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Putative functional genes in 
idiopathic dilated cardiomyopathy
Nishanth Ulhas Nair1, Avinash Das1, Uri Amit2,3,4,5, Welles Robinson1, Seung Gu Park   1, 
Mahashweta Basu1, Alex Lugo1, Jonathan Leor2,3, Eytan Ruppin1,6 & Sridhar Hannenhalli1

Idiopathic dilated cardiomyopathy (DCM) is a complex disorder with a genetic and an environmental 
component involving multiple genes, many of which are yet to be discovered. We integrate genetic, 
epigenetic, transcriptomic, phenotypic, and evolutionary features into a method – Hridaya, to infer 
putative functional genes underlying DCM in a genome-wide fashion, using 213 human heart genomes 
and transcriptomes. Many genes identified by Hridaya are experimentally shown to cause cardiac 
complications. We validate the top predicted genes, via five different genome-wide analyses: First, the 
predicted genes are associated with cardiovascular functions. Second, their knockdowns in mice induce 
cardiac abnormalities. Third, their inhibition by drugs cause cardiac side effects in human. Fourth, 
they tend to have differential exon usage between DCM and normal samples. Fifth, analyzing 213 
individual genotypes, we show that regulatory polymorphisms of the predicted genes are associated 
with elevated risk of cardiomyopathy. The stratification of DCM patients based on cardiac expression of 
the functional genes reveals two subgroups differing in key cardiac phenotypes. Integrating predicted 
functional genes with cardiomyocyte drug treatment experiments reveals novel potential drug targets. 
We provide a list of investigational drugs that target the newly identified functional genes that may lead 
to cardiac side effects.

Heart failure is a major cause of morbidity and mortality worldwide1. A major cause of heart failure is cardiomyo-
pathy, which is a disease of the heart muscle where the heart muscle becomes enlarged, rigid, or thick2. Idiopathic 
dilated cardiomyopathy (DCM) is one of the most common forms of cardiomyopathy and is characterized by 
enlarged and weakened ventricles2, resulting in reduced ability of the heart to pump blood. DCM is a complex 
disorder caused by the dysregulation of multiple genes and is shown to have genetic basis3. However, the molec-
ular mechanisms and the functional genes underlying DCM remain poorly understood, and present a critical 
bottleneck in early diagnosis and the design of rational DCM therapies. Here the term ‘functional’ is used to refer 
to the genes that are involved in processes and pathways whose disruption is functionally linked to DCM.

Differential gene expression analysis has previously been used to identify key genes involved in DCM4–8. 
However, functional genes may not have a globally detectable differential expression (as they may have aberrant 
expression in only a subset of DCM individuals), and conversely, differential expression alone cannot distinguish 
functional genes from the downstream effects or co-expressed genes. Thus, additional genetic, epigenetic, and 
evolutionary features need to be considered. For instance, a recent paper9 inferred gene co-expression network 
using diseased and healthy hearts and prioritized genes based on the differential network topology. They then 
identified PPP1R3A as a critical gene and experimentally verified its association with heart failure. Various stud-
ies have also used animal models to test the role of specific genes in cardiomyopathy10. However, genes predicted 
using animal models do not always translate to humans. Importantly, the previous studies have not considered 
the genetic signals underlying the differentially expressed genes and the association of those signals with DCM to 
detect potentially functional genes.

Here we integrate genetic, epigenetic, transcriptomic, phenotypic, and evolutionary features, 181 features in 
total, in a machine-learning method, called Hridaya, to identify potential human DCM functional genes in a 
genome-wide fashion. In a two-step supervised training, Hridaya estimates the (1) potential of a gene to be a 
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functional gene of any disease in general, and (2) specifically, the potential of any disease functional gene to be a 
functional gene of DCM; these two estimates are combined to obtain the potential for a gene to be a function gene 
of DCM. We train Hridaya using genetic, transcriptomic, and phenotypic data from 77 DCM human hearts and 
136 human hearts from donor controls from the Myocardial Applied Genomics Network (MAGNet, http://www.
med.upenn.edu/magnet/, GSE57338) cohort, as well as a variety of additional transcriptomic, epigenomic, and 
phylogenetic data from public resources11–18. We show that the top Hridaya-predicted functional genes (called 
Hridaya-genes) exhibit cardiomyopathy-related phenotypes in mouse knockout data and that commonly used 
drugs that target Hridaya-genes tend to have cardiac side effects. Hridaya-genes are also shown to have differ-
ential exon usage between DCM and normal patients in an independent dataset. Importantly, the SNPs (sin-
gle nucleotide polymorphisms) that are linked with the population variance of the expression of Hridaya-genes 
directly associate with a higher occurrence of cardiomyopathy, suggesting transcriptional dysregulation of the 
Hridaya-genes in an individual are likely to underlie cardiomyopathies.

We find that the Hridaya-genes, many of which were previously not known to be involved in heart diseases, 
nevertheless show clear associations with cardiovascular functions. Furthermore, our analysis suggests that 
Hridaya-genes are upstream regulators of genes that are differentially expressed in failing hearts. Finally, stratifi-
cation of DCM patients, based on functional gene expression, or based on associated eQTL (expression quantita-
tive trait loci) SNPs, revealed two distinct subgroups of DCM patients having significant differences in multiple 
phenotypes, notably, left ventricular end-systolic/diastolic diameters. Integrating data from drug treatment 
experiments on cardiomyocytes and the Hridaya-genes, we identify potential novel drug targets for DCM. To 
aid future targeted investigations, we provide a list of a few investigational drugs that target the newly predicted 
DCM functional genes and thus may have an increased likelihood of cardiac side effects. We also developed a 
web-application which may be useful for biologists and bioinformaticians to further explore functional genes of 
their interest.

