

Nasopharyngeal & Throat Swabs 1 1 Titanium 432 919

Cerebrospinal Fluid 1 1 Titanium 209 748

Total Reads 3 902 188

Table 1.  Summary of the sequenced viral-enriched libraries. The libraries analysed were prepared by pooling 
patient specimens of 5 different sample types. At least one DNA and one RNA library for each sample type, but 
in some cases more libraries were sequenced. The libraries were sequenced during the period of 2008 through 
2012, during which the 454-pyrosequencing platform evolved, which is reflected in the different total number of 
reads per library.
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was combined with other measures such as predicted ORF length and sequence complexity to select and rank 
high-quality protein family candidates. The steps are summarized by the green boxes in Fig. 1.

We applied this method to the 402 288 unannotated sequences from our data sets, and this resulted in a 
shortlist set of 32 predicted protein families. Figure 2a summarizes the main attributes of the predicted families, 
including ORF length, and predicted RNA-code p-value and sequences in the alignment. Detailed results of the 
protein family building procedure are available in Supplementary Figure 1.

Annotation of predicted ORFan protein families.  We screened the 32 high-confidence ORFan families 
against public metagenomics databases in search for homologous proteins detected in other microbiomes: the 
NCBI environmental databases (env_nt and env_nr) and the MetaHIT integrated gene catalogue19. Most of the 
families (27/32) had a hit to at least one metagenomics database. Summary of the hits are available in Table 2 and 
Fig. 2a, and more detailed per-cluster hit information is available in in Supplementary Table S2.

Interestingly, all 24 families that originated from fecal samples matched nucleotide or peptide sequences in the 
MetaHIT integrated gene catalogue (Supplementary Table S3). Additionally, these families also showed similarity to 
sequences from other gut metagenomes in the env nt database, which is expected. In contrast, all but one of the clusters 
comprised of sequences originating from non-fecal libraries (csf, nasopharyngeal aspirates, and/or serum) did not show 
hits to gut microbiome-derived proteins. We did not find hits to other human microbiome datasets for the non-fecal 
families, but three clusters (457, 540 and 1217) matched sequences in wastewater and marine metagenomes (Table S4).

We also re-screened all protein families against updated versions of NCBI nr and nt databases (March 2016) 
and the Human Microbiome Project reference genomes data (HMRGD). This was necessary due to the high 
probability that some of these proteins were included in data sets produced since the original screening (per-
formed in 2011). Five candidate protein families were found to match annotated proteins from the NCBI nr data-
base (Table 3). No sequences matched NCBI nt, suggesting that the candidate protein families may not originate 
from well characterized organisms. Searches against the Rfam database to exclude the possibility that the clusters 
encode RNA genes also yielded no significant matches (E < 0.01).

Figure 1.  Flowchart of the ORFan protein family prediction pipeline. The diagram starts with the raw set of 
reads from the libraries described in Table 1. Squares in blue describe the preprocessing steps performed to 
obtain a data set consisting of unannotated sequences. The unannotated sequences were subsequently processed 
through our prediction pipeline (in green) resulting in 32 predicted protein families.
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Two putative viral protein families were detected: 565b and 956b. Cluster 565b has multiple hits to replication 
proteins from several viruses, with the highest similarity to a fungal virus domain from the Phyphtopora para-
sitica virus, although it also matches hypothetical proteins from fungal species. Cluster 956b has a significant 

Figure 2.  (a) Summary of the resulting 32 high confidence families. The scatterplot summarizes the basic 
statistics of the predicted proteins. The X and Y axis encode for ORF length and RNAcode p-value respectively, 
while the size of the dots are scaled by number of sequences in the alignment. Protein families are colored based 
on their hits to the different databases. (b) Example of RNAcode output for predicted ORFan family 457. The 
multiple alignment for cluster 457 is shown with the RNAcode-predicted peptide sequence on the top and the 
high-scoring segment highlighted in yellow. Codons colored in green indicate the presence of synonymous 
mutations, suggesting that selective pressures act on those sites to preserve the amino acid. In contrast, pink or 
red codons indicate non-synonymous mutations which do not preserve the amino acid encoding.
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hit to a Torque teno virus (TTV) ORF, consistent with the fact that the sequences came from serum libraries, 
and that TTV is present in blood. Also, while the match to Torque teno virus is highly significant, only ~50% 
of the residues are identical, suggesting that it may represent a new member of this highly variable virus family. 
Even though these families cannot strictly be considered ORFans after these findings, these hits confirm that our 
approach can predict protein-coding genes from viruses.

Beside the viral protein hits, only two other families,1217 and 532, matched the protein databases. In both 
cases, the hits corresponded to hypothetical proteins from bacteria (Table 3). Three families did not match any of 
the databases. All of these were composed of sequences from the serum and csf libraries.

However, we also observed some anomalies in our annotation. Cluster 179b, from fecal origin, has only 
a nucleotide level hit to the MetaHIT integrated gene catalogue but no protein level hit associated with it 
(Supplementary Table S2). Further investigation revealed that the match occurred in the 5′ UTR region of the 
gene, explaining the lack of a peptide hit and consequently the family could be a false positive. The p-value thresh-
old optimization showed that while the 0.15 cut-off showed the best separation of classes, it was possible to find 
non-coding sequences below the threshold, which explains the occurrence of false positives. We speculate that 
since 5′ UTRs are often conserved, RNAcode could have overestimated the coding potential. Cluster 179b scored 
poorly (ranked 31 out of 32 protein families using the composite score.

Discovery of a novel virus-like genome.  Since the origin of most of the predicted protein families 
remained unknown after reannotation, the families remained good candidates for novel viral discovery. Thus, 
we designed outward primers from selected protein families to detect small circular genomes using PCR. This 
procedure resulted in the detection of a 5.8 kb fragment derived from primers designed from cluster 179a.

