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Assessment of Polysaccharides 
from Mycelia of genus Ganoderma 
by Mid-Infrared and Near-Infrared 
Spectroscopy
Yuhan Ma1,2,3, Huaqi He1,2,3, Jingzhu Wu4, Chunyang Wang1,2, Kuanglin Chao5 & Qing Huang   1,2

Ganoderma lingzhi (G. lingzhi), G. sinense, G. applanatum, etc. belongs to the Ganoderma genus of 
polypore mushrooms which contain rich polysaccharides valuable for nutrition and positive medicinal 
effects. In order to evaluate polysaccharide content in Ganoderma mycelia obtained in the fermentation 
process quickly and accurately, in this work we employed infrared spectroscopy to examine different 
Ganoderma stains of samples from diversified sources. Through mid-infrared (mid-IR) spectroscopy, we 
could identify the most relevant spectral bands required for polysaccharide evaluation, and through 
near-infrared (NIR) spectroscopy, we could establish the quantification model for making satisfactory 
prediction of polysaccharide ingredient content. As such, we have achieved an effective and convenient 
approach to quantitative assessment of the total polysaccharides in Ganoderma mycelia but also 
demonstrated that infrared spectroscopy can be a powerful tool for quality control of Ganoderma 
polysaccharides obtained from industrial production.

G. lingzhi, G. sinense, G. applanatum, etc. belongs to the genus Ganoderma which has been adopted as traditional 
Chinese herbal medicine in China since ancient times1,2. Nowadays, researchers have proved that G. lingzhi and 
other Ganoderma species such as G. sinense, G. applanatum, etc. possess encouraging medical curing effects on 
hepatopathy, chronic hepatitis, nephritis, hypertension, arthritis, neurasthenia, insomnia, bronchitis, asthma, 
and gastric ulcers3,4.

The major pharmacological ingredients of mushrooms in the Ganoderma genus include Ganoderma poly-
saccharides and ganoderic acids, and in particular, it has been reported that Ganoderma polysaccharides have 
some special functions such as therapeutic effects on cancer5–7, obesity8,9, diabetes10,11, and pancreatitis12; as well 
as pharmaceutical activity on immune modulation13–17, liver protection4,18,19, and vascular endothelial cell growth 
inhibition20,21. Especially, it has been reported that β-glucans in Ganoderma are closely related to health, for they 
can stimulate the immune response through cytotoxic or immunomodulatory mechanisms to enhance cellular 
immunity, and stimulate a variety of immune cells including macrophages22–24, neutrophils25,26, natural killer 
cells27,28 and dendritic cells29,30. In fact, Ganoderma polysaccharides extracted from mycelia and spores are used 
as prescription drugs in China by many pharmaceutical factories and companies.

Conventionally, polysaccharides can be examined through biochemical approaches such as the phenol–sul-
phuric acid method or anthrone–sulphuric acid method31. However, these methods normally require deleteri-
ous substances such as phenol, anthrone, and sulfuric acid32. In order to achieve a more convenient approach 
to quantitative assessment of polysaccharides in Ganoderma mycelia, non-destructive spectroscopic approaches 
including infrared spectroscopy thus become especially attractive for their outstanding advantages in cost, effi-
ciency, sample preparation and instrument operation. In fact, infrared spectroscopy (including both mid-infrared 
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and near-infrared spectroscopy) is widely used today in the agriculture33,34 and pharmaceutical industry35,36, and 
shows great potential for the application in food processing industry as well37,38.

In this context, therefore, we intended to employ infrared spectroscopy to assess polysaccharides in myce-
lia of different Ganoderma strains produced in the fermentation process. Although some previous studies have 
reported the application of both mid-IR- and NIR- spectroscopy in analysis of Ganoderma polysaccharides31,39, 
there are still some problems yet to be solved for practical applications. For example, in the industrial production 
of Ganoderma polysaccharides, it is standard to produce Ganoderma mycelia through liquid fermentation, but 
there is neither a report for analysis of Ganoderma mycelia through mid-infrared (mid-IR) spectroscopy, nor 
a report of suitable near-infrared (NIR) quantification, that is valid for the assessment of polysaccharides in 
Ganoderma mycelia produced during the fermentation process. Therefore, in this work, we intended to combine 
both mid-IR and NIR techniques so that we could not only qualitatively analyze the samples based on mid-IR 
spectral data, but also quantitatively evaluate the polysaccharides in Ganoderma mycelia based on the optimized 
NIR quantification model.