Results
Hridaya overview.  Integrating genetic, epigenetic, transcriptomic, phenotypic, network, and evolutionary 
features (Supplementary Table S1), Hridaya hierarchically estimates the potential of a gene to be a functional 
gene of DCM in a supervised fashion (Fig. 1). Hridaya comprises of two supervised Support Vector Machines 

Figure 1.  Outline of the Hridaya method to predict functional genes for DCM. Each gene is represented by 
genetic, epigenetic, transcriptomic, phenotypic, and evolutionary features. The disease-functional estimator 
predicts the probability of a gene to be a functional gene of any disease. The DCM-component estimator 
estimates the probability of a disease-functional gene to be functional gene of DCM. The two probabilities are 
multiplied to get the probability of a gene being a functional gene of DCM. The probability space of disease-
functional gene and a functional gene of DCM is shown in top left.

http://www.med.upenn.edu/magnet/
http://www.med.upenn.edu/magnet/
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(SVM) based models, Disease-functional estimator, and DCM-component estimator (see Methods). The Disease-
functional estimator estimates the probability of a gene to be a functional gene of any disease (called disease-func-
tional gene) by training on 3373 known disease associated genes in the Human Phenotype Ontology (HPO) 
dataset19. The Disease-functional estimator model is trained to discriminate between two classes of genes, those 
that are known to be functionally linked to any human disease in HPO, against the rest of the genes. The Disease-
functional estimator estimates the probability of a gene to be functionally linked to a human disease. Similarly, 
the DCM-component estimator model is trained to discriminate between two classes of genes, those that are 
functionally linked to DCM (214 gold-standard gene set; Supplementary Table S2(b)) and the set of all other 
disease-linked genes. The DCM-component estimator estimates the probability of a disease-functional gene to 
be linked specifically to DCM. Finally, we test all genes using both the SVMs, and for each gene we multiply the 
probabilities estimated by the two components to estimate the overall potential (called Hridaya-potential) of a 
gene to be functionally linked to DCM (DCM functional gene).

Hridaya uses Support Vector Machines (SVM) for both models and represents genes using 181 features from 
genetic, epigenetic, transcriptomic, phenotypic, and evolutionary data. A representative list of features is shown 
in Table 1 (Supplementary Table S1 provides the full list). We evaluate the five-fold prediction accuracy (with 50 
iterations) of the model using standard Receiver Operating Characteristics Area Under the Curve (ROC-AUC). 
Finally, we train Hridaya on the entire gold-standard set of genes and rank all human protein coding genes by 
their predicted Hridaya-potential, which is provided in Supplementary Table S2(a,d).

Hridaya accurately predicts the known functional genes in human.  Hridaya accurately predicts the 
known DCM-linked functional genes listed in the HPO dataset (five-fold cross-validation ROC-AUC = 0.805, 
see Methods; precision-recall AUC = 0.245, see supplementary note). Its accuracy is much higher (Wilcoxon test 
p-value < 2.2 E-16; Methods; Fig. 2a) compared to the accuracy of a conventional differential expression based 
predictor (ROC-AUC = 0.627), which ranks genes based simply on the differential expression between DCM 
and normal individuals (see Methods). We also compare Hridaya with another method called Cipher20 that iden-
tifies disease causing genes using protein-protein interaction networks (Methods). Cipher predicts the known 
DCM-linked genes with an ROC-AUC of 0.676.

Among the top 1000 Hridaya-genes (Supplementary Table S2(a)) 64.27% were downregulated in DCM indi-
vidual while 19.56% were upregulated in DCM individuals, relative to control. We compare the individual pre-
dictive power of each feature and find that the evolutionary features, especially the phylogenetic profile of a gene, 
are the strongest predictors for the Disease-functional estimator. While for the DCM-component estimator, the 
most predictive features were median gene expression in DCM and normal individuals, LV-tissue specific fea-
tures, and epigenetic features (see Methods). ROC-AUC values using one feature at a time are also computed 
using the entire Hridaya pipeline (Supplementary Table S1, see Methods). As a check, we see that the box plot 
of ROC-AUCs on cross-validation results for Hridaya using all features (Supplementary Fig. S1) show that our 
predictions are very stable.

We included evolutionary features because conservation is indicative of functionality. However, there is a 
concern that more conserved genes are more likely to be explored and therefore functionally annotated. To ensure 
that a differential conservation between the positive and the negative sets does not bias our prediction accuracy, 
we repeated the five-fold cross-validation analysis using two alternatives: (1) We only included genes (in both 
the positive and the negative sets) that have an ortholog in at least one of the 65 species used. We obtained an 
ROC-AUC of 0.803, almost same as the accuracy obtained without this filtering step (ROC-AUC = 0.805). (2) We 
included only the genes (in both the positive and the negative sets) that have an ortholog in mouse and repeated 

Feature type Representative features

Transcriptomic

• Differential gene expression (and its absolute value) between DCM 
and normal individual heart samples. 
• Median gene expression of DCM and normal individuals 
(MAGNet, http://www.med.upenn.edu/magnet/, GSE57338). 
• The number of tissues, based on GTEx data13,14, for which gene 
expression is significantly more (or less) than gene expression of the 
gene in the left ventricle (LV) and LV-tissue specific expression rank 
(LV-tissue specific features).

Transcriptomic and 
Phenotypic

• Correlation of gene expression with various phenotypes of the 
individuals in MAGNet data.

Genetic • GWAS (Genome-wide association studies) signal of eQTL SNPs of 
the gene.

Evolutionary
• Phylogenetic profile of the gene with 65 species17. 
• Residual variation intolerance score (RVIS)16. 
• DN/DS ratio between human and mouse17.

Epigenetic

• Signals of various histone marks, transcription factors from Left/
Right Ventricle, Aorta, Fetal Heart11,12. 
• p300 transcription factor signal (GSM80773415) around 
transcription start site of the gene from the adult heart (p300 is often 
seen as an enhancer mark68,69). 
• DNase hypersensitivity data around the gene transcription start 
site11,12.

Table 1.  Representative features used to train Hridaya. The detailed list of 181 features are provided in 
Supplementary Table S1.

http://www.med.upenn.edu/magnet/
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the analysis. Again, we obtained an ROC-AUC of 0.782. Thus, the suspected conservation bias does not affect our 
results.

To check if our results are biased due to various confounders, we used Limma R package21 to remove the 
contribution of potential confounding factors such age, sex, ethnicity, race, BMI, history of hypertension, etc. 
from the overall gene expression. We then re-trained the Hridaya method using the corrected gene expression. 
We find a Spearman correlation of 0.91 (p-value < 2.2e-16) between the Hridaya potentials using this approach 
from what we found earlier (prior to this correction), suggesting that the Hridaya potentials are not biased by the 
potential confounders.