We sequenced this fragment using both Illumina and Sanger sequencing, and the reads were assembled into 
a 5,752 bp circular contig (European Nucleotide Archive accession number ERZ376945) (Fig. 3a). This genome 
has not been previously characterized and, aside from one protein, does not show similarity to any anno-
tated genomes. However, it does show high (~90%) similarity to a few uncharacterized contigs from assem-
bled gut metagenomes in the NCBI environmental nucleotide database, but there are important differences 
(Supplementary Figure S3). None of the contigs in the public databases are marked as circular, and they have 
discrepancies at their 5′ and 3′ ends compared to with our circular assembly. The differences could be attributed 
either to misassemblies or to recombination or integration events.

Annotation of the circular genome led to the detection of seven putative open reading frames that cover more 
than 93% of the genome. All the ORFs were oriented in the same direction and exhibited high degrees of homol-
ogy (id > 70%) to proteins in the MetaHIT integrated gene catalogue (Supplementary Table S5; Supplementary 
material). Furthermore, three ORFs have significant hits to other proteins: ORF 3 shows similarity to hypothetical 
proteins, ORF 5 matches replication proteins from different organisms, and most interestingly, ORF 6 shows some 
similarity to the phage capsid F protein family in the Pfam database. We also observed two small ORFs (<50aa) 
in the gap between ORF 7 and ORF 1 with similarities to MetaHIT genes, but these were excluded from the final 
annotation due to their size.

Protein family origin # families

Microbiome Databases

NCBI nr No HitsMetaHIT NCBI env HMRGD

Fecal 23 23 human gut (22); marine & human gut (1) 0 2 0

Fecal & CSF 1 1 gut (1) 0 0 0

Serum 1 0 — 0 1 0

Serum & CSF 5 0 wastewater (1) 0 1 3

Serum, CSF & Mucus 2 1 wastewater (1) 0 1 0

Table 2.  Summary of how many of the 32 predicted novel ORFan protein families have hits to various 
microbiome or other databases. The families are grouped by the source of their samples.

Family DB Tool Best Hit (protein) Best hit (species) Curated Annotation

1217 nr blastp & hmmsearch unknown Veillonella sp. CAG:933 Bacterial protein

532 nr hmmsearch hypothetical protein M. rupellensis Bacterial protein

565b
nr blastp hypothetical protein H257_12751 A. astaci Putative replication 

protein, viral or bacterialnr hmmsearch putative replication protein Phytophthora parasitica virus

956b nr blastp & hmmsearch hypothetical protein C. trachomatis Torque Teno virus ORF

Table 3.  Protein family hits to described proteins. Four of the 32 ORFan protein families match proteins in 
the NR database. The table describes for each family: (1) the database of the hit, (2) the tool used to detect the 
similarity, (3) the description of the highest scoring hit, (4) the annotated species for the highest scoring hit, 
and (5) our manually curated annotation for the protein based on all the significant hits for the protein family. 
Manual annotation was required since the best hit for a sequence does not always correspond to the most 
plausible annotation, due to wrong metadata or to the discovery of a distant relative of a protein conserved in 
many different organisms.
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Although our pipeline can detect new genomes without homology to known proteins, the fortuitous presence 
of the ORF 6 phage capsid F protein motif allows for classification of this genome. This suggests that it belongs 
to a single stranded DNA phage, further supported by the fact that all detected ORFs are on the same strand. 
The overall genome structure and ORF map is similar to that of the family Microviridae20, a family of circular 

Figure 3.  (a) Diagram of the bacteriophage HFM genome. This circular fragment was amplified from fecal 
samples using primers designed based on cluster 179a. The genome contains 7 candidate ORFs, all of which 
are located in the same strand and cover ~93% of the genome. Annotation suggests viral provenance due to 
the presence viral-like protein motifs such as a phage capsid motif (cap) and a replication protein (rep). The 
protein family (cluster 179a) from which the primers were designed is highlighted in light blue in ORF 6. (b) 
Phylogenetic tree showing the position of bacteriophage HFM in relation to 54 clearly annotated Microviridae 
genomes from the public databases. Due to lack of homology, it was impossible to include more distantly related 
sequences. It is a maximum likelihood tree, calculated using RAxML with 1000 bootstraps.
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ssDNA bacteriophages, with regard to the distribution and orientation of the ORFs. Phylogenetic analysis of the 
ORF 6 fragment was performed using the sequences from the capsid F protein family with proper taxonomical 
annotation. However, since all known putative homologues belong to the family Microviridae, this suggests that 
bacteriophage HFM is related to this viral family. Of the two subfamilies Bullavirinae and Gokushovirinae, our 
phage appears to be closer to Bullavirinae, although not closely related (Fig. 3b). Thus, it appears likely that the 
organism is a bacteriophage, which we have tentatively named bacteriophage HFM (Human Fecal Microbiome). 
PHACTS21 annotation of the genome predicted a gram-negative bacterium as host, but provided no prediction 
regarding the possible lifestyle of the phage (Supplementary Figure S4).

A specific PCR assay was designed and used to detect bacteriophage HFM in the individual fecal samples 
included in the original library. Only one of the ten available samples tested positive in the first and second PCR 
(Supplementary Figure S6). PCR products from both reactions were purified and capillary sequenced to verify 
the specificity of the amplification. The resulting sequence aligned perfectly with the bacteriophage HFM genome.

Virus detection using other pipelines.  Our approach was designed to discover protein families that lack 
homology to known proteins. To test whether these could have been detected using other virus finding tools, we 
analyzed our “dark matter” dataset with three standard tools for taxonomic annotation: Kraken22, Metaphlan223, 
and Kaiju24 (Fig. 4). Note however that these tools were run four years after this dark matter dataset was defined, 
which gives them the additional knowledge of all the viruses that were described after the initial analysis. Of our 
32 predicted protein families, only two were detected by the other tools: TTV-like (family 956b) and Phytophtora 
parasitica virus (family 565b), detected by Kaiju and Kraken. However, none of the reads labelled as viral by the three 
tools align to the genome of bacteriophage HFM, demonstrating that only our approach was able to detect this novel 
phage. In addition, at the time our method was run, the two other viruses had little or no homologs in the databases.

