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Sensorimotor abilities predict on-
field performance in professional 
baseball
Kyle Burris1, Kelly Vittetoe2, Benjamin Ramger2, Sunith Suresh1, Surya T. Tokdar1,  
Jerome P. Reiter1 & L. Gregory Appelbaum2,3

Baseball players must be able to see and react in an instant, yet it is hotly debated whether superior 
performance is associated with superior sensorimotor abilities. In this study, we compare sensorimotor 
abilities, measured through 8 psychomotor tasks comprising the Nike Sensory Station assessment 
battery, and game statistics in a sample of 252 professional baseball players to evaluate the links 
between sensorimotor skills and on-field performance. For this purpose, we develop a series of Bayesian 
hierarchical latent variable models enabling us to compare statistics across professional baseball 
leagues. Within this framework, we find that sensorimotor abilities are significant predictors of on-
base percentage, walk rate and strikeout rate, accounting for age, position, and league. We find no 
such relationship for either slugging percentage or fielder-independent pitching. The pattern of results 
suggests performance contributions from both visual-sensory and visual-motor abilities and indicates 
that sensorimotor screenings may be useful for player scouting.

Ted Williams, one of the most legendary baseball players of all time, once said, “I think without question the hard-
est single thing to do in sport is to hit a baseball”. Advances in sport science continue to validate Williams’ claim; 
hitting a pitched baseball places incredible demands on athletes’ visual systems. We now know that Major League 
Baseball (MLB) pitches move at speeds near the processing limits of the vestibular-ocular tracking1, leaving the 
batter with mere milliseconds to decipher the pitch, project its trajectory, decide to swing, and coordinate the 
timing and trajectory of a 2.25-inch diameter bat. The immense difficulty of this task is underscored by the fact 
that players who hit successfully on less than a third of their at-bats can receive hundred million dollar contracts 
in today’s free-agent market.

Pitching, while equally demanding, draws upon a fundamentally different skill set. Pitchers attempt to deny 
batters effective contact with the ball while projecting it through the strike zone 60 feet away. Despite the need to 
visualize the strike zone, it has been argued that motor demands, such as controlling the speed, spin, and location 
of the ball are more important for pitching success than visual requirements2.

Given the substantial role of visual and motor demands in baseball (henceforth called “sensorimotor skills”), 
there has been a concerted effort to determine which elements of the perception-action cycle contribute to suc-
cessful baseball performance3. However, the combination of noisy game statistics and costly sample acquisition 
makes inferring meaningful relationships difficult. Although a small number of studies have reported links 
between superior baseball statistical production and better visual reaction times4, dynamic stereoacuity5, bin-
ocular divergence6, and visual recognition7,8, they are based on small sample sizes and/or appear in conference 
proceedings, rather than peer reviewed articles.

A more common approach for inferring the sensorimotor abilities important for baseball performance 
involves studying the difference between professionals, amateurs, and non-athletes. This literature, and the 
larger debate across all sports, centers on the question of whether athletes possess inherently better visual-system 
physiology (so-called “visual hardware” that allows for the reception of visual information), or if differences are 
restricted to enhanced perceptual-cognitive abilities that can be shaped through practice (so-called “visual soft-
ware” involved in processing of visual information)9. Some studies have found that expert baseball players pos-
sess superior visual acuity10, enhanced contrast sensitivity11, better peripheral vision12, and better visual tracking 
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abilities13 than non-athlete controls. While these studies indicate that superior batters possess superior visual 
system physiology, the preponderance of evidence in the literature concludes that, in the absence of hardware 
differences, expert performance is subserved by superior abilities to process and act upon visual information. 
For example, past research found that expert athletes demonstrated more adept anticipation, pattern recognition, 
and visual search skills than non-experts14–16. Nevertheless, given the challenges inherent in doing research with 
high-level athlete populations, the contribution of hardware and software to expert performance remains an open 
question.