Hridaya accurately predicts the known functional genes in mouse.  Next, using gene-knockout 
information from the mouse knockout database22, we tested whether the knockout of the mouse ortholog of 

Figure 2.  Comparison of Hridaya method with Cipher, and conventional differential gene expression predictor 
(Differential), based on (a) Cross-validation in known DCM genes in HPO database, (b) DCM related mouse 
knockout genes, (c) targets of drugs administered for cardiac phenotypes, (d) targets of drugs that have cardiac 
side-effects, (e) genes having significant differential exon usage in DCM. Confidence intervals are based on 100 
bootstrap samplings. Yellow star indicates a significant p-value < 2.2e-16 (using Wilcoxon test) between the 
accuracies of the methods.
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a Hridaya-gene results in abnormal cardiac phenotypes in mice. Specifically, we compiled 34 genes whose 
knockout results in DCM-related phenotypes (Supplementary Table S2(c)), and find that Hridaya accurately 
identified these genes (ROC-AUC = 0.783, Fig. 2b), which was significantly higher (p-value < 2.2e-16) than a 
conventional differential gene expression predictor (ROC-AUC = 0.598) and Cipher (ROC-AUC = 0.647). The 
Hridaya-potentials for the genes identified by the mouse-knockout experiments were significantly greater than 
the rest of the genes with p-value = 2.54e-08 (one-sided Wilcoxon rank-sum test). For instance, knockout of top 
Hridaya-predicted functional gene MYBPC3 causes increased heart-weight to body weight in mice, an impor-
tant feature of cardiomyopathy. Interestingly, knockout of Hridaya-predicted genes SLC25A4 and NDUFS3 also 
caused increased heart weight22 and cardiomyopathy in mice (http://www.mousephenotype.org), but are not part 
of our gold-standard set of known DCM-linked genes. Further, SLC25A4 gene is also linked to autosomal domi-
nant and autosomal recessive cardiomyopathic types of mitochondrial DNA depletion (OMIM database23, www.
omim.org); which illustrates the power of our integrative approach to identify functional genes underlying DCM.

Predicted functional genes are enriched for targets of drugs known to be cardiotoxic as well 
as targets of cardiac drugs.  Next, we assessed whether the predicted functional genes are targets of drugs 
exhibiting cardiomyopathic side effects. We identified 17 such drugs from SIDER drug side-effect database24,25, 
and compiled their 73 targets (Supplementary Table S3(a)) from Drug Bank26. Hridaya-potentials accurately pre-
dicts these genes with known cardiomyopathic side-effect (ROC-AUC = 0.759), in contrast to ROC-AUC of 0.608 
using the conventional differential gene expression predictor and ROC-AUC of 0.435 using Cipher (Fig. 2c). 
Direct comparison based on bootstrapped accuracy values shows significantly greater accuracy of Hridaya 
when compared to the conventional differential gene expression predictor and Cipher (p-value < 2.2e-16).  
Hridaya-potentials for these drug targets were significantly greater than the rest of the genes with p-value 1.17e-
13 (one sided Wilcoxon rank-sum test). There are 3 genes that are targets of drugs with cardiomyopathic side 
effects, which are among the top 1000 Hridaya-genes and are not known DCM-linked genes, and in addition are 
differentially expressed between DCM-affected and normal individuals. The genes are PDGFRB, ABL1, FLT1; 
and these genes are drug targets of cancer drugs like Dasatinib (targets – PDGFRB, ABL1), Pazopanib (targets 
– PDGFRB, FLT1), Ponatinib (target – ABL1)26. The known side effects of Dasatinib, Pazopanib and Ponatinib 
are congestive cardiomyopathy, restrictive cardiomyopathy, and ischaemic cardiomyopathy24,25 respectively. 
Interestingly, we found that all these three genes are downregulated in DCM patients compare to normal subjects, 
consistent with the inhibitory mode of action of most drugs. This result suggests that the observed cardiac side 
effects of these drugs may be mediated by the inhibition of these specific predicted functional genes.

We performed an analogous test using the 217 targets of 76 drugs currently used for cardiovascular diseases 
(Supplementary Table S3(b), Methods). Hridaya-potentials for genes could distinguish the drug targets from the 
negative control with an ROC-AUC of 0.712, compared with 0.576 using differential gene expression and 0.598 
using Cipher (Fig. 2d). A direct comparison showed significant greater accuracy of Hridaya when compared to 
both differential gene expression based predictor and Cipher (p-value < 2.2e-16). Hridaya-potentials for these 
drug targets were differentially greater than the rest of the genes with p-value 8.05e-26 (one-sided Wilcoxon 
rank-sum test). Among the targets of cardiac drugs that were in the top 1000 Hridaya-genes (not including the 
known DCM-linked genes) and are differentially expressed between DCM and control individuals, we found that 
29% (2 out of 7) were upregulated in DCM individuals, compared with none in the cardiac side-effect causing 
drugs’ targets. The two genes are GUCY1A2 and ACE2 and are targeted by Riociguat and Lisinopril respectively. 
Riociguat is a stimulator of soluble guanylate cyclase (sGC) and is used treat pulmonary hypertension. Lisinopril 
is an ACE-inhibitor and is used to treat hypertension and heart failure26.

Together, these results suggest that the Hridaya-predicted functional genes may both aid in new drug targets 
prioritization and identify drugs that may have potential cardiac side effects. As a resource for future clinical investi-
gations, we provide a small list of investigational drugs with Hridaya-predicted cardiac side effects (Supplementary 
Table S3(c)). Toward this goal we identified investigational drugs from DrugBank26 with single known gene target 
(to minimize ambiguity) and ranked the gene targets using Hridaya-potential. We further filtered this list by keep-
ing only drugs whose targets were significantly under-expressed in heart tissue for DCM individuals compared to 
normal (since most drugs act as inhibitors). We thus identify 3 investigational drugs, namely Mycobacterial Cell 
Wall-DNA Complex (MCC), AT2220, and Oprelvekin. MCC has apoptosis and immune stimulatory functions 
against cancer cells. AT2220 is used to treat Pompe disease26. Oprelvekin stimulates platelet production in the 
blood and is known to cause side effects like fast/irregular heartbeat (www.drugs.com). We also did the same for 
FDA-approved drugs. Encouragingly, we found that most of the drugs that we predicted to have cardiac side effects 
where already known to have cardiac side effects. Supplementary Table S3(d) lists the approved drugs that target top 
Hridaya-genes and their associated cardiac side-effects compiled from the literature survey.