The other tools further reported 14 viral hits not detected by our method, of which four were supported by 
at least two of the tools, see Fig. 4. These include known viruses, such as crAssphage, Parvovirus NIH-CQV25, 
Enterobacteria phage phi92, and an unclassified Siphoviridae. The other ten hits were low confidence. The 
likely reason that these viruses were not detected using our method is that we applied our method with strin-
gent cut-offs and only report the best supported families. This shows that our method is complementary to 
homology-based methods.

Discussion
The field of microbiome research has advanced substantially in recent years, and its role in the characterization 
of the human virome has been fundamental. However, many aspects of the analysis of complex microbiome 
datasets remain a challenge, including the identification and characterization of new unknown organisms and 
genes. Recent studies have shown the power of a large sample sizes to discover previously unknown viruses26,27. 
Nevertheless, in settings where such large sample numbers are unavailable (e.g. rare diseases), our pooling strat-
egy coupled with viral enrichment has been shown to reveal a sizable fraction of unknowns, but novel strategies 
to leverage these datasets are needed.

The identification of ORFan genes in metagenomics datasets can be a starting point for novel virus discov-
ery, but two main challenges must be addressed. First, the characteristics of metagenomics sequence data can 
confound ab-initio gene prediction, since these datasets are composed of short sequence fragments burdened 
with sequencing errors. Second, the large amount of contaminating host and bacterial sequences often limits the 
coverage of the target genomes. These challenges can be overcome by combining diverse datasets and applying a 
calibrated method for short reads.
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Figure 4.  Detection of known viruses using homology-based methods. Our method was used to detect 
unknown viruses, while Kaiju, Kraken and Metaphlan2 were used to detect known viruses. UpSet49 plot 
showing the overlaps between the viral species detected by each tool and our method. The number of species 
detected by each tool is stated between parentheses next to the tool name, and the bar reflects the number of 
viruses detected by a specific combination of tools. The Phytophtora parasitica virus was detected as a novel 
family by our method as it was not a known virus at that time, and the family matching TTV only had very weak 
similarity.
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In this article, we applied an RNAcode-based strategy to predict novel ORFans in viral-enriched short-read 
metagenomic datasets. Using this approach, we identified 32 putative ORFan protein families from 17 DNA 
and RNA libraries from feces, serum, nasopharyngeal aspirates and cerebrospinal fluid. Reannotation of the 
sequences with updated databases suggest that our predicted families are likely to represent real ORFan gene 
families, since most of the families have high similarity to contigs from metagenomic sample assemblies but no 
significant hits to characterized proteins. Moreover, three predicted families did not match sequences in any of the 
databases. These are ORFan proteins by definition, but further validation is necessary to rule out false positives.

Based on the predicted protein families, we were able to amplify, characterize and validate the presence a 
circular DNA fragment of 5.8 kb, which we originally conjectured to be a small circular genome or a plasmid. 
The presence of phage capsid and replication protein motifs in the annotated ORFs, in conjunction with the fact 
that the fragment was isolated from fecal samples, suggest that the fragment is the genome of a bacteriophage, 
preliminarily named bacteriophage HFM. Further experiments are needed to investigate the nature and ubiquity 
of this putative bacteriophage, as recent studies provide increasing evidence that the bacteriophage portion of the 
microbiome may profoundly affect our health28.

The results of this study highlight the importance of developing methods for viral discovery that do not rely on 
homology to complement homology-based approaches. Although the analysis of the “dark matter” dataset with 
Kraken, Kaiju and Metaphlan2 yielded hits to 16 viral species, none of them predicted sequences belonging to 
bacteriophage HFM as viral. Besides bacteriophage HFM, our method also detected the presence of viral proteins 
from a TTV-like virus and Phytophtora parasitica virus, which also serve as additional evidence to support the 
hits to these viruses in Kaiju and Kraken.

Our approach requires the construction of high-quality multiple sequence alignments and we tested different 
strategies to guarantee a high-quality alignment input for RNAcode. This requirement limited the amount of 
putative families we could process. It is possible that crAssphage and the parvovirus NIH-CQV were not detected 
due to the stringent criteria used. Further work towards ensuring high quality input for RNAcode could thus 
increase the sensitivity and applicability of the proposed strategy.

Despite our positive results, there are several factors that could potentially influence the reliability and wider 
applicability of our approach. These include the choice of clustering algorithm. MCL performed the best in our 
pilot experiments, but the high memory requirements of MCL may make it unsuitable for larger datasets. Also, 
the addition of a single-linkage subclustering step at 95% similarity threshold aimed at reducing redundancy 
and improving multiple sequence alignment construction, but at the same time it could have artificially reduced 
the real diversity present in the dataset. Another limitation, inherent to RNAcode, is that one sequence must be 
selected in the multiple alignment as a reference for the analysis. Wherever possible, we reordered our multiple 
alignments such that the sequence designated as reference contained the most common codon variants, thereby 
ensuring that RNAcode would see the least amount of conserved changes and score the coding potential con-
servatively. It is likely that the effect of different choices in reference sequence is low in most cases, but highly 
dependent on the nature of the alignment.

The main advantage of our RNAcode-based strategy is that its efficacy does not depend on having a suitably 
trained model appropriate for the type of sample. This means that reliable gene prediction is possible for novel 
kinds of datasets, as long as there is sufficient conserved signal for the available ORFans. In this work, we show-
cased the potential of this strategy by analysing a combination of human virome datasets, which resulted in the 
characterization of a novel bacteriophage and a set of ORFan proteins that can be used as anchors for further 
exploration of potential novel viruses and bacteriophages.