Between 2011 and 2015, the Nike Sensory Stations were developed and utilized as a tool to quantitatively 
evaluate athlete visual and motor skills. Participants filled out a registry of information about themselves and 
completed a battery of nine visual-motor tasks administered under standardized conditions with video instruc-
tions and conducted by trained and certified administrators. In addition, participants reported hand and foot 
preference and completed the Miles test to assess eye-dominance. Data from these assessments were maintained 
on a central database and used to provide sport-specific normative information to individuals about their relative 
abilities and to monitor learning when coupled with sensorimotor training interventions.

Past research with the Sensory Stations has demonstrated that the battery of tests is reliable17,18 and 
cross-validated19, with some tasks demonstrating linear improvements with practice over multiple sessions20. 
Improved performance on this battery has been seen following sports vision training interventions21 and has been 
linked to baseball batting expertise, with professional baseball hitters showing better performance on measure of 
visual sensitivity relative to pitchers22. Furthermore, reduced performance on these tasks has been associated with 
an increased likelihood of sustaining head impacts during practices and games for American collegiate football 
players23. In addition, Poltavski and Biberdorff24 found that better performance on measures of dynamic visual 
acuity and visual motor control accounted for nearly 70% of the variability in goals scored over two seasons in a 
sample of 19 men’s and 19 women’s collegiate hockey players. Collectively, past research reviewed by25 suggests 
that this battery may serve as a useful tool for understanding human performance, warranting further investiga-
tion into the sensorimotor characteristics of athletes and their relation to performance outcomes.

Methods
In the current study, Sensory Station assessments from 252 professional baseball players collected in 2012 and 
2013 were compared to game statistics to evaluate the relationship between sensorimotor skills and baseball 
production. For each player, game statistics from the season after testing were acquired along with information 
about their league(s) of participation. All data were shared with the research team under a secondary-data pro-
tocol approved by the Duke University Institutional Review Board [IRB B0706]. Under this protocol, all data 
were collected for “real world use,” without informed consent, and shared with the research team after removal 
of all protected health information (PHI). As such, these data conform to U.S. Department of Health and Human 
Services, “Regulatory considerations regarding classification of projects involving real world data26”.

Sensorimotor Assessments.  The Sensory Stations consist of a battery of nine computerized sensorimotor 
tasks, each designed to evaluate a specific facet of a participant’s visual-motor abilities. Brief descriptions for each 
task are provided below, and detailed descriptions can be found in Supplementary Material 1. Behavioral perfor-
mance distributions on these measures is shown in Supplemental Material 2.

•	 The Visual Clarity task measures visual acuity for fine details at a distance.
•	 The Contrast Sensitivity task measures the minimum resolvable difference in contrast at a distance.
•	 The Depth Perception task measures how quickly and accurately participants are able to detect differences in 

depth at a distance using liquid crystal glasses.
•	 The Near-Far Quickness task measures the number of near and far targets that can be correctly reported in 

30 seconds.
•	 The Target Capture task measures the speed at which participants can shift attention and recognize periph-

eral targets.
•	 The Perception Span task measures the ability to remember and recreate visual patterns.
•	 The Eye Hand Coordination task measures the speed at which participants can make visually-guided hand 

responses to rapidly changing targets.
•	 The Go/No-Go task measures the ability to execute and inhibit visually guided hand responses in the pres-

ence of “go” and “no-go” stimuli.
•	 The Reaction Time task measures how quickly participants react and respond to a simple visual stimulus.

Response Variables.  The sensorimotor assessments performed by the Nike Sensory Stations serve as our 
best measurement of a player’s underlying sensorimotor abilities. Similarly, a player’s game statistics are the 
best indication of his on-field performance. In this study, we use on-base percentage (OBP), walk rate (BB%), 
strikeout rate (K%), and slugging-percentage (SLG) to measure the performance of batters. In addition, we use 
fielder-independent pitching (FIP) to measure the performance of pitchers. Below are brief descriptions of each 
of these statistics and our motivation for using them as response variables in our models. Illustrations of the dis-
tribution of these variables are shown in Supplementary Material 3.