Results
Analysis of Ganoderma mycelia via mid-IR spectroscopy.  Mid-IR and NIR are both forms of elec-
tromagnetic radiation with wavelengths longer than visible light. The wavelength of mid-IR is between 4000–
400 cm−1 (2.5–25 μm), while the wavelength of NIR with is between 14,000–4000 cm−1 (0.8–2.5 μm)40. The 
absorption of mid-IR involves transitions between vibrational energy states and rotational sub-states of the mol-
ecule which can thus be employed for the elucidation molecular structure40,41. A typical mid-IR spectrum of 
G. lingzhi mycelia is showed in Fig. 1, where the characteristic bands are shown with their assignments given 
in Table 1. The bands assigned to carbohydrates include the following: the bands at 1425 cm−142, 1316 cm−143, 
1152 cm−144, 1078 cm−145, 1025 cm−146,47, and 951 cm−147,48.

In addition, we also measured and analyzed different Ganoderma samples obtained in different stages during 
polysaccharide extraction process, with their mid-IR spectra shown in Fig. 2. From the spectrum, we can iden-
tify the characteristic bands attributed to carbohydrates, and we notice especially that the relative intensities of 
the bands at 1425 cm−1 and 1078 cm−1 are stronger for the samples with high content of polysaccharide after the 
extraction procedure.

Assessment of polysaccharide in Ganoderma mycelia by NIR spectroscopy.  In addition, we 
employed the NIR spectroscopy for the quantification of the polysaccharide content in Ganoderma mycelia. 
Generally, NIR spectroscopy measures the broad overtone and combination bands of some of the fundamental 
vibrations and can be an excellent technique for rapid and quantitative evaluation of many chemicals40. Figure 3a 
shows the NIR spectra in the 9000–4000 cm−1 region, and the corresponding first derivative spectra are shown 
in Fig. 3b. The absorption peaks at 8403 cm−1, 6896 cm−1, 5155 cm−1 are attributed to water49, while the bands 
at 4307 cm−1, 4405 cm−1, 5787 cm−1, and 5935 cm−1 are ascribed to carbohydrate. The NIR spectral band assign-
ments are listed in Table 2.

To establish an optimal quantification model for polysaccharide assessment, we employed the methods of 
moving window partial least-squares (mwPLS) and interval PLS (iPLS) to find the appropriate spectral range 
for NIR quantification model. The mwPLS analysis (Figure S1a) shows that in the range of (5268.8–4000 cm−1) 
the relative low root mean square error of cross validation (RMSECV) values are relatively low, and the iPLS 
analysis (Figure S1b) gives rise to the same consistent result. Accordingly, we took this range (5268.8–4000 cm−1) 
and applied the constant offset elimination pre-treatment method for construction of the optimal quantification 
model. Our result shows that the optimal spectral range for Ganoderma mycelia is between 5268.8–4000 cm−1, 
and the pre-treatment method is constant offset elimination (the comparisons using other different pre-treatment 
methods are given in the supplementary part Table S1). For the calibration set, we achieved determination coeffi-
cient (R2) = 0.9779, RMSECV = 0.467, RPD = 6.73 at rank = 6, and for the prediction set we obtained root mean 
square error of prediction (RMSEP) = 0.603, relative percent deviation (RPD) = 3.13, correlation coefficient (corr. 

Figure 1.  The mid-IR spectra of G. lingzhi mycelium dried powder.
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coeff.) = 0.9554. The calibration and prediction results are showed in Fig. 4. To check the model efficiency, the plot 
of RMSECV vs. Rank is also depicted and exhibits a smooth descent line (Figure S2).

Discussion
Qualitative analysis of Ganoderma mycelia based on mid-IR and NIR spectroscopy.  In the fore-
going sections, we have observed and identified the bands at 1425 cm−1 and 1078 cm−1 which are assigned to 
Ganoderma polysaccharides. These two bands are actually the most distinctive polysaccharide bands for our 
Ganoderma mycelia specimens. To confirm this, we measured the samples of high-content-polysaccharide (HCP) 
and low-content-polysaccharide (LCP) G. lingzhi strains, respectively, with the comparison of their mid-IR and 
NIR spectra as shown in Figs 5 and 6, respectively. We can see the prominent difference in intensity for the peaks 
at 1425 cm−1 and 1078 cm−1, and correspondingly, we can also identify the most relevant polysaccharide bands in 
NIR spectra at 4307 cm−1, 4405 cm−1. These mid-IR and NIR bands are actually most useful for polysaccharide 
detection and quantification.