Predicted functional genes are enriched for genes having differential exon usage in DCM.  
Alternative splicing has been suggested to play a role in DCM etiology27–30. Splicing is often characterized in terms 
of exon usage31–33. We used an independent dataset30 that discovered hundreds of genes with differential exon usage 
between 97 dilated cardiomyopathy patients and 108 non-diseased controls for this analysis. We assessed whether 
genes having a differential exon usage in DCM are predicted to be functional by our method. Encouragingly, we find 
that the Hridaya-potentials are much higher for genes having differential exon usage (739 genes) than the rest of the 
genes (Wilcoxon rank-rum, p-value = 1.31e-73). As an alternative assessment, Hridaya-potentials discriminate the 
genes that have significant differential exon usage from the rest (ROC-AUC = 0.7), in contrast to ROC-AUC of 0.63 
using the conventional differential gene expression predictor and ROC-AUC of 0.5 using Cipher (Fig. 2e); these 
differences in accuracy between Hridaya and other two methods are both significant (p-values < 2.2e-16).

http://www.mousephenotype.org
http://www.omim.org
http://www.omim.org
http://www.drugs.com
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Predicted functional genes have potential roles in cardiac function and in regulating differ-
entially expressed genes.  We found several examples of high-ranking Hridaya-genes that have not been 
incorporated in the HPO database (and hence were not used to train the model) but were very recently identified 
as key players in cardiac function. Notably, the TTL enzyme (Hridaya rank 201 out of more than 20,000 genes) 
was very recently shown to play an important role in microtubule buckling during cardiac contraction34. The 
overexpression of TTL reduces the density of polymerized microtubule network, which plays various roles in 
beating cardiomyocyte. Ablation of PPP1R3A gene (Hridaya rank 593) was recently shown to be associated with 
heart failure9. A recent paper showed that transcription factor KLF15 (rank 145) regulates branch chain amino 
acids (BCAA) catabolism in the heart, which plays an important role in heart failure35. Some of the genes in the 
BCAA metabolic pathway such as MLYCD (rank 164), HADHB (rank 354), IVD (rank 713), MUT (rank 921), 
and PCCB (rank 684) are also ranked highly by Hridaya. SIRT5 gene (rank 945) was recently identified as an 
important regulator of cardiac function and is associated with cardiomyopathy in mice36. These genes provide 
potential targets for future investigations. We discuss the potential DCM links of several Hridaya-genes hitherto 
not linked to cardiomyopathies in Supplementary note.

The widespread differential expression between DCM and healthy hearts suggests substantial secondary reg-
ulatory effects originating at functional genes. Analyzing the human functional gene interaction network37, we 
illustrate this secondary effect by testing whether the differentially expressed genes are closer to predicted func-
tional gene than expected in the interaction network. We found that the both mean and minimum path lengths 
from differential genes to top ranked Hridaya-genes are significantly shorter than those to the bottom ranked 
genes (p-value < 2.2e-16, Wilcoxon ranked sum test). We validated the robustness of the result by repeating the 
analysis for different network stringencies (see Methods, Supplementary Fig. S2).

Further, we found that known DCM-linked genes are much closer to the Hridaya-genes compared to other 
genes (one-sided Wilcoxon rank-sum test p-value < 2.2e-16, for different network stringencies; see Methods and 
Supplementary note). Note that gene-gene interaction networks were not used in training Hridaya.

To ensure that the above results are not biased by higher co-expression between differential genes and the 
predicted functional genes, we repeated this analysis after explicitly equalizing the co-expression of the differ-
ential and non-differential gene sets relative to the predicted functional genes. We first compute the expression 
correlation of the top predicted functional genes with differentially expressed genes. Among the negative set of 
non-differentially expressed genes, we randomly sample genes such that their expression correlation with pre-
dicted functional genes have same overall distribution as that of differentially expressed genes. This procedure 
ensures that the co-expression distributions between the differentially expressed genes and the randomly sam-
pled background set are same with respect to the predicted functional genes. As before, we compute the shortest 
path of predicted functional genes with respect to the foreground (differentially expressed genes) and selected 
background. We find that predicted functional genes are much closer to the foreground than the background, as 
before (Supplementary Fig. S3, Methods). This suggests that differential expression correlation does not bias our 
results.

Functional enrichment analysis of the top 250 Hridaya-genes (excluding the known DCM genes used for 
training) based on KEGG pathways and GO biological processes revealed association with many cardiac func-
tions (Supplementary Table S4, supplementary note).

SNPs linked to expression variance of Hridaya-genes are associated with DCM risk.  DCM is 
known to have a genetic basis3. One mechanism by which our predicted functional genes can affect population 
variation of DCM is through their expression variation. We hypothesized that, if the predicted Hridaya-genes are 
functional, polymorphisms associated with their expression should be predictive of DCM incidence in human 
population. We assessed whether the eQTL SNPs (eSNPs) underlying the population variance of Hridaya-genes’ 
expression are associated with risk of DCM. Accordingly, using genotypes of 313 individuals, with 8,349,560 SNP 
genotyped in MAGNet cohort, we first identified the eSNPs, i.e. SNPs associated with expression variance in the 
human heart (Methods38). To avoid circularity, we re-predicted functional genes using Hridaya after removing 
features related to eSNPs (see Methods). We find eSNPs for a gene based on matrix eQTL method38. For each 
gene, we choose the eSNPs which have an FDR < 0.1, and use their genotypes (with values of 0, 1, or 2) as features 
(see Methods). We find that the eSNPs of Hridaya-genes accurately predict DCM incidences (Fig. 3a, 5-fold cross 
validation ROC-AUC of 0.713), which was significantly better than prediction accuracy based on eSNPs of: (a) 
random-1000 genes (ROC-AUC = 0.66), (b) random-1000 differentially expressed genes (ROC-AUC = 0.66), 
(c) all differentially expressed genes (ROC-AUC = 0.69), (d) all genes (ROC-AUC = 0.69), or (e) top 1000 
disease-genes predicted by Cipher for dilated cardiomyopathy (ROC-AUC = 0.62). These results (Fig. 3a) suggest 
that predicted functional genes may mediate, in part, the effects of SNPs on DCM.

In addition, we also computed GWAS Chi-square value for eSNPs (if FDR < 0.1) and chose the maximum 
value for each gene. We find that the GWAS signals for the top 1000 predicted functional genes are significantly 
higher than those for differentially expressed genes (Wilcoxon, p-value = 3.94e-05).