On-Base Percentage measures a player’s propensity to reach base. On-base percentage is defined as
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=
+ +

+ + +
OBP Hits Walks Hit By Pitch

At Bats Walks Hit By Pitch Sacrifice Flies (1)

Equation 1: Definition of On-Base Percentage.
On-base percentage is a simple and widely used metric for player evaluation, since frequently reaching base gives 

the offense more opportunities to score runs. Players with high on-base percentages consistently make effective 
contact with the ball and draw walks. As such, on-base percentage offers a robust measure of player productivity 
and a useful statistic by which to evaluate the relationship between sensorimotor abilities and on-field performance.

Walk Rate measures a player’s propensity to draw walks. Walk rate is defined as

=BB Walks
Plate Appearances

%
(2)

Equation 2: Definition of Walk Rate.
Players who routinely draw walks generally differentiate well between balls and strikes, forcing the pitcher to 

throw pitches that are easier to hit. Walk rate can also provide information about a hitter’s underlying approach 
at the plate.

Strikeout Rate measures a player’s propensity to strike out. Strikeout rate is defined as

=K Strikeouts
Plate Appearances

%
(3)

Equation 3: Definition of Strikeout Rate.
Strikeouts are an unequivocally negative outcome for the offense and should be avoided in an at-bat. Although 

some successful players have high strikeout rates, a high strikeout rate indicates that a batter struggles recognizing 
pitches or making contact with the ball. A player who strikes out frequently and walks rarely typically has a dim 
future in baseball.

Slugging Percentage measures a player’s propensity to hit for power. Slugging percentage is defined as

=SLG Total Bases
At Bats (4)

Equation 4: Definition of Slugging Percentage.
Slugging percentage makes use of the fact that not all hits are equally valuable. Although it is an imperfect 

metric (e.g. doubles are not worth twice as much as singles), it does a decent job of quantifying batting power. 
Sensorimotor abilities may have different effects on a batter’s ability to hit for contact and ability to hit for power.

Fielder-Independent Pitching measures a pitcher’s run prevention, independent of the ability of the defense 
behind him. FIP is defined in terms of only variables that cannot be affected by the ability of the defense behind 
the pitcher.

=
∗ + ∗ + − ∗

+FIP Home Runs Walks Hit By Pitch Strikeouts
Innings Pitched

FIP Constant13 3 ( ) 2
(5)

Equation 5: Definition of Fielder-Independent Pitching.
According to FanGraphs27, “Fielder Independent Pitching (FIP) measures what a player’s ERA would look 

like over a given period of time if the pitcher were to have experienced league average results on balls in play and 
league average timing”. It is generally more stable than ERA, since it is a measurement that cancels out the effects 
of defense and luck. Sensorimotor abilities may be related to pitcher performance, and FIP represents one of the 
best metrics for quantifying pitcher performance in a game setting.

Sample Characteristics.  Although data was obtained for 308 professional baseball players (149 batters, 159 
pitchers), we only examine data for the players with more than 30 at-bats or more than 30 innings pitched to mit-
igate the statistical noise associated with low sample sizes. This yields a final analyzed data set of 252 players (141 
batters, 111 pitchers). Table 1 reports the distribution of age and positional category in this sample. In general, 
most of the players in the sample are young prospects between 20–25 years old. However, we do have older players 
in the sample who disproportionately play in the Major Leagues.

Batters Pitchers

Age

Mean (SD) 22.7 (3.9) 23.7 (3.6)

Min–Max 17–37 18–39

Position

#Catchers 19

#Infielders 65

#Outfielders 57

Table 1.  Sample characteristics.



www.nature.com/scientificreports/

4Scientific REPOrTS |  (2018) 8:116  | DOI:10.1038/s41598-017-18565-7

Not all professional leagues are equal. The level of competition in Major League baseball significantly out-
classes that of AA baseball, for example. Players in our sample played in leagues ranging from Rookie League to 
Major League Baseball, which makes player comparison more challenging. Table 2 displays the number of players 
in our sample who play in each league. Note that some players play in more than one league.

Statistical Models.  We fit separate models for the five response variables. The models use a common set of 
predictors. For any model, all parameters are estimated using only the data for that model. For convenience, we 
use a common notation across models when describing the models, so αj in the OBP model will be distinct from 
αj in the SLG model, for example.