Despite our contribution to ab initio protein family detection, prediction of novel viral ORFan genes from 
viral-enriched data remains a challenging problem. Our predictions rely on statistical models of evolutionary 
change which are sensitive to the quality of the multiple alignments they evaluate and some assumptions might 
not hold for certain proteins. As longer reads become more affordable and viral information in sequence data-
bases increases, the detection of viral ORFs genes will become less complex. However, achieving adequate depth 
of coverage and lowering error rates remain major issues limiting ORFan gene prediction, and these will have 
to be addressed by improvements in sequencing technology, viral enrichment techniques, and bioinformatics 
methods.

Methods
A schematic overview of the entire analysis scheme except for sample collection and preparation is shown in 
Fig. 1.

Sample preparation, library construction, and sequencing.  Samples were collected from serum, 
nasopharyngeal and throat swabs, feces, and cerebrospinal fluid of anonymized patients. The study, including 
patient sampling and protocols was approved by the local ethics committee at the Karolinska Institute, The 
Regional Ethical Review Board, Stockholm, Dnr 02–212, 02–422, and 04–836/4. All experiments were performed 
in accordance with relevant guidelines and regulations.

The samples were processed according to the protocol described in a previous study7. Briefly, samples were 
pooled, centrifuged, enriched for viral particles using filtration and enzymatic digestion, and DNA and RNA 
were extracted and amplified separately using random-primed PCR. Amplicons between approximately 400 
and 1,500 bp were size selected, yielding 17 libraries which were subjected to 454 sequencing29. Supplementary 
Table S1 summarizes the results of sequencing these libraries. In aggregate, almost 4 million reads were sequenced 
comprising 937 Mbp with an average read length of 240.2 nucleotides.
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Pre-assembly removal of repetitive content and human sequences.  To maximize the contig 
lengths in the assembly and therefore the potential discovery of novel protein families, sequence reads from all 17 
libraries, both RNA and DNA fractions, were combined and analysed together. Furthermore, to reduce the risk of 
misassemblies30, highly repetitive and human sequences were removed as follows.

Reads were first analysed using RepeatMasker version 3.2.8 to identify known biological repeats and 
low-complexity segments. RepeatMasker was run with the parameters ‘-species primates’. Reads were 
discarded if more than 70% repetitive or if the highest scoring region (under a 1/-5 model for unmasked and 
masked positions, respectively) was shorter than 50 nucleotides.

To remove human sequence, reads were searched against the NCBI human transcripts and human genome 
databases31 using NCBI BLAST 2.2.2332. Reads were discarded if a match was found at ≥90% identity over ≥80% 
of the query sequence.

Assembly.  Reads were assembled using MIRA 3.0.533 with the parameters ‘-job = denovo, genome,  
accurate, 454′. From the ACE file produced by the assembler, contigs were extracted into FASTA format, 
and the following statistics were determined for each contig and included in each FASTA header: number of 
reads, contig coverage (minimum, maximum, and mean), the samples which the reads derive from, the number 
of reads originating from DNA and RNA, and the number of reads from each library. Reads assembled into 
1,042,291 contigs totalling 290,369,822 nucleotides, with an average length of 278.6 nucleotides.

Post-assembly filtering of known sequences.  To remove contigs which matched known genes, the 
1,042,291 assembled reads were used as queries in a blastn search of the NCBI non-redundant nucleotide data-
base (nt). The 613,840 sequences which did not have a match against nt were used as queries in a blastx search 
of the nr non-redundant protein database. Of those, 479,558 sequences did not have a match in the nr database. 
The nt and nr databases were downloaded from ftp://ftp.ncbi.nih.gov/blast/db on March 1 and March 10, 2011, 
respectively. Both searches were performed using NCBI BLAST version 2.2.24+34 with a conservative E-value 
cutoff of 1e-5 (Sayers et al. 2010) with the following parameters: ‘-evalue 1e-5 -outfmt 7 -num_
descriptions 1 -num_alignments 1 -num_threads 8′.

To expect on average less than one hit by chance when accounting for the number of searches performed, the 
E-value cutoff was set initially to 1e−7 (one hit in (1,042,291 * 2) searches ≈4.8e−7). While the E-value is a meas-
ure of the false positive rate and not an indication that all true matches will be found, in order to be conservative, 
we considered as “known” and therefore eliminated from further analysis any database hit which matched one of 
our query sequences at a significance ~100x lower than that (E = 1e−5).

To remove any residual untrimmed tag sequences which could confound clustering, we applied the TagCleaner 
and PRINSEQ algorithms and to predict and remove tags. We used TagCleaner version 0.11-standalone, 
obtained from the URL http://tagcleaner.sourceforge.net on April 1, 201135. PRINSEQ is a web-based tool avail-
able at http://edwards.sdsu.edu/prinseq_beta/, which we ran with the parameters “{“derep0”:“true”, 
“derep1”:“true”, “derep2”:“true”, “derep3”:“true”, “derep4”:“true”, “tail-
site”:“1”, “trimsite”:“1”, “trimtype”:“2”, “trimrule”:“1”}” on April 1, 201136. After 
applying TagCleaner and PRINSEQ, 402,288 contigs remained, totalling 97,899,385 nucleotides with an average 
length of 243.4 nt.

Clustering unknown sequences.  The 402,288 assembled sequence contigs were then aligned to one 
another with NCBI-BLAST 2.2.2537 in an all-versus-all comparison using the command ‘blastall -p 
blastp -e 1e-5 -m 9 -v 10000 -b 10000 -a 8 -K 100000′.

The all-versus-all BLAST results were preprocessed for use with MCL version 10–20138 using the UNIX 
command-line tools grep and cut to extract the relevant columns from the tabular BLAST output (“grep–
no-filename -v “#“ -v blast_tab.txt | cut -f 1, 2, 11 > blast_tab.abc”) and the 
program mcxload (included with MCL) using the parameters “–stream-mirror–stream-neg-log10 
-stream-tf ‘ceil (200)”.