Expression changes in cardiomyocytes upon treatment with cardiotoxic and mitigating drugs 
are consistent with Hridaya and reveal novel candidate drug targets for DCM.  Next, we assessed 
whether transcriptomic changes in cardiomyocytes upon treatment with known cardiotoxic and mitigating drugs 
are consistent with predicted transcriptomic changes of predicted functional genes. We used the Drug Toxicity 
Signature (DToxS) Generation Center cell line database (martip03.u.hpc.mssm.edu/data.php), which contains 
4 cardiomyocyte cell lines from healthy hearts39. Gene expression data (RNA-seq) were obtained in three states: 
(1) naïve cells, (2) upon treatment with a cardiotoxic (offending) drug, and (3) upon treatment with an offending 
and a specific known mitigating drug; in total, we obtained 28 triplets of transcriptomic data for cell-line drug 
pair combinations, Supplementary Table S5(a)). We first identified the genes that are differentially expressed (see 

http://martip03.u.hpc.mssm.edu/data.php
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Methods) between control and offending drug (in various cell lines) in the same direction as in MAGNet DCM 
patients compared to normal hearts. Among these genes, we further identify the subset of genes whose expres-
sion changes back to the normal state upon treatment with the mitigating drug (see Methods). We find that the 
Hridaya-potentials for these genes selected from the DToxS data (excluding known DCM-linked genes) are much 
higher than the remaining genes (p-value = 1.16e-128, Fig. 3b). We also find that these genes are ranked much more 
highly by Hridaya than by a conventional differential gene expression predictor (Wilcoxon, p-value = 2.33e-08,  
supplementary Fig. S4, see Methods).

We are particularly interested in genes that are upregulated in cell lines after treatment with the offending drug 
(and are also upregulated in DCM patients) but are not upregulated after treatment with both the offending and 
mitigating drugs. Such genes have a potential translational value as a drug target. We identify 33 such genes that 
are highly ranked by Hridaya and follow the above transcriptomic pattern in multiple cell line drug combina-
tions. Remarkably, 6 genes are already known to be DCM-linked. Among these, ACTC1 gene (Hridaya rank 20) 
and CASQ2 gene (Hridaya rank 22) exhibit consistent expression changes in 4 cell line drug combinations each. 
ACTC1 is known to be associated with both DCM and familial hypertrophic cardiomyopathy and is involved 
in cardiac muscle contraction40. CASQ2, which is a cardiac muscle family member of calsequestrin family, is a 
calcium binding protein that stores calcium for muscle function40. EHD3 (Hridaya rank 349, occurs in 4 cell line 
drug combinations) plays a role in cardiac protein trafficking41 and is a component of cardiac remodeling pathway 
in heart failure42. WSF1 (Hridaya rank 474) is known to be associated with cardiomyopathy43 and this gene occurs 
in 8 cell line drug combinations. The list of 33 genes and their details are provided in Supplementary Table S5(b).

Stratification of DCM patients reveals two subgroups of patients based on their Left Ventricular 
End Diastolic/Systolic Diameters.  DCM, as a complex and systemic disease, is likely to be molecularly 
and genetically heterogeneous. That is, different combinations of activity states of the predicted functional genes 
may represent different etiologies underlying DCM. We therefore explored whether DCM patients form distinct 
subgroups defined by the Hridaya-genes’ expression profile. Hierarchical clustering of the 77 DCM patients based 
on the gene expression of the top 1000 Hridaya-genes revealed two subgroups (subgroup A: 32 patients, subgroup 
B: 45 patients). Each subgroup represents DCM patients with similar heart expression patterns among the pre-
dicted functional genes. We analyzed phenotypic differences between the two subgroups for the 59 phenotypes 
provided in the MAGNet database (Fig. 4a) using the Fisher test44 for binary phenotypes and the two-sided 
Wilcoxon rank-sum test for continuous-valued phenotypes. The two subgroups differed significantly in multiple 
phenotypes, most notably, the left ventricular end diastolic and systolic diameters (LVEDD, p-value = 2.56e-3; 
LVESD, p-value = 3.28e-2), which are the key measures of cardiac structural changes and remodeling in heart 
failure patients (Fig. 4a). These results reveal an association between gene expression profile of the predicted 
functional genes and key cardiac phenotypes.

Figure 3.  (a) Accuracies of predicting DCM individuals based on eSNPs for different gene sets: The gene sets 
were randomly selected 1000 genes (random genes), randomly selected 1000 genes from differentially expressed 
genes between DCM and normal patients (random diff-genes), all genes, all differentially expressed genes (all 
diff-genes), top 1000 Cipher genes, and top 1000 Hridaya-genes. The p-values using Wilcoxon test comparing 
the accuracies of Hridaya-genes with differential and Cipher genes are shown. (b) Cell line experiments: 
Hridaya-potentials for the selected genes based on cell line experiments (DToxS data) when compared to the 
rest of the genes. The genes were selected based on their change in expression when treated with a cardiotoxic 
drug and reversal of gene expression upon treatment with a paired mitigating drug.
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Figure 4.  Stratification of DCM patients using transcriptomic and genetic profiles. (a) Stratification using 
gene expression (subgroup A has 32 patients and subgroup B has 45 patients); (b) Stratification using eSNPs 
(subgroup A has 18 patients and subgroup B has 59 patients). 77 DCM patients are stratified based on gene 
expression or eSNPs of Hridaya-genes. Hierarchical clustering is done, and the patients are divided into two 
subgroups. The significant phenotypes of these two subgroups are shown. The binary phenotypes are shown 
as bar plots indicating the percentage (%) of the individuals in each subgroup having a particular phenotype. 
The continuous valued phenotypes (in centimeter, cm) are shown as box plots. The p-value of the phenotypic 
differences between the two subgroups using either Wilcoxon rank-sum test (continuous valued phenotype) or 
Fischer test (binary valued phenotype) are shown in each figure, and the title of each figure shows the phenotype 
described. Significant phenotypic differences between the two subgroups are observed for LVESD, LVEDD, and 
if patients have taken drugs like Milronine, Hydralazine, Nitrate, Beta blockers, Angiotensin II Antagonists.
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Similar to transcriptome-based stratification, next we stratified the DCM patients using the genotypes 
across the significant eSNPs of the Hridaya-genes (FDR < 0.1). This again yielded two subgroups (subgroup 
A = 18 patients, subgroup B = 59). (17 out of 18 patients in subgroup A using eSNPs overlap with subgroup A 
patients using expression profile while 44 out of 45 patients from subgroup B using expression profile overlap 
with subgroup B patients using eSNPs.) In this SNP-based clustering as well, we found significant differences 
in LVEDD (p-value = 6.5e-3), LVESD (p-value = 3.1e-2), etc. (Fig. 4b). Consistently, in both stratifications, the 
subgroup having higher LVEDD and LVESD was more likely to have taken the inotropic drug Milrinone45. In 
expression-based stratification, the other subgroup of patients was more likely to have taken beta-blockers, a 
class of drugs used to manage chronic heart failure, arrhythmias, and hypertension46. These results suggest that 
patients in subgroup B (who have greater LVEDD and LVESD values), may have a more severe form of DCM, as 
expected. The consistent results by both SNP-based and expression-based stratification suggest a genetic compo-
nent underlying the observed transcriptomic and phenotypic heterogeneity among DCM patients.