Furthermore, for the NIR analysis, we obtained the correlation coefficient curves based on the NIR spectra, 
and confirmed that the larger correlation coefficients also occur at these NIR spectral peak positions (Fig. 7).

These peaks are just assigned to polysaccharides (see the NIR band assignments listed in Table 1), and for this 
reason, our quantification model therefore covers the spectral range of 5268.8–4000 cm−1 including the promi-
nent bands at 4307 and 4405 cm−1, which are closely related to their mid-IR counterparts, namely, the bands at 
1425 cm−1 and 1078 cm−1. These two mid-IR bands are actually corresponding to the C-H bending and C-O-H 
bending from pyranose ring of glucan, respectively, which exist widely in different kinds of mushrooms50. More 
specifically, the characteristic mid-IR peak 1078 cm−1 is assigned to the C-O stretching in β-glucans of lignin 
and carbohydrates51, which is related with 4405 cm−1 in NIR spectra for it stems from O-H stretching and C-O 
stretching combination. The 1425 cm−1 peak corresponds to C-H deformation in lignin and carbohydrates42 and 
it is related with the 4307 cm−1 band in the NIR spectrum for it stems from C-H stretching and C-H2 deformation 
combination. To further verify this, we also checked the relationship between the NIR spectra and the mid-IR 
spectra of Ganoderma mycelia based on a two-dimensional correlation spectroscopy of mid-IR and NIR spectra, 
as shown in Fig. 8. The result unambiguously confirms that the NIR range (5268.8–4000 cm−1) is most related to 
the mid-IR (1422–1376 cm−1) range which is mainly ascribed to polysaccharide in different Ganoderma stains.

To be noted, however, although quantification of total polysaccharide content is important for quality control 
of batch consistency, the total polysaccharide content is not necessarily correlated to health effect directly. As 
mentioned above, the medicinal value of Ganoderma mycelium is closely related to its β-glucans. Fortunately, 
one of the two selected peaks concerned in this work, namely the peak at 1078 cm−1 in FTIR (corresponding to 
NIR signal at 4405 cm−1) is just the characteristic for β-glycosides. Therefore, while our NIR quantification model 
assisted by FTIR spectral analysis is valid for the assessment of total polysaccharide content, it may also be useful 
for a rough evaluation of β-glucans.

Comparison of our model with other quantification models.  Considering the difference between 
mycelium and fruiting body of Ganoderma genus, it is understandable that our NIR quantification model is dif-
ferent from other previous models which contain broader spectral range. Although our NIR quantification model 
requires smaller spectral range, it actually gives rise to better prediction performance for providing larger range 
of polysaccharide values in the assessment.

Wavenumber(cm−1) Functional Group Assignments

3400 -OH stretching55

2926 CH2 asymmetric stretching56

1640 Amide I56

1457 CH2 in polysaccharides57

1425 C-H deformation in lignin and carbohydrates15

1372 C-H in-plane bending vibration58,59

1314–1316 symmetric CH2 bending of cellulose43

1243 COH in-plane bending/CH in-plane bending58

1152–1156 C-O-C asymmetric stretching of glycosidic linkage44

1078 C-O stretching of β-glucans45,46,51

1044 stretching vibration of C-O-C group60

1025 stretching vibration of C-O α-glycosidic bond47

951 β-glycosidic bond47; C-O and C-C stretching48

867 γ (C-H)61; furanose ring62

778 COO− deformation63

709 CH out-of plane bending64

573 bending vibration of a polysaccharide ring39

523 pyranose ring62; C=O asymmetric deformation65

Table 1.  Assignments of the characteristic mid-IR bands in the mid-IR spectrum of G. lingzhi mycelium.
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It seems that it might be better to include bands such as 5787 and 5935 cm−1 bands in the quantification model 
as they also show relatively large correlation coefficients in Fig. 7. To check this, we chose the spectral range 6048–
4000 cm−1 for comparison. The analysis of quantitative models for polysaccharides based on the NIR spectral 
range of (6048–4000 cm−1) for calibration set and prediction set are shown in Figures S2 and S3. We noticed that 
it requires higher rank for the assessment (results listed in Table S2). Actually, when we just took the two bands at 

Figure 2.  The mid-IR spectra of different samples obtained from the G. lingzhi polysaccharide extraction 
process. (a) GL powder refers to the drying powder from wet G. lingzhi culture mycelia; (b) crude GLPS refers 
to the extracted crude polysaccharide sample from the dried powder in 70 °C of hot water; (c) GLPS after 
condensing refers to the condensing supernatant sample using rotary vacuum approach; (d) GLPS after ethanol 
precipitating refers to the condensed remnant sample after ethanol precipitating process; (e) GLPS after Sevag 
refers to the sample with proteins removed with the by Sevag method; and (f)GLPS after dialysis refers to the 
sample which removed small molecular impurity substances after dialyzing process.