We chose to run MCL with an inflation value (−I) of 6 and -scheme = 7 after experimenting with a range 
of inflation, scheme, and k-nearest-neighbor settings, finding that the improvement in clustering performance 
plateaued with those parameters. The jury scores, which measure how accurately the mcl process was computed 
(see http://micans.org/mcl/man/mclfaq.html), were high across most of the range of inflation values, specifically 
87, 95, and 98 out of 100 for the parameters we chose. MCL produced 248,813 clusters, from which we selected for 
analysis those with sizes between 3 and 250 sequences, yielding a total of 13,861. Highly similar sequences, which 
are likely duplicate copies of the same sequence with sequence errors, are interpreted incorrectly by RNAcode as 
independent instances and cause poor performance. To eliminate this source of bias, we sub-clustered the MCL 
clusters using a single-linkage approach implemented in Perl, aggregating sequences within a cluster that were 
95% similar or greater, and then choosing the longest sequence to represent the subcluster. Finally, to reduce the 
size of the dataset, all clusters greater than size 7 were selected, yielding a total of 456 clusters that were further 
analyzed.

Calibrating RNAcode for use with short-read sequence data.  Known coding and non-coding nucle-
otide multiple alignments of Methanococcus jannaschii sequence were obtained from http://www.tbi.univie.
ac.at/papers/SUPPLEMENTS/RNAcode/. Custom Perl code was used to derive four pairs of known coding and 
non-coding sequence test sets consisting of alignments 25, 50, 75, and 100 nucleotides in length. The number of 
alignments in each set were as follows: 25 nt coding, 470; 25 nt non-coding, 160; 50 nt coding, 542; 50 nt non-coding, 
181, 75 nt coding, 564; 75 nt non-coding, 102; 100 nt coding, 570; 100 nt non-coding, 43. Each alignment was used 
as input to RNAcode, and the P-values were plotted versus their length to create Supplementary Figure 1.

http://tagcleaner.sourceforge.net
http://edwards.sdsu.edu/prinseq_beta/
http://micans.org/mcl/man/mclfaq.html
http://www.tbi.univie.ac.at/papers/SUPPLEMENTS/RNAcode/
http://www.tbi.univie.ac.at/papers/SUPPLEMENTS/RNAcode/
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Prediction of novel protein families.  For each cluster created by MCL, we made multiple alignments of 
the DNA sequences corresponding to that cluster using a codon-aware aligner, MACSE v0.8b2 (Ranwez et al.  
2011), with the parameters “-s -60 -f -10 -g -10” based on the author’s recommendation to lower 
frameshift and stop codon penalties in less reliable sequence data.

Alignments were trimmed or split manually where necessary, discarding low quality alignments with e.g. 
poor overlap, low-complexity sequences, areas of homopolymer runs, low sequence variation, etc. The remaining 
alignments were used as input to RNAcode version 0.3pre39, downloaded from http://github.com/wash/rnacode. 
The software was run using default parameters on all the multiple alignments. To gather the statistics used in 
Supplementary Table S2, sequences in the multiple alignment were translated into amino acids according to 
the frame predicted by RNAcode using CodonAlign (http://www.hiv.lanl.gov/content/sequence/CodonAlign/
codonalign.html) and custom Perl code. Seg40 was run with default parameters on the resulting predicted amino 
acid sequences, and sequences more than 50% low-complexity were discarded. For all RNAcode predictions with 
a P-value ≤ 0.15, a combined score was calculated by summing the log10 of the RNAcode score, the seg complexity 
score in bits, and the log10 of the predicted ORF length. This composite score was then used to rank predictions. 
In addition to reporting segments of high coding potential and the corresponding P-values, RNAcode generates 
diagrams of the multiple alignments with codons annotated as synonymous, conservative, or nonsynonymous 
changes, as shown in Fig. 2d and Supplemental Fig. 2.

Similarity searches of putative novel ORFan families.  To assess whether the predicted novel protein families 
showed any significant matches to other metagenomic sequences or known genes, we compared them against 
four nucleotide databases and four protein databases, as follows: (1) All of the nucleotide sequences from the 
predicted protein families were searched against the NCBI nt and env_nt databases (downloaded on March 2016), 
the Human Microbiome Project Reference Genomes Data assembly nucleotide fasta (http://hmpdacc.org/HM-
RGD/) and the MetaHIT gene catalogue (Li et al. 2014) using blastn from Blast 2.2.28+34 with the parameters: 
-max_target_seqs. 10 -outfmt 11. Alignments were post-filtered to an E-value cutoff of E ≤ 1e−3. (2) 
All of the predicted amino acid sequences from the predicted protein families were searched against the NCBI 
nr and env_nr (March 2016) databases, the Human Microbiome Project Reference Genomes Data (HMPRGD) 
assembly peptide fasta and the peptide version of the MetaHIT gene catalogue using blastp from Blast 2.2.28+ 
with the parameters: –max_target_seqs. 10 -outfmt 11. Alignments were post-filtered to an E-value 
cutoff of E ≤ 1e−3. (3) Amino acid multiple alignments from all of the predicted protein families were searched 
against the four aforementioned protein databases separately using hmmsearch from the HMMER3 suite, ver-
sion 3.1b241. A cutoff of 10−3 for sequence and domain E-value was used as the criterion for statistical significance.

We also searched the predicted novel families against the Rfam database42, submitting nucleotide sequences to 
the Rfam batch sequence search server with default parameters (E-value cutoff of E < 0.01) at http://rfam.sanger.
ac.uk/search#tabview=tab1 on December 13, 2011.

Initial assembly of a cluster 179a-derived amplicon from an NGS library.  Primers directed towards 
the ends were designed from several of the clusters based on the possibility that they could be derived from 
short, circular genomes. For cluster 179a, the primers were: CTACAACACCGGGAATAAAGTTATACGTCA 
and GTTTAAGTCGTCGCCGAAGTTTCTTT. A long-range PCR using standard conditions resulted in an 
approximately 5 kb product.