Web-application.  We have created a web-application (https://nishanthnair.shinyapps.io/heartdisease/) that 
allows users to search for and view the following information for every gene: the Hridaya rank, the gene descrip-
tion, a link to the GeneCards website (http://www.genecards.org)40, the ratio of expression between normal and 
diseased DCM individuals, etc.

Discussion
We have reported a novel machine learning approach called Hridaya to predict DCM functional genes. Building 
on the existing knowledge of DCM functional genes, Hridaya attempts to learn key properties of the known 
DCM-linked genes and extrapolates to identify additional such genes. Specifically, Hridaya is a supervised 
machine learning model to identify potential new functional genes of DCM in humans, using many different 
kinds of features, by learning from a gold-standard set of known functional genes. This contrasts with the previ-
ous approaches which are usually based only on differential gene expression4–8 or PPI networks20.

Several lines of evidence, including mouse knockout effects, drug side effects, and associations between reg-
ulatory variants and cardiomyopathy, support the functional role of the predicted Hridaya-genes. Many of the 
predicted DCM functional genes were recently shown experimentally to be mechanistically linked to cardiac 
diseases; notably, the TTL gene, which was very recently shown to be directly involved in microtubule buckling 
during cardiac contraction34. Hridaya predictions, along with cell line experiments, reveal important drug tar-
gets for DCM. Hridaya can be used to predict drugs likely to cause cardiac side effects and for prioritizing new 
drug targets for cardiomyopathy. Further, it can be used to identify approved drugs that can be repurposed for 
cardiac disease treatments. Specifically, drugs that are approved for non-cardiac therapies, target high-ranking 
Hridaya-genes, and are upregulated in DCM patients should be considered top targets for cardiac-drug repur-
posing. Hridaya can also predict genes having significantly different exon usage in DCM patient heart. Stratifying 
DCM patients, using either the expression or the genetic regulators of predicted functional genes, reveal two 
distinct subgroups of patients with different clinical phenotypes. Additional follow-up experiments need to be 
done to establish the causal role of the predicted functional genes.

Most earlier attempts that characterize important genes in cardiac diseases rely on differential gene expres-
sion4–8 and use only a small number of heart samples. Due to various confounders, especially co-expression 
among genes, the clear majority of differential genes are likely to represent downstream effects. For instance, we 
found that overall 54% of genes are differentially expressed between DCM and normal individuals (Wilcoxon 
rank sum test, p-value < 0.05); 30% are down regulated in DCM while 24% of genes are upregulated. In compari-
son, among the top 1000 Hridaya-genes 84% are differentially expressed. Interestingly, however, the clear majority 
of these genes (76%) are down regulated in DCM individuals. We also see that the top predicted functional genes 
are highly expressed in the left ventricle of the heart based on the RNA-seq data from GTEx consortium (see 
Supplementary note, Supplementary Fig. S5).

Some previous studies use animal models to identify functional genes in humans. Though important, animal 
models have been found in many cases to have poor translatability47. The previous studies did not investigate 
the genetic signals underlying gene expression to detect functional genes. In contrast, our approach integrates a 
wide range of genetic, epigenetic, transcriptomic, phenotypic, and evolutionary evidence and utilize data from 
213 human hearts to predict functional genes of DCM. Such studies are important especially since it has been 
observed that using genetic data to select the most appropriate drug targets and indications can greatly improve 
the success in developing novel drugs48.

Hridaya’s first step, namely, the disease-functional estimator, estimates the likelihood of a gene to be a func-
tional for some disease, i.e., not specific to DCM. Several previous works have directly addressed this broad prob-
lem, both regarding identifying functional genes as well as associated SNPs underlying diseases. As an example, 
a framework called Combined Annotation Dependent Depletion (CADD) uses SVM to estimate relative patho-
genicity of human SNPs49. Polyphen-2 predicts damaging effects of missense mutations50. Another method called 
GWAVA51 supports the prioritization of non-coding variants by using multiple epigenomic and genomic anno-
tations. A Bayesian approach to detect potentially causal eQTL SNPs was proposed in Das et al.52. A large-scale 
exome sequencing study of 60,706 individuals predicted 3230 possible disease-causing genes53. Network-based 
approaches was also used to predict disease-causing genes based on a protein-protein interaction network20,54. 
NetWAS identifies disease-gene associations using tissue-specific associations, and GWAS studies55. Hridaya’s 
first step thus provides an alternative unbiased machine-learning strategy to identify functional genes of any dis-
ease. Importantly, Hridaya integrates an additional model that discriminates among the disease-functional genes 
to select those specifically linked to DCM.

We did a Principal Component Analysis (PCA) using the gene expression for the top 1000 predicted func-
tional genes. Using only the first two principal components, we see that DCM and normal patients seem to be 
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reasonably well separated (Fig. 5a). We also repeated this analysis by re-estimating functional genes by training 
Hridaya without using any gene expression based features to avoid any circularity (since we use gene expression 
for the PCA analysis). We again see DCM and normal patients well separated using the first two principal com-
ponents (Fig. 5b). However, we do not get such a separation using random 1000 genes (Fig. 5c). This seems to 
suggest that expression profile of multiple functional genes is linked to DCM.