Figure 3.  NIR spectra of Ganoderma mycelia with showing the selection of spectral range of 5268.8–4000 cm−1 
for the optimal quantification assessment. (a) The conventional NIR spectra of Ganoderma mycelia; (b) The first 
derivative spectra of the corresponding NIR spectra.
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4307 and 4405 cm−1 in the construction of the quantification model, we obtained R2 = 0.8505 and RPR = 2.59 for 
rank = 6 (Table S2). But if we took the other two bands at 5935 and 5787 cm−1 into account, R2 became smaller 
(R2 = 0.8227) for rank = 6 (Table S2), with smaller RPD 2.37. So the efficiency or accuracy of the quantification 
model became worse. The reason may be understood with the following: First, we noticed that for the NIR spectra 
of Ganoderma fruiting body sample with high content of starch and cellulose, although the 4307 and 4405 cm−1 
bands are prominent in all the three spectra, the 5787 and 5935 cm−1 bands are diminished in the spectra of cellu-
lose and starch (Figure S4). Second, if we compare the spectrum of Ganoderma mycelium with that of Ganoderma 
fruiting body, we will find their NIR spectra are also really quite different (Figure S5). In Ganoderma fruiting 
body, the NIR signals are so weak for the 4307, 4405, 5787 and 5935 cm−1 bands that they are almost invisible in 
the NIR spectra. Moreover, the spectral shapes are also very different. We explain that such a big difference in 
spectral features may be due to two factors. First, the compositional structure of mycelium and fruiting body is 
different. Ganoderma fruiting body has a very thick and hard crust consisting of high content of cellulose and 
lignin, whereas Ganoderma mycelium has neither cellulose nor lignin (or the contents of cellulose and lignin are 
almost negligible in Ganoderma mycelium). Second, the polysaccharide content between mycelia and fruiting 
bodies is also significantly different. As reported by Chen et al.31, the highest content of polysaccharides is about 
8.07%. But in our mycelium samples, the content of polysaccharide is normally higher (up to 11.31%).

In summary, we have established an effective approach to polysaccharide content evaluation for Ganoderma 
mycelium samples, in which we utilized mid-infrared spectroscopy for qualitative analysis and NIR spectros-
copy for quantitative assessment. The optimized model contains the region of (5268.8–4000 cm−1) and with 
proper pre-treatment it can give rise to satisfactory prediction performance with the Rank = 6, R2 = 0.9779, 
RMSECV = 0.467, RPD = 6.73 in the calibration set, and RMSEP = 0.603, RPD = 3.13, corr. coeff. = 0.9554 for 
the prediction set. This work therefore not only achieved an effective approach for establishment of a satisfactory 
quantification model for polysaccharide assessment in Ganoderma mycelia, but also set a good example of prac-
tical application of NIR spectroscopy in the assessment of Ganoderma polysaccharides in industrial production.

Wavenumber (cm−1) Type Feature(s)

8403 combination of the first overtone of the O–H stretching and the OH-bending band 
(2ν1,3 + ν2)

Water66

6896 first overtone of the OH-stretching band (2ν1,3) Water66

6674 first overtone of the OH-stretching band alcohol or water66

6307 first overtone of the OH-stretching band alcohol or water66

5935 C–H stretching first overtone Lignin67, hemicelluloses67,68

5787 C–H stretching (1st overtone) of –CH2 Carbohydrates69

5155 combination of stretching and deformation of the O-H group in water Water70

4719 O-H and C-O stretching combination Polysaccharide71

4405 O-H stretching and C-O stretching combination Polysaccharides72

4307 C-H stretching and C-H2 deformation combination Polysaccharides66

4021 C-H stretching and C-C stretching combination Cellulose66

Table 2.  Assignments of the NIR absorption bands.