Fragments were sequenced with the Illumina MiSeq, yielding a total of 3 640 000 raw reads of length 2 × 300. 
Reads were quality filtered with nesoni clip version 0.126 (https://github.com/Victorian-Bioinformatics-Consortium/
nesoni), parameters –min qual 30,–min-length 75 and later assembled with the Iterative Virus Assembler 
(IVA) version 0.11.043 with default parameters. From the assembled contigs, we extracted the contig of length which 
contained our primer sequences. The quality of the contig was verified by mapping back the quality filtered Illumina 
reads with BWA-MEM version 0.7.1244 using default parameters and visualizing alignments with the Integrative 
Genomics Viewer45.

Gap closing of 179a-derived amplicon.  The amplification strategy consisted in two overlapping ampli-
cons covering the complete viral genome. Primer set was designed using sequence information obtained by NGS, 
inspecting highly conserved genomic regions of the IVA assembly. Two DNA amplicons of a length around 2–3 
Kb were expected. PCR kit used was Platinum Taq DNA Polymerase High Fidelity (Cat. No. 11304–102, Thermo 
Fisher Scientific). PCR conditions were 2 minutes at 94 °C for initial denaturalization; 30 cycles of seconds at 
94 °C (denature), 30 seconds at 59.5 °C (annealing) and 4 minutes at 68 °C (extension); and a final extension hold 
of 4 minutes at 68 °C. Non-template controls were also included to discard contamination. After PCR, DNA prod-
ucts were inspected by DNA agarose gel electrophoresis and purified using illustra GFX PCR DNA and Gel Band 
Purification Kit (Cat. No. 28–9034–70, GE Healthcare Life Sciences). DNA concentration was then quantified 
using Qubit® dsDNA HS Assay Kit (Cat. No. Q32854, Thermo Fisher Scientific). PCR products obtained were 
sequenced by capillary sequencing after adjusting DNA concentration. Sequencing primers were also placed in 
highly conserved genomic regions of the IVA assembly. This resulted in 11 sequencing reactions aiming to cover 
the entire circular genome in both directions. DNA sequences and chromatograms were manually inspected, 
and combined with the original contig from the Illumina data they formed a single circular contig using the 
Sequencher Software (Gene Codes).

Annotation of bacteriophage HFM.  Naive ORF prediction was carried out with EMBOSS version 6.5.746  
getorf tool with parameters ‘-circular Y -find 1’,which lists all amino acid sequences between a start 
and a stop codon in the 6 open reading frames. The resulting 52 putative ORFs were size filtered (length >50) and 
evaluated against the following database searches: 1) blastp against NCBI nr and env_nr, 2) blastp against 

http://github.com/wash/rnacode
http://www.hiv.lanl.gov/content/sequence/CodonAlign/codonalign.html
http://www.hiv.lanl.gov/content/sequence/CodonAlign/codonalign.html
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MetaHIT19, 3) blastp against the HMP HMPRGD peptide database 4) hmmscan against Pfam release 2947 and 5)  
hmmscan against vFam-A build February 201448. To determine the final set of ORFs, any ORF with a database 
hit with query coverage >80%, sequence id >50% and e-value <1 were kept, yielding a total of 7 ORFs. Then, all 
hits for the selected ORFs were inspected manually to determine the most likely annotation. The ORF6 protein 
sequence and all 1657 sequences in the Pfam full alignment of Phage_F (PF02305) were aligned to the Pfam 
HMM with hmmalign. Unalignable regions in the N- and C-terminus were removed, keeping a conserved core 
region of about 150 residues. Sequences with >50% gap residues were removed, and sequences >90% identical to 
other sequences were removed, leaving 331 representative and non-redundant sequences. 54 of these had proper 
taxonomic annotation (all as Microviridae) and were used to calculate a maximum likelihood tree using RAxML 
with 1000 bootstraps using the PROTCATBLOSUM62 model.

Complementary virus prediction strategies.  The complementary virus detection strategy was done 
by combining three tools: Kraken22, Kaiju24 and Metaphlan223. Metaphlan2 version 2.6.0 was run with default 
parameters and database. Kraken version 0.10.5-beta was run using the MiniKraken database available from 
the website (https://ccb.jhu.edu/software/kraken/) with default parameters, and results were filtered using the 
kraken-filter script with a 0.05 threshold. Kaiju version 1.5.0 was run in greedy mode with parameters ‘-x –m 20 
–a greedy –e 1′ against a Progenomes[ref] + RefSeq viral database downloaded in June 2017. Kaiju viral hits were 
filtered to contain at least 2 sequences matching the same viral species with a custom python script.

Follow-up PCR in individual patient samples.  The presence of the identified virus in individual samples 
was determined by PCR and capillary sequencing. Primers placed in highly conserved regions were designed as 
above. Of note, two rounds of amplifications were designed in case not enough DNA yield was obtained after first 
PCR. Here, primers mapped against the capsid region amplifying a DNA fragment of 267 bp and 155 bp in the 
first and second PCR, respectively. Before inspecting the individual samples, the presence of the virus in extracted 
DNA from the DNA pools previously tested by NGS was also determined. They corresponded to FESC A + C, 
FESC B and FESC D pools. In here, only FESC D library became positive by PCR. Then, viral determinations 
were performed in the 10 individual samples merged in FESC D pool (samples F31–45). PCR products obtained 
in both first and Nested PCR were then column-purified and capillary sequenced to confirm the specificity of the 
amplification. Of note, DNA fragments not corresponding to the amplicon size expected but with similar length 
than the size expected were also purified and capillary sequenced. After sequence inspection, the virus was only 
determined in 1 out 10 reactions (sample F32), where the contigs obtained from first and Nested PCR overlapped 
after sequence trimming, and perfectly mapped against the contig generated by NGS.