Regrettably, the DCM cohort in the MAGNet data has not been screened for known monogenic causes of 
DCM, which are known to contribute significantly to DCM56–59. Whole genome or exome sequencing data, which 
is necessary to address this, is currently not available. One limitation of Hridaya is its reliance on a high-quality 
gold-standard set of genes. Furthermore, if the gold-standard gene set is not sufficiently large, it limits the num-
ber of features that can be used, as the number of features should not be much larger than the gene set for robust 
model training. Although our integrative approach identified functional genes of DCM, it does not clarify the 
precise mechanisms by which the functional genes affect DCM. However, a detailed list of high-confidence poten-
tial DCM functional genes should serve as useful resource to pursue more directed experimental approaches to 
probe the mechanisms underlying DCM.

Overall, we present a novel approach to identify genes underlying DCM, supported by multiple lines of evi-
dence, and provide a resource for future clinical investigations of DCM. Our approach is generalizable to other 
complex diseases. While our method predicts putative functional genes involved in DCM, establishing causality 
and the mechanisms will require direct experimental work in animal models. Our work provides promising can-
didates for such experimental follow up.

Methods
Hridaya method.  From the Human Phenotype Ontology (HPO) database, we collect a gold-standard set of 
214 positive genes that are associated with phenotypes related to DCM. Our negative control set is all the genes 
available in MAGNet database minus the positive set (26,590 genes). Hridaya hierarchically estimates a potential 
of a gene to be DCM functional genes in a supervised fashion. Hridaya uses two supervised models using support 
vector machines (SVMs). The SVMs are based on 181 features broadly grouped into (1) genetic, (2) epigenetic, 
(3) transcriptomic, (4) phenotypic, and (5) evolutionary. The list of 181 features is provided in the Supplementary 
Table S1 along with the details on how they were processed.

For the first SVM model, called disease-functional estimator, is based on a positive set of 3373 disease-associated  
genes in the HPO dataset, and the rest of the genes as the negative set. We train a SVM model using the two sets 
of genes to estimate the probability of each gene belonging to the positive set – P’(Disease-functional|All) and 
iterate this procedure 100 times (we randomly sample the much larger negative set each time so as to make it of 
equal size as the positive set). Multiple previous studies have shown that it is necessary to use balanced positive 
and negative datasets for improved performance60–62, thereby justifying the need for sampling methods for imbal-
anced datasets. Random subsampling of the negative set when it is much larger than the positive set is a common 
machine learning approach in classification problems60,63. Therefore, we did random subsampling of our negative 
set since our negative set is much larger than the positive set.

We then compute the average probability score for each gene (trimmed mean by removing the highest and 
lowest 5%). For the second SVM model, called DCM-component estimator, the positive set is comprised of genes 
in the HPO dataset related only to DCM (214 genes) while the negative set is 3159 (3373-214) genes associated 
with any disease except DCM (with random sampling as before). We then predict the probability of each gene 
belonging to the positive set – P’(DCM|Disease-functional). As before, we iterate this procedure 100 times and 
compute the trimmed average probability score. For a given gene, the product of the two probabilities P’(DCM
|All) = P’(Disease-functional|All)xP’(DCM|Disease-functional), called Hridaya-potential, is the final estimated 
potential of a gene to be a DCM functional gene. The term ‘probability’ denotes the likelihood that a gene is func-
tionally involved in DCM, the higher the value the more likely it is to be a functional gene of DCM.

Figure 5.  PCA plots on gene expression of (a) top 1000 Hridaya genes (functional genes); (a) top 1000 Hridaya 
genes (without using gene expression based features); (c) random 1000 genes.
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Representing the overall potential of a gene to be DCM functional gene as a product of two probabilities, i.e., 
P’(DCM|All) = P’(Disease-functional|All) × P’(DCM|Disease-functional), derives from a simple probabilistic 
reasoning as follows. As the set of disease-functional genes is a subset of all genes P’(DCM|Disease-functional) 
= P’(DCM|Disease-functional, All). Now, P’(DCM|Disease-functional, All) × P’(Disease-functional|All) = P’(D
CM,Disease-functional|All). Furthermore, as the set of DCM functional genes is a subset of disease functional 
genes P’(DCM,Disease-functional|All) = P’(DCM|All). Hence, P’(DCM|All) = P’(Disease-functional|All) × P’ 
(DCM|Disease-functional).

Finally, our MAGNet expression data is based on Affymetrix microarray. We estimate the probabilities for 
each probe separately and take the highest potential among the probes mapping to a gene as the gene-level 
Hridaya-potential.

Data processing.  As detailed in a previous publication52, 313 cardiac tissue samples were acquired by the 
MAGNet database (http://www.med.upenn.edu/magnet/). Out of this 77 samples are from DCM human hearts 
and 136 from donor controls. Samples were taken from the left ventricular free-wall tissue and were harvested 
during cardiac surgery from heart failure patients undergoing transplantation and from unused donor hearts52. 
An empirical Bayes method called ComBat, was used to remove potential batch effects in gene expression values64.  
More details on data processing are provided in Das et al.52

The ENCODE11 and Roadmap epigenome project data12 were used for epigenetic and DNase hypersensitivity 
data. The data was processed as in Das et al.52. For the phylogenetic profile features based on 65 species, orthol-
ogy relationships between human and each of the other species were obtained from Ensemble Biomart and then 
merged into one table by human gene id. More details on how the various features were processed are given in 
Supplementary Table S1. Missing data in the features are imputed using imputePCA function in R.

Cross-validation and comparative methods.  We did five-fold cross validation (using DCM-linked 
genes from HPO dataset and the rest of the genes as control) to estimate the model accuracy. 50 randomized 
iterations were done. For each iteration, there were 10 iterations done for each of the two components, 
disease-functional estimator and DCM-component estimator.

Conventional differential gene expression predictor.  To compare with the standard gene prioritization approaches 
based on differential expression, we ranked each gene based on the negative log p-value of its differential expres-
sion (Wilcoxon rank sum test) between DCM and normal individuals.

Cipher.  We also compared Hridaya with another method called Cipher20. Cipher predicts and prioritizes 
disease-genes for several phenotypes using human protein-protein interactions. We used the Cipher predictions 
for dilated cardiomyopathy based on the extended protein-protein interaction network they used, which gives a 
ranked list and disease associated score for all genes20.