Figure 4.  The NIR-based quantitative model for the polysaccharides on the range of (5268.8–4000 cm−1) of 
calibration set (a) and prediction set (b).
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Methods
Materials.  The G. lingzhi strain 5.0026 was purchased from China General Microbiological Culture 
Collection Center (CGMCC), while some other Ganoderma strains were collected in 10 different provinces in 
China including Anhui, Shandong and Sichuan, etc.

Figure 5.  The mid-IR spectra of HCP and LCP G. lingzhi mycelia. HCP: high content of polysaccharide; LCP: 
low content of polysaccharide.

Figure 6.  The NIR spectra of both HCP and LCP G. lingzhi mycelia, showing the most critical characteristic 
bands for assessment of polysaccharides.

Figure 7.  Correlation coefficients of the chemical measurements with the comparison with NIR spectra.
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In order to make the range of the experimental samples with polysaccharide contents wide enough, 51 in vitro 
axenic preservation Ganoderma strains were purchased, exchanged or isolated from wild fruiting bodies. Among 
them, 38 stains were G. lingzhi, 7 stains were G.applanatum, 3 stains were G.sinense, 2 stains were G.resinaceum, 
and 1 stain was G.leucocontextum. Taking into account of the changes in polysaccharide content of mycelia at 
different fermentation stages, each strain was cultured for 7 days, 14 days and 21 days, respectively. On the 7th 
day, most mycelia were in the logarithmic growth phase, and they grew very fast; on the 14th day, most culture 
flasks were filled with mycelia; on the 21st day, all flasks were full of mycelia, and a few strains started to form its 
fruiting body. All the 153 mycelium samples were washed with ddH2O for three times, placed into petri dishes at 
−60 °C for 48 hours to freeze for drying (FD-1D-50, Bilon, China). All these strains were randomly selected into 
calibration (90 samples) and validation sets (63 samples).

All the Ganoderma strains were activated in PDA solid medium and then transferred into Potato Dextrose 
Broth for 7 days, 14 days and 21 days, respectively. For the mid-IR measurements, the mycelia were lyophilized 
and pulverized into powders for future testing.

Sample grouping and polysaccharide contents (reference and predicated value) were shown in the Table S3. 
Many of the mycelia were morphologically different in terms of size, color, and viscous degree of the culture solu-
tion with some samples demonstrated in Figure S6.

Extraction and purification of Ganoderma polysaccharides.  140 g fermented Ganoderma mycelia dried 
powder, with adding 7 L ddH2O, was placed into 70 °C hot water bath for 2 hours for the polysaccharide extrac-
tion. The extract liquid was then taken into centrifuge tubes, centrifuged at 4400 rcf/g for 10 min (3K15, Sigma 
Laborzentrifugen, Germany), kept at 20 °C for 15 min, and then the mycelia precipitate was separated from the crude 
water-soluble polysaccharide supernatant. The supernatant was then concentrated in a rotary evaporator under 
reduced pressure at 60 °C to get 850 ml of vacuum-concentrated liquid. The concentrated extract solution was pre-
cipitated with 3.4 L ethanol and kept at 4 °C overnight. The precipitate was obtained by centrifugation at 4400 rcf/g 
for 15 min, and then dried at 45 °C for 2 hours, giving the crude polysaccharides. The crude polysaccharide was 
then re-dissolved with 800 ml ddH2O. 500 ml of the re-dissolved polysaccharide was treated with Sevag reagent (1:4 
n-butanol: chloroform, v/v, 120 ml) to remove the proteins inside the solution39. The mixture was violently oscillated 
for 30 min and centrifugated to remove the denatured proteins at the interface between water layer and Sevag rea-
gent layer. The above operation was repeated until no denatured proteins appeared. In order to decolor the solution, 
1.5%(v/v) activated charcoal was added to the Sevag-treated crude polysaccharide, with thermostatic water bathing 
for 40 minutes, then the polysaccharide solution was poured into a dialysis bag, with both ends tightened up, and 
placed into ddH2O. The water was changed every 4 hours, until the color of the dialysate did not change.