Data availability.  All sequencing datasets generated and analysed during this study are available in the 
European Nucleotide Archive under project accession number PRJEB17838. Additionally, the assembled and 
annotated sequence of the bacteriophage HFM is available with accession number ERZ376945 under the same 
project. Scripts to generate this work are available at https://github.com/maubarsom/ORFan-proteins.

References
	 1.	 Bexfield, N. & Kellam, P. Metagenomics and the molecular identification of novel viruses. Vet. J. 190, 191–198 (2011).
	 2.	 Dutilh, B. E. et al. A highly abundant bacteriophage discovered in the unknown sequences of human faecal metagenomes. Nat. 

Commun. 5 (2014).
	 3.	 Minot, S. et al. Rapid evolution of the human gut virome. Proc. Natl. Acad. Sci. USA 110, 12450–5 (2013).
	 4.	 Hannigan, G. D. et al. The human skin double-stranded DNA virome: Topographical and temporal diversity, genetic enrichment, 

and dynamic associations with the host microbiome. MBio 6 (2015).
	 5.	 Meyer, F. et al. The metagenomics RAST server – a public resource for the automatic phylogenetic and functional analysis of 

metagenomes. BMC Bioinformatics 9, 386 (2008).
	 6.	 Krause, L. et al. Finding novel genes in bacterial communities isolated from the environment. In Bioinformatics 22 (2006).
	 7.	 Lysholm, F. et al. Characterization of the viral microbiome in patients with severe lower respiratory tract infections, using 

metagenomic sequencing. PLoS One 7, e30875 (2012).
	 8.	 Naccache, S. N. et al. A cloud-compatible bioinformatics pipeline for ultrarapid pathogen identification from next-generation 

sequencing of clinical samples. Genome Res. 24, 1180–1192 (2014).
	 9.	 Dutilh, B. E. Metagenomic ventures into outer sequence space. Bacteriophage (2014).
	10.	 Fischer, D. & Eisenberg, D. Finding families for genomic ORFans. Bioinformatics 15, 759–762 (1999).
	11.	 Parks, D. H., MacDonald, N. J. & Beiko, R. G. Classifying short genomic fragments from novel lineages using composition and 

homology. BMC Bioinformatics 12, 328 (2011).
	12.	 Noguchi, H., Taniguchi, T. & Itoh, T. Meta gene annotator: Detecting species-specific patterns of ribosomal binding site for precise 

gene prediction in anonymous prokaryotic and phage genomes. DNA Res. 15, 387–396 (2008).
	13.	 Hoff, K. J. et al. Gene prediction in metagenomic fragments: a large scale machine learning approach. BMC Bioinformatics 9, 217 

(2008).
	14.	 Zhu, W., Lomsadze, A. & Borodovsky, M. Ab initio gene identification in metagenomic sequences. Nucleic Acids Res. 38 (2010).
	15.	 Rho, M., Tang, H. & Ye, Y. FragGeneScan: Predicting genes in short and error-prone reads. Nucleic Acids Res. 38 (2010).
	16.	 Kelley, D. R., Liu, B., Delcher, A. L., Pop, M. & Salzberg, S. L. Gene prediction with Glimmer for metagenomic sequences augmented 

by classification and clustering. Nucleic Acids Res. 40 (2012).
	17.	 Yooseph, S. et al. The Sorcerer II global ocean sampling expedition: Expanding the universe of protein families. PLoS Biol. 5, 

0432–0466 (2007).
	18.	 Allander, T. et al. Cloning of a human parvovirus by molecular screening of respiratory tract samples. Proc. Natl. Acad. Sci. USA 102 

(2005).
	19.	 Li, J. et al. An integrated catalog of reference genes in the human gut microbiome. Nat. Biotechnol. 32, 834–841 (2014).
	20.	 Roux, S. et al. Evolution and Diversity of the Microviridae Viral Family through a Collection of 81 New Complete Genomes 

Assembled from Virome Reads. PLoS One 7, e40418 (2012).
	21.	 McNair, K., Bailey, B. A. & Edwards, R. A. PHACTS, a computational approach to classifying the lifestyle of phages. Bioinformatics 

28, 614–618 (2012).

https://ccb.jhu.edu/software/kraken/
https://github.com/maubarsom/ORFan-proteins


www.nature.com/scientificreports/

1 2ScIentIfIc REPOrTS | (2018) 8:28 | DOI:10.1038/s41598-017-18341-7

	22.	 Wood, D. E. & Salzberg, S. L. Kraken: ultrafast metagenomic sequence classification using exact alignments. Genome Biol. 15, R46 (2014).
	23.	 Truong, D. T. et al. MetaPhlAn2 for enhanced metagenomic taxonomic profiling. Nat. Methods 12, 902–903 (2015).
	24.	 Menzel, P., Ng, K. L. & Krogh, A. Fast and sensitive taxonomic classification for metagenomics with Kaiju. Nat. Commun. 7, 11257 (2016).
	25.	 Naccache, S. N. et al. The perils of pathogen discovery: origin of a novel parvovirus-like hybrid genome traced to nucleic acid 

extraction spin columns. J. Virol. 87, 11966–77 (2013).
	26.	 Paez-Espino, D. et al. Uncovering Earth’s virome. Nature 536, 425–30 (2016).
	27.	 Roux, S., Hallam, S. J., Woyke, T. & Sullivan, M. B. Viral dark matter and virus-host interactions resolved from publicly available 

microbial genomes. Elife 4, e08490 (2015).
	28.	 Tetz, G. & Tetz, V. Bacteriophage infections of microbiota can lead to leaky gut in an experimental rodent model. Gut Pathog. 1–4, 

https://doi.org/10.1186/s13099-016-0109-1 (2016).
	29.	 Margulies, M. et al. Genome sequencing in microfabricated high-density picolitre reactors. Nature 437, 376–80 (2005).
	30.	 Raes, J., Foerstner, K. U. & Bork, P. Get the most out of your metagenome: computational analysis of environmental sequence data. 