Predictive value of individual Hridaya features.  ROC-AUC values using one feature at a time is also computed, 
by using 10 randomized iterations for each feature (Supplementary Table S1). Furthermore, to estimate the pre-
dictive power of a feature separately in each of the two Hridaya components (Disease-functional estimator and 
DCM-component estimator), we compared the feature values between the positive and the negative set using 
Wilcoxon rank-sum test.

Validations.  For validations using mouse knockout data, 34 genes were compiled from the mouse knock-
out database22, whose knockout resulted in phenotypes which were associated with DCM. We removed the 
genes which are a part of known DCM-linked genes (gold-standard set) while using Hridaya. We computed the 
ROC-AUC by using this set as the positive set and the rest of the genes as the negative set, using the correspond-
ing Hridaya-potentials for each gene. To estimate confidence interval for ROC-AUC, we bootstrap (by random 
sampling with replacement) the positive set (corresponding negative set is simply the complement), and repeated 
the procedure 100 times. ROC-AUC for each bootstrap iteration is computed, and these values for 100 bootstrap 
iteration are compared with those for a competing method (using Wilcoxon test) to estimate the p-value, or used 
to calculate confidence intervals. We also repeated the bootstrapping using pROC R package65 to compute confi-
dence intervals. When we compare our approach with competing methods using these bootstrapped values, we 
get extremely significant p-values (<2.2e-16) using Wilcoxon test.

A similar procedure was carried out for the other validations like cardiac side effect drug targets, cardiac 
drugs, and genes with significant differential exon usage between DCM and normal patients. Again, known 
DCM-linked genes (gold-standard set) from the HPO dataset was removed from the positive (drug targets or 
genes with differential exon usage) and negative sets (remaining genes) for each of this analysis, so as to avoid 
any bias.

Cell-line experiments.  We downloaded Level 1 Data (Unique Molecular Identifier Counts) from the Drug 
Toxicity Signature (DToxS) Generation Center (martip03.u.hpc.mssm.edu/data.php) from the most recent three 
releases: August 20th, 2015, March 1st, 2016, and January 5th, 2017. We downloaded the Level 2 Data for the 
individual experiments from these releases to obtain the control and experimental sample names. The data con-
tains 4 cell lines derived from cardiomyocytes from healthy hearts, 7 drugs which are known to be cardiotoxic 
(offending drugs), and 9 mitigating drugs which reduces the adverse effect of the offending drugs. In total, we 
have 28 cell-line drug pair combinations. Using the raw RNA-seq counts (Level 1 Data), we identified genes that 
were differentially expressed (with FDR < 0.1) between the control and post-treatment samples using the R pack-
age edgeR66,67. We selected genes that were differentially expressed after treatment with the offending drug in a 
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given cell line in the same direction as in the idiopathic dilated cardiomyopathy from the MAGNet data set but 
were either not differentially expressed or differentially expressed in the opposite direction after treatment with 
the same offending drug and a mitigating drug in the same cell line. We counted the number of times each gene 
was selected across the 28 cases where both sets of experiments were performed and selected the 2349 genes that 
occurred at least in two cell line drug pair combinations. Next, we removed all known DCM-linked genes and 
compared the Hridaya score for the positive set of genes with those for the rest of genes present in DToxS data as 
well as considered by Hridaya, using the Wilcoxon Rank Sum test. Finally, we ranked all the genes (excluding the 
known DCM-linked genes) by their Hridaya-potential and the negative log (p-value) (conventional differential 
expression predictor) of their differential expression and compared the ranks of the positive set based on the two 
measures using the Wilcoxon Rank Sum test.

Gene-gene interaction network.  To check if differentially expressed genes are closer to predicted func-
tional gene than expected in the gene-gene interaction network, we considered the top and bottom 100 Hridaya 
ranked genes present in the human functional gene-gene interaction network37. We also selected all the differen-
tially expressed genes (4751 genes) between normal and DCM individuals (Wilcoxon p-value < 0.05) present in 
the gene-gene interaction database (after removing the overlapping top and bottom 100 Hridaya ranked genes). 
For each differentially expressed gene, we computed its shortest path to each of the top 100 Hridaya-genes and 
noted the mean and minimum values across the 100 values. As a control, we estimate the same relative to bottom 
100 Hridaya-genes. Wilcoxon rank-sum test was used to find the difference between the shortest path lengths 
(separately for mean and minimum shortest paths) from differential genes to top ranked genes and differential 
genes to bottom ranked genes. This was repeated for different network stringencies (see Supplementary Fig. S2).

To remove any bias due to higher co-expression of differential genes with the predicted functional genes, we 
did the following analysis. We selected the top 100 functional genes which are present in the gene-gene interac-
tion network and for each gene compute its expression Spearman correlation with the genes that are differentially 
expressed between DCM and normal (foreground). From the negative set of non-differentially expressed genes 
(remaining genes), we randomly sample 1000 genes such their expression correlation values with respect to func-
tional genes have same distribution as that for the differentially expressed genes. We compute the shortest path 
of predicted functional genes with respect to the foreground (differentially expressed genes) and selected back-
ground, controlling for the co-expression with the functional genes.

Next, we assessed whether the known DCM-linked genes are closer to the top Hridaya-genes than the rest of 
the genes. To check this, using the interaction network, we computed the distances between known DCM-linked 
genes to the top novel Hridaya-genes. We also computed the distance between the known DCM-linked genes and 
the rest of the genes. A one-sided Wilcoxon rank-sum test was done to see if known DCM-linked genes are closer 
to the top Hridaya-genes than the rest of the genes (see Supplementary note).

Predicting DCM risk based on SNPs associated with functional gene expression.  We obtained 
the eSNPs (FDR < 0.1) for the top 1000 Hridaya-genes using matrix eQTL38. For this the functional genes were 
re-predicted after removing features related to eSNPs, so as to avoid any circularity. Then for each individual, for 
each functional gene, we obtained the mean value of the genotypes across all eSNPs of that gene whose FDR < 0.1. 
Thus, each gene corresponds to a single feature and an individual is represented by 1000 features corresponding 
to 1000 top functional genes. We then trained an SVM to classify DCM versus healthy donor hearts in MAGNet. 
Randomized 5-fold cross validation was done 100 times.

Web-portal.  We have set up a web-application where one can search for genes and the Hridaya-potential, 
rank, and details of these genes, at https://nishanthnair.shinyapps.io/heartdisease.
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