Preparation of freeze-dried polysaccharide samples from Ganoderma genus.  Each liquid sample 
obtained from the steps mentioned above was pipetted and placed into petri dishes at −60 °C for 48 hours to freeze 
for drying (FD-1D-50, Bilon, China). So we obtained the following samples: a. The GL powder means the drying 
powder from wet Ganoderma culture mycelia. b. The crude GLPS means the extracted crude polysaccharide from 

Figure 8.  Correlation spectroscopy of NIR and mid-IR spectra of Ganoderma mycelia, showing that the NIR 
spectral range (5268–4000 cm−1) is most related to the mid-IR spectral range (1422–1376 cm−1).
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the dried powder in 70 °C of hot water. c. The GLPS after condensing is the condensing supernatant using rotary 
vacuum approach. d. The GLPS after ethanol precipitating means the condensed remnant after ethanol precipi-
tating process. e. The GLPS after Sevag means the polysaccharides removing proteins with the by Sevag method. 
f. The GLPS after dialysis means the polysaccharide samples which remove small molecular impurity substances 
after dialyzing operation. These samples were then examined by infrared spectroscopy.

Measurement of polysaccharides in dried mycelia of different Ganoderma stains.  2 ml of 0.012, 
0.024, 0.036, 0.048, 0.06, 0.072, and 0.084 mg/ml glucose solutions were prepared, respectively. Then, 6 ml of 
anthrone reagent was added to each glucose solution and the solution was first kept at room temperature for 
15 minutes, and then stored on ice for 15 minutes. When the test tubes were cooled and 3 ml of each sample was 
read at 625 nm wavelength using UV–vis spectrophotometer (Shimadzu UV-2550, Japan). The spectrum value at 
625 nm was recorded for analysis. A standard curve for total carbohydrate assay was generated. The determina-
tion coefficient (R2) of glucose standard curve is 0.9903, with the standard error less than 0.00152.

0.1 g of the lyophilisated sample was mixed with 10 ml ddH2O, and placed steady for 1 h. After that, the mix-
ture was placed in 70 °C hot water bath for 2 hours, centrifugated after cooling, and the precipitate was discarded. 
The supernatant was diluted 20 times and 2 ml sample solution was pipette into a test tube for measurement. 6 ml 
sulfuric acid solution was added into the test tube and mixed with the sample together. The mixed sample was 
measured at 625 nm using the UV–Vis spectrophotometer. The content of polysaccharide was then calculated 
referring to standard curve above (g glucose/100 g sample). And the Ganoderma polysaccharide content was used 
as reference value for the quantification model52.

Measurements of mid-IR spectra.  The samples for mid-IR measurement were prepared by mixing 2 mg 
of freeze-dried Ganoderma mycelia samples with 200 mg of dried potassium bromide followed by pressing under 
pressure 15 MPa for 3 minutes to make a disk pellet. The samples were then subjected to mid-IR measurements, 
and the spectral range (4000–400 cm−1) was recorded using a Bruker ALPHA-T instrument (Bruker Optics 
GmbH, Ettlingen, Germany) with a resolution of 4 cm−1 and 64 scans per sample. The results were then analyzed 
using OPUS 7.0 data processing software.

Measurement of NIR spectra.  A FT-NIR spectrometer (NIR MPA, Bruker Optik GmbH, Germany) was 
used to collect the diffuse reflection spectra, with a resolution of 16 cm−1 and 32 scans per sample ranged from 
12500–4000 cm−1. Each sample was tested several times for the average. These results were then analyzed by 
OPUS 7.0 data processing software.

Data analysis.  Both NIR and mid-IR spectral data were analyzed using OPUS software (Bruker Optik 
GmbH, Ettlingen, Germany). Before the spectral data analysis, all the spectra were pre-treated using the proce-
dures of vector normalization and baseline correction. After the spectra were collected, the spectra were exported 
from OPUS software and imported directly into program IBM SPSS Statistics 19 (SPSS) for cluster analysis, and 
OriginPro 2016 software (OriginLab Corporation, Northampton, Massachusetts, USA.) for figure graphing.

The data analysis methods including moving window partial least squares (mwPLS), interval par-
tial least squares (iPLS) and correlation coefficient were conducted using iToolbox (programmed by Prof. L. 
Nørgaard,KVL, Denmark, published on http://www.models.kvl.dk/iToolbox)) on Matlab2012b®53,54. Both 
mwPLS and iPLS are the efficient algorithms used to optimize the spectral range for a quantification model: 
mwPLS builds a series of PLS models in a window that moves over the whole spectral region and then locates use-
ful spectral intervals in terms of the least complexity of PLS models reaching a desired error level53,54, while iPLS is 
an interactive extension to PLS which develops local PLS models on equidistant subintervals of the full-spectrum 
region and focuses on important spectral regions and removing interferences from other regions50.
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