Curr. Opin. Microbiol. 10, 490–8 (2007).
	31.	 Sayers, E. W. et al. Database resources of the National Center for Biotechnology Information. Nucleic Acids Res 40, D13–25 (2012).
	32.	 Altschul, S. F. et al. Gapped BLAST and PSI-BLAST: A new generation of protein database search programs. Nucleic Acids Research 

25, 3389–3402 (1997).
	33.	 Chevreux, B. MIRA: an automated genome and EST assembler. Duisbg. Heidelb. 1–161, https://doi.org/10.1101/gr.1917404 (2005).
	34.	 Camacho, C. et al. BLAST+: architecture and applications. BMC Bioinformatics 10, 421 (2009).
	35.	 Schmieder, R., Lim, Y. W., Rohwer, F. & Edwards, R. TagCleaner: Identification and removal of tag sequences from genomic and 

metagenomic datasets. BMC Bioinformatics 11, 341 (2010).
	36.	 Schmieder, R. & Edwards, R. Quality control and preprocessing of metagenomic datasets. Bioinformatics 27, 863–864 (2011).
	37.	 Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. Basic local alignment search tool. J. Mol. Biol. 215, 403–410 (1990).
	38.	 Enright, A. J., Van Dongen, S. & Ouzounis, C. A. An efficient algorithm for large-scale detection of protein families. Nucleic Acids 

Res. 30, 1575–1584 (2002).
	39.	 Washietl, S. et al. RNAcode: robust discrimination of coding and noncoding regions in comparative sequence data. RNA 17, 578–94 (2011).
	40.	 Wootton, J. C. & Federhen, S. Statistics of local complexity in amino acid sequences and sequence databases. Comput. Chem. 17, 

149–163 (1993).
	41.	 Mistry, J., Finn, R. D., Eddy, S. R., Bateman, A. & Punta, M. Challenges in homology search: HMMER3 and convergent evolution of 

coiled-coil regions. Nucleic Acids Res. 41 (2013).
	42.	 Gardner, P. P. et al. Rfam: Wikipedia, clans and the ‘decimal’ release. Nucleic Acids Res. 39 (2011).
	43.	 Hunt, M. et al. IVA: accurate de novo assembly of RNA virus genomes. Bioinformatics 31, 2374–6 (2015).
	44.	 Li, H. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. arXiv.org 3 (2013).
	45.	 Thorvaldsdóttir, H., Robinson, J. T. & Mesirov, J. P. Integrative Genomics Viewer (IGV): high-performance genomics data 

visualization and exploration. Brief. Bioinform. 14, 178–92 (2013).
	46.	 Rice, P. et al. EMBOSS: the European Molecular Biology Open Software Suite. Trends Genet. 16, 276–7 (2000).
	47.	 Finn, R. D. et al. Pfam: the protein families database. Nucleic Acids Res. 42, D222–30 (2014).
	48.	 Skewes-Cox, P., Sharpton, T. J., Pollard, K. S. & DeRisi, J. L. Profile Hidden Markov Models for the Detection of Viruses within 

Metagenomic Sequence Data. PLoS One 9, e105067 (2014).
	49.	 Lex, A., Gehlenborg, N., Strobelt, H., Vuillemot, R. & Pfister, H. UpSet: Visualization of intersecting sets. IEEE Trans. Vis. Comput. 

Graph. 20, 1983–1992 (2014).

Acknowledgements
This work was supported by the Swedish Research Council and the Knut and Alice Wallenberg Foundation.

Author Contributions
A.B. produced the viral discovery shotgun libraries. D.M. and E.S. designed the protein prediction method, D.M. 
and F.L. implemented the protein prediction method. M.B. annotated the predicted proteins. C.P. produced 
the sequencing data from the phage and M.B. and C.P. assembled and annotated the phage. E.S., B.A. and T.A. 
contributed reagents/materials/analysis tools. M.B. and D.M. wrote the manuscript. All authors reviewed the 
manuscript.

Additional Information
Supplementary information accompanies this paper at https://doi.org/10.1038/s41598-017-18341-7.
Competing Interests: The authors declare that they have no competing interests.
Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Cre-
ative Commons license, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons license and your intended use is not per-
mitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the 
copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
 
© The Author(s) 2017

http://dx.doi.org/10.1186/s13099-016-0109-1
http://dx.doi.org/10.1101/gr.1917404
http://dx.doi.org/10.1038/s41598-017-18341-7
http://creativecommons.org/licenses/by/4.0/

	Discovering viral genomes in human metagenomic data by predicting unknown protein families

	Results

	Sample sequencing and preprocessing. 
	Protein family prediction. 
	Annotation of predicted ORFan protein families. 
	Discovery of a novel virus-like genome. 
	Virus detection using other pipelines. 

	Discussion

	Methods

	Sample preparation, library construction, and sequencing. 
	Pre-assembly removal of repetitive content and human sequences. 
	Assembly. 
	Post-assembly filtering of known sequences. 
	Clustering unknown sequences. 
	Calibrating RNAcode for use with short-read sequence data. 
	Prediction of novel protein families. 
	Similarity searches of putative novel ORFan families. 
	Initial assembly of a cluster 179a-derived amplicon from an NGS library. 
	Gap closing of 179a-derived amplicon. 
	Annotation of bacteriophage HFM. 
	Complementary virus prediction strategies. 
	Follow-up PCR in individual patient samples. 
	Data availability. 

	Acknowledgements

	Figure 1 Flowchart of the ORFan protein family prediction pipeline.
	Figure 2 (a) Summary of the resulting 32 high confidence families.
	Figure 3 (a) Diagram of the bacteriophage HFM genome.
	Figure 4 Detection of known viruses using homology-based methods.
	Table 1 Summary of the sequenced viral-enriched libraries.
	Table 2 Summary of how many of the 32 predicted novel ORFan protein families have hits to various microbiome or other databases.
	Table 3 Protein family hits to described proteins.