Binomial Response.  Since OBP, BB%, and K% are defined as the number of successes divided by the number 
of opportunities, we use a binomial response for these three variables. Without loss of generality, we present the 
model for OBP. Let OBij denote the number of times that player i reached base in league j out of Nij opportunities 
between 2012 and 2013. We treat each OBij as a realization of a random sample, with the player’s true on base 
percentage equal to pij. Each pij is a function of the degree of difficulty of getting on base in league j, as well as 
the player’s latent, on-base ability parameter Ai. Each Ai is a function of variables Xi that include the player’s 
sensorimotor abilities, a set of indicator variables for position, and age. Putting it together, we have the Bayesian 
multilevel model28

α γ τ β+ =−~ ~ ( )OB Binomial N p logit p Normal A A X( , ) ( ) , (6)ij ij ij ij j j i i i
T1

Equation 6: On-base percentage model.
Here, αj represents the degree of difficulty in league j, and γj represents the impact of ability on performance 

in league j. Accounting for league differences in this way enables us to compare, for example, a 0.400 OBP player 
in AAA ball to a 0.320 OBP player in the MLB. We constrain γj to be positive, so that a higher latent ability level 
corresponds to a higher probability of reaching base. We use τ−1 > 0 to allow for additional player heterogene-
ity when modeling the pij. We include all of the sensorimotor variables in Xi with the exception of Go/No-Go, 
since it is highly correlated with the Eye-Hand Coordination task and has limitations as a task19. We transform 
Depth Perception to the log scale as it is highly right-skewed and model the performance effects of age as linear. 
Diagnostics indicated that modeling age linearly fits the data reasonably well for all outcome models. We note 
that our findings were robust to both non-linear models for age and a maximum age threshold, mainly because 
age and sensorimotor tasks have weak associations in our sample (see also22). In addition to standardized age, Xi 
includes an indicator for catcher and an indicator for infielder. Hence, interpretations of all position coefficients 
are with respect to outfielders. Ultimately, we are interested in performing inference on the posterior distribution 
of β, which represents the impact of sensorimotor abilities on Ai. We use non-informative normal-gamma priors 
on β and τ; see Section 5 of the Supplementary Materials for details.

Normal Response.  SLG and FIP are long-run statistical averages over the number of at-bats and innings pitched, 
respectively. We present the model for SLG below; the model for FIP uses the same format. Let SLGij be the slug-
ging percentage for player i in league j in Nij at-bats for player i in league j. By the central limit theorem, as Nij 
increases, the sampling distribution of SLGij approaches a normal distribution with some mean μij and variance 
σ2/Nij. Because we only included observations with Nij > 30, the assumption of normality is plausible. We then 
specify a Bayesian multilevel model conditional on the slugging percentage ability parameters and league adjust-
ment parameters. We have

μ σ μ α γ τ β











+ =−~ ~SLG Normal

N
Normal A A X, ( , )

(7)
ij ij

ij
ij j j i i i

T
2

1

Equation 7: Slugging percentage model.
The procedure for estimating this model is analogous to the binomial response case, but with an 

inverse-gamma prior distribution for σ2. The prior specifications are provided in Section 5 of the Supplementary 
Material.

Model Estimation.  The models outlined in Eq. 6 and Eq. 7 are not identifiable since αj, γj, and Ai are 
unknown and depend upon each other. We overcome this problem by imposing highly concentrated priors on αj 
and γj, obtained by modeling the game statistics of all professional baseball players between 2012 and 2013 who 
played in multiple leagues. Details about this process are available in Supplementary Material 4.

The prior means of the league effect parameters αj and γj obtained via the model of game statistics with all 
professional players are summarized in Tables 3 and 4. In particular, Table 3 illustrates that there are two signifi-
cant jumps in difficulty in professional baseball. There is a sizable increase in the quality of competition between 

Rookie A Adv. A AA AAA Majors

Batters 63 18 33 17 23 14

Pitchers 29 17 24 21 17 13

Table 2.  Distribution of Leagues by Player Type.
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Rookie baseball and non-rookie minor league baseball (A-AAA). In addition, there is an immense gap between 
AAA and the Major Leagues. Our model was unable to differentiate significantly between the non-rookie minor 
leagues. From Table 4, the impacts of ability are consistent across leagues, with the exception of the Major 
Leagues. With some statistics, such as OBP, latent ability matters less in the Major Leagues than it does in others. 
With others, such as FIP, it matters much more.

Once strong prior information on αj and γj is obtained, we estimate the models detailed in Equations 6 and 7, 
restricting our attention to the seasons of 141 batters and 111 pitchers in our sample with greater than 30 at-bats 
or innings pitched in each league. While it is reasonable to include data from all 149 batters when estimating the 
binomial response models, we elect to use the same player pool in all our models for consistency. To facilitate effi-
cient Gibbs sampling and generate comparable coefficients, we standardize all variables in Xi with the exception 
of the position dummy variables. Although measurements of Depth Perception are missing for four batters and 
four pitchers, the missing values are sampled as part of the Gibbs sampler used to estimate the model29 with an 
independent standard normal prior placed on each of the missing values. We ran the model for three chains of 
10,000 iterations after a 1000 iteration burn-in period, and validated it using Markov Chain Monte Carlo diag-
nostics and posterior predictive checks.

Results
To start off the analysis, we check to see if performance on the battery of sensorimotor tasks predicts on-field 
performance. In doing so, for each response variable, we fit two separate models: one with the sensorimotor 
tasks included and one with only age and position included as control variables. If sensorimotor abilities predict 
on-field performance, the full model should significantly outperform the reduced model. Following upon this, we 
report the individual coefficients for each of the models in which sensorimotor abilities added predictive power 
beyond the control variables.

WAIC.  The Watanabe-Akaike Information Criterion (WAIC) is a useful way to compare two different Bayesian 
models of a particular response. It uses the log-posterior predictive density as the primary measure of accuracy, 
with a correction based upon the effective number of parameters in the model30. Asymptotically, it can be shown 
that WAIC approaches the results obtained via leave-one-out cross-validation31. For each of the five models, we 
use WAIC to compare the full model with the sensorimotor task results included in the design matrix to the 
reduced model that only accounts for position and age. If sensorimotor variables add predictive power above and 
beyond that of the control variables, then the WAIC of the full model should be lower than that of the reduced 
model.

Attribute Rookie A Adv. A AA AAA MLB

logit−1 (OBP) 0.358 0.327 0.327 0.322 0.329 0.292

logit−1 (BB%) 0.108 0.093 0.096 0.093 0.089 0.071

logit−1 (K%) 0.170 0.188 0.184 0.192 0.195 0.232

SLG 0.432 0.384 0.379 0.376 0.397 0.351

FIP 3.013 3.517 3.377 3.613 3.782 4.279

Table 3.  Posterior Means for αj displaying the inverse-logit of the means for OBP, BB%, and K% for 
interpretability. In context, we project that an average professional player will obtain a 0.358 OBP in Rookie ball 
and a 0.292 OBP in the MLB.

Attribute Rookie A Adv. A AA AAA MLB

OBP 0.110 0.118 0.109 0.101 0.103 0.060

BB% 0.316 0.304 0.300 0.320 0.305 0.275

K% 0.327 0.356 0.335 0.346 0.345 0.341

SLG 0.059 0.050 0.045 0.041 0.047 0.027

FIP 0.356 0.405 0.383 0.343 0.442 0.556

Table 4.  Posterior Means for γj. Higher values indicated higher relative impact of ability on the corresponding 
game statistic, given the model. These values should not be compared across statistics, since they are on different 
scales.

OBP BB% K% SLG FIP

Full Model 1210.8 1075.8 1276.4 403.4 363.8

Reduced Model 1226.4 1084.4 1284.6 403.1 361.9

Table 5.  WAIC Model Comparison. Lower values for the full models relative to the reduced OBP, BB%, and K% 
models indicate that the added variables in the full models add meaningful predictive power.
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Table 5 compares the WAIC of the full model to that of the reduced model for each of the five response var-
iables. As indicated by the lower values for the Full, relative to the Reduced model, performance on the Nike 
Sensory Station tasks is predictive of OBP, BB%, and K%. However, sensorimotor abilities do not predict either 
SLG or FIP. We therefore present coefficient summaries for OBP, BB%, and K% in the sections below. Summaries 
for SLG and FIP can be found in the supplementary materials.

On-Base Percentage.  The posterior means, standard deviations, and 95% credible intervals for the coeffi-
cients β are presented in Table 6 for the full OBP, BB%, K% models, and in Supplementary Material 6 for SLG and 
FIP. The control covariates that are included in both the full and reduced models are indicated in the left sidebar. 
Variables for which 0 falls outside the 95% credible intervals are bolded. In general, bolded positive coefficients 
indicate that there is greater than 95% probability that the sensorimotor ability measured in the task has an 
association with on-field performance. To illustrate the posterior tail probabilities, a heat map of the z-scored 
coefficients for OBP, BB% and K% is given in Fig. 1.

From the OBP model results we observe that performance on the Perception Span task, which measures the 
ability to remember and recreate visual patterns, is associated with an increased ability to reach base. Moreover, 

On-Base Percentages (B) Walk Rate (C) Strikeout Rate

Mean SD 2.5% 97.5% Mean SD 2.5% 97.5% Mean SD 2.5% 97.5%

Only 
Full 
Model

Visual Clarity −0.24 0.17 −0.59 0.10 −0.15 0.10 −0.35 0.05 −0.08 0.07 −0.21 0.06

Contrast Sensitivity 0.13 0.16 −0.18 0.45 0.04 0.09 −0.14 0.23 0.14 0.06 0.02 0.26

Depth Perception 0.19 0.16 −0.12 0.50 0.21 0.10 0.02 0.40 −0.12 0.07 −0.26 0.02

Near-Far Quickness −0.02 0.15 −0.32 0.28 −0.05 0.09 −0.23 0.14 0.21 0.07 0.09 0.34

Target Capture 0.15 0.16 −0.16 0.47 −0.16 0.09 −0.35 0.01 0.16 0.06 0.04 0.29

Perception Span 0.64 0.17 0.31 0.99 0.15 0.10 −0.04 0.34 0.34 0.07 0.21 0.47

Eye-Hand Coordination 0.22 0.17 −0.11 0.56 0.46 0.10 0.26 0.67 −0.19 0.07 −0.32 −0.06

Reaction Time 0.21 0.17 −0.11 0.55 0.23 0.11 0.03 0.44 0.12 0.07 −0.02 0.26

Both

Age 0.66 0.17 0.34 1.00 0.53 0.09 0.36 0.71 0.22 0.06 0.09 0.34

Infield −0.53 0.31 −1.15 0.08 0.05 0.19 −0.33 0.43 0.65 0.13 0.40 0.91

Catcher −1.28 0.49 −2.25 −0.35 0.15 0.29 −0.40 0.72 0.26 0.19 −0.12 0.64

Intercept −0.13 0.23 −0.57 0.31 −0.84 0.14 −1.12 −0.57 −0.52 0.09 −0.71 −0.34

Table 6.  Mean coefficients, standard deviations, and 95% credible intervals for each model variable are shown 
for (A) on-base percentage, (B) walk rate, and (C) strikeout rate. Values for which the 95% credible interval 
excludes zero are bolded.

Figure 1.  Heat map of β Coefficients. The darker the color, the closer the posterior tail probability gets to zero 
(indicating evidence of an association). Values for which the 95% credible interval excludes zero are bolded.
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the size of the coefficient is comparable to that of age (SD = 3.8 years), a remarkable result considering it is well 
known that older players tend to perform better than younger players in professional baseball due to survivorship 
bias. For interpretation, suppose player X is a 23-year-old outfielder with completely average abilities as a profes-
sional baseball player. The model predicts his OBP in the MLB to be 0.292. We expect a similar player who scores 
one standard deviation higher on the Perception Span task would have an OBP of 0.300, a nontrivial difference. 
While the coefficients of the other tasks trend positive, there is simply not enough data to draw strong conclusions 
about them.

Walk Rate (BB%) and Strikeout Rate (K%).  Although 41% of the variation in OBP is explained by the 
combination of strikeout rate (K%) and walk rate (BB%; Table 7), the two metrics are nearly completely uncorre-
lated in our sample, even after removing batters with fewer than 50 plate appearances. This suggests that walk rate 
and strikeout rate are both components of on-base percentage but capture different features of a batter. As such, 
the sensorimotor abilities that affect a player’s ability to draw walks differ from those that affect a player’s ability 
to avoid strikeouts.

The results presented in Table 6 bear this out. Superior performance on the tasks that measure a player’s 
ability to quickly identify and react to visual stimuli, Eye-Hand Coordination and Reaction Time, were found 
to be associated with an increased ability to draw walks. For example, our model predicts player X to obtain a 
walk rate of 7.1% in the MLB, but predicts a similar player with a one standard deviation superior score on the 
hand-eye coordination task to have a walk rate of 8.0%. On the other hand, superior performance on tasks that 
measure a player’s spatial recognition and memory, such as Near-Far Quickness, Target Capture, and Perception 
Span, was found to be associated with an increased ability to avoid strikeouts. In context, our model predicts the 
strikeout rate of player X to be 23.2% in the MLB. A player similar to player X who scores one standard deviation 
better on the Perception Span task is predicted to have a strikeout rate of 21.2%. It is surprising that Eye-Hand 
Coordination was found to be significant in the opposite direction than we would expect a priori, which moti-
vates further study.

Discussion
The specific roles of vision, perception and motor control in interceptive sports such as baseball and cricket 
have been a hotly debated topic for years3,9,32,33. In the current study, we shed new light on this debate by using 
real-world data collected from a large sports performance program launched by Nike Inc. Through Bayesian 
hierarchical latent variable modeling of the relationship between psychometric performance on the task battery 
and season-wise game statistics, we find that sensorimotor abilities predict on-base percentage, walk rate, and 
strikeout rate, but not slugging percentage or fielder-independent pitching.

The observation that better sensorimotor abilities generally correlate with better on-base percentage, walk 
rate, and strikeout rate is largely intuitive since it is expected that players draw on these skills to project the loca-
tion of the pitch through the strike zone and decide whether to swing or not. Conversely, the ability to hit for 
power, captured by slugging percentage, should have more to do with strength, bat speed, and swing plane than 
sensorimotor abilities. Pitchers rely on a strong arm, consistent mechanics, and a varied repertoire to prevent 
runs, attributes that are superficially unrelated to sensorimotor abilities.

Among the individual tasks tested, Perception Span’s relationship with on-field performance produced the 
strongest relationships, with better scores strongly associated with both increased on-base percentages and 
reduced strikeout rates. In addition, performance on the Perception Span task exhibits some association with 
both higher walk rates and increased slugging percentages, though the evidence is not conclusive. This task meas-
ures the ability to remember and recreate visual patterns and may reflect visual recognition abilities that have pre-
viously been tied to batting performance in small samples of players (N = 20) tested with Tachistoscopic methods7 
and in a conference paper reporting relationships in collegiate players8. For reference, across the tested models 
we find expected age and position effects with stronger batting performance for outfields and older batters. The 
fact that the Perception Span effects were within the range of magnitudes for age and position effects indicates the 
relatively strong contribution that visual recognition abilities may play in batting performance.

A number of other tasks correlate with higher walk rates, including Depth Perception, Eye-Hand Coordination 
and Reaction Times. The observation that Eye-Hand Coordination and Reaction Time are positively correlated 
with walk rate indicates that the ability to quickly react to visual stimuli is highly influential in a player’s ability 
to draw walks. The positive relationship with Depth Perception supports previous findings indicating that bin-
ocular vision contributes to precisely projecting the location of a pitched baseball34. Furthermore, past research 
comparing pitchers and hitters on the Sensory Station battery found better performance for professional hitters, 
relative to pitchers, on both the Visual Clarity and Depth Perception tasks22, suggesting that better depth disparity 
differentiates highly experienced athletes who bat from those who pitch.

The model linking sensorimotor abilities to strikeout rates offers a mixed view of the relative contributions 
of sensorimotor skills towards avoiding strikes. The pattern of results indicates that better performance on 

Estimate Std. Error T value Pr(>|t|)

(Intercept) 0.3020 0.0127 23.72 0.0000

BB% 0.7203 0.0902 7.99 0.0000

K% −0.2077 0.0449 −4.63 0.0000

Table 7.  Results of an OLS Regression of OBP on BB% and K%. BB% and K% are both significant predictors of 
OBP, but BB% is a much better predictor.
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the Perception Span, Near-Far Quickness, Target Capture, and Contrast Sensitivity tasks is associated with an 
increased ability to avoid strikeouts. However, it is surprising that worse Eye-Hand Coordination is associated 
with reduced strikeout rates, though it has a relatively weak coefficient.

Overall, the current results suggest performance contributions from aspects of both receptive vision that 
constitutes visual hardware (Contrast Sensitivity and Depth Perception) and visual software that enables the 
processing of this information (Target Capture, Near-Far Quickness, Perception Span, Eye-Hand Coordination, 
Reaction Time). While on balance it appears that tasks measuring visual software are more predictive of on-field 
performance in professional baseball, it is important to note that these tasks capture a diverse set of physiological 
and psychomotor constructs, including receptive visual processing, oculomotor control, eye-limb coordination 
and visual decision making. Nonetheless, the current findings provide novel evidence of the importance of these 
abilities towards on-field achievement.

In light of the current findings, it is worth noting several strengths and weaknesses in the approach. First, 
this dataset reflects one of the largest samples of high-level baseball players tested on a consistent battery of 
psychometric tasks. These tasks were presented with video instructions and conducted by trained and certified 
administrators, providing some assurance towards data quality, but also opening the possibility that differences 
between the testing environment (athletic training facilities) and active game situations may have contributed 
to unexpected relationships such as the counter-intuitive observation that lower eye hand coordination scores 
correlated with higher strikeout rates. Further, the latent approach to modeling league heterogeneity offers a sys-
tematic means by which to incorporate data from multiple leagues, while also scaling production in each league 
to accurately reflect the relative difficulty of that league in that year. Nonetheless, it is important to note that while 
the individual tasks in the battery have been identified as important abilities for sports performance17 the choice 
to include multiple measures in the battery comes with a tradeoff of fewer trials (and less sensitivity) for each 
measure. As such, it will be important to replicate these findings with tasks that each are strongly powered to 
characterize the individual sensorimotor abilities under consideration.

Future Work.  One interpretation of the strong relationship between Perception Span and batting perfor-
mance is that the ability to store pitches in spatial working memory, and subsequently recognize them, helps 
batters avoid strikeouts and reach base more frequently. There may be evidence for this empirically, since pitchers 
obtain the highest strikeout rates and allow the lowest on-base percentage when seeing batters for the first time. 
Each time a batter faces a pitcher, his on-base percentage improves and strikeout rate declines35, in part because 
he has “seen” the pitcher’s repertoire before and filed it away into memory, making for easier recollection and 
recognition during subsequent meetings. Future research may examine whether players with high scores on the 
Perception Span task perform better against pitchers during the second and third times through the order, above 
and beyond the improvement expected of them. To do this, at-bat level data (such as that available through 
PITCHf/x) will be needed, rather than aggregated season statistics.

If the present and future results speak to underlying building blocks of baseball expertise, how can they be 
used to improve baseball performance? This question lies at the heart of efforts to implement “sports vision train-
ing” programs36,37, based on the notion that practice with demanding visual, perceptual, cognitive, or oculomotor 
tasks can improve the ability to process and respond to what is seen, thereby improving athlete performance. The 
literature has examined training techniques that target anticipation and decision-making abilities of athletes38, 
as well as new digital technologies that train general visual, perceptual and cognitive skills critical for sporting 
performance25,39,40. Ultimately, the ability to determine which visual and motor characteristics are related to per-
formance will focus research on specific training programs, enabling athletes to make the most of their system 
physiologies. The current findings are a step in this direction.
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