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Liver ischemia and reperfusion (I/R) induce local and distant tissue injuries, contributing to morbidity and mortality in a wider
range of pathologies. This is especially seen under uncontrolled aseptic inflammatory conditions, leading to injury of remote
organs, such as lung injury, and even failure. Saquinavir (SQV) is a kind of HIV protease inhibitor that possesses an anti-
inflammatory property. In this study, we investigated whether SQV suppresses Toll-like receptor 4- (TLR4-) dependent
signaling pathways of high-mobility group box 1 (HMGB1) and P38/JNK, conferring protection against murine liver I/R-
induced lung injury. To investigate our hypothesis, C57BL/6 mice and TLR4 knockout mice (TLR4−/−) were used to perform the
study. SQV administration markedly attenuated remote lung tissue injury after 1-hour ischemia and 6-hour reperfusion of the
liver. To our expectation, SQV attenuated I/R-induced lung edema, hyperpermeability, and pathological injury. The beneficial
effects of SQV were associated with decreased levels of circulating and lung tissue inflammatory cytokines, such as IL-6, IL-1β,
TNF-α, and iNOS. The protective effect of SQV was also associated with decreased lung tissue expression of HMGB1, TLR-4,
and p-P38/JNK, but not p-ERK in wild-type liver I/R mice. Overall, this study demonstrated a new role of SQV, facilitating
negative regulation of HMGB1- and P38/JNK-mediated TLR-4-dependent signaling pathways, conferring protection against
liver I/R-induced lung injury.

1. Introduction

Liver I/R causes systematic sterile inflammation that not only
damages the local organ itself but also led to uncontrolled
systemic inflammation, resulting in remote organ injury
and morbidity [1–3]. Several studies have reported that the
lungs are easily susceptible to damage during liver I/R [4, 5].

Toll-like receptors (TLRs) are the most thoroughly stud-
ied sentinel pattern recognition receptors (PRRs) [6–8].
Recently, we [9] and others [10–12] have identified that
TLR4 plays an indispensable role in the liver I/R injury.
High-mobility group box1 (HMGB1) is originally discovered
as a nuclear protein that is released to the cytosol and even
extracellular space in response to specific conditions [13,
14]. Of note, HMGB1 has been identified as an endogenous
TLR4 ligand [15, 16] and evidences suggest that HMGB1-
TLR4 activation can lead to immunopathological disorders

in the acute state, such as I/R [10], hemorrhagic shock [17],
and trauma [18]. In addition, TLR4 also participates not only
in the recognition of HMGB1 but also in its release [15].
Mitogen-activated protein kinases (MAPKs) are signaling
components that significantly convert extracellular stimuli
into cellular responses [19, 20]. Furthermore, studies have
demonstrated thatHMGB1 regulates inflammatory responses
through MAPK signaling pathways [14, 19].

SQV is the first-generation HIV protease inhibitor that
possesses anti-inflammatory characteristics. Gero et al. and
Pribis et al. [21, 22] recently identified SQV in a medium-
throughput screening assay. Results revealed that SQV
enhanced the survival of mice after cecal ligation and
puncture (CLP) and reduced warm I/R injury in the liver.
Furthermore, the study proved that SQV inhibited HMGB1-
driven inflammation via targeting the interaction of TLR4/
MyD88 [22].
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Thus, we explored whether SQV could protect lung
inflammation and injury induced by liver I/R via the TLR4/
HMGB1 signaling pathway.

2. Materials and Methods

2.1. Animals. Male wild-type mice (C57BL/6; 8–12 weeks
old) were bought from Shanghai Laboratory Animal Co.
Ltd. (SLAC, Shanghai, China). TLR4 knockout (TLR4−/−)
mice were kindly provided by Dr. Timothy R. Billiar (Uni-
versity of Pittsburgh, USA). All mice were fed under a 12 h
day/night cycle under specific pathogen-free atmosphere at
the Shanghai Tongji University. Animal protocols were
approved by the Ethics Committee of the University of
Tongji, and the experiments were performed in accordance
with the National Institutes of Health Guidelines for the
Use of Laboratory Animals.

2.2. Preparation of the Hepatic I/R Injury Model. The model
of partial hepatic warm I/R was prepared as described previ-
ously [9]. Briefly, after a suitable level of anesthesia (100mg/
kg ketamine and 10mg/kg xylazine) has been attained, a
midline laparotomy was performed and an atraumatic clip
was used to interrupt the arterial and the portal venous blood
supply to the left lateral and median lobes of the liver. Sham
control mice underwent the same procedure without vascu-
lar occlusion. Mice suffered for 1 hour with partial hepatic
ischemia. Then, the mice were sacrificed after 6 hours or 12
hours of reperfusion, and lung tissues and blood samples
were used for analysis. SQV (0.5mg/kg) or nontoxic DMSO
was pretreated 1 h before ischemia and again at the time of
reperfusion. As well, JNK inhibitor (10mg/kg SP600125;
Calbiochem) and P38 inhibitor (10mg/kg SB203580; Calbio-
chem) were administrated as SQV.

2.3. Histological Examination. The right superior lobe of
the lung of each model was used for histological hematox-
ylin eosin (H&E) staining. To evaluate the degree of lung
injury, the histological alterations of lung parenchyma were
quantitatively graded on a scale from 0 to 2 (by alveolar
and capillary edema, intravascular and peribronchial influx
of inflammatory cells, thickness of the alveolar wall, and
hemorrhage) [23].

2.4. The Alveolar-Capillary Permeability by Evans Blue
Albumin (EBA). Alveolar-capillary permeability was esti-
mated with EBA according to our previous description [23,
24]. EBA was administered through the vena jugularis
externa 1 h before sacrificing all models, and then, the lung
tissue was reserved to do further research.

2.5. TheWet/Dry Ratio (W/D). Lung edema was measured by
tissue W/D ratio. After dissection, right lung samples were
weighed and then placed in a drying oven at 67°C until a con-
stant weight was obtained.

2.6. Measurement of Cytokines. Serum and BALF levels of
TNF-α, IL-6, IL-10, and macrophage inflammatory protein-
(MIP-) 2 were determined by using enzyme-linked immuno-
sorbent assay (ELISA, R&D Systems, USA).

2.7. RNA Extraction, Reverse Transcription PCR, and
Quantitative Real-Time PCR Total. RNA was extracted from
lung tissues using TRIzol reagent (Sigma-Aldrich) according
to the standard protocols [23]. All the primers were synthe-
sized by Sangon Biotech (Shanghai, China). Primers sequence
was presented in Table 1.

2.8. Western Blot Analysis. Western blotting for HMGB1,
TLR4, p-P38/P38, and p-JNK/JNK in lung tissues was per-
formed as a standard protocol [9]. Membranes were blocked
with 5% skimmed milk, incubated with mouse primary anti-
body against HMGB1 (Abcam, USA), TLR4 (Abcam, USA),
p-JNK/JNK (CST, USA) and P38 (AR, USA) and p-P38
(SAB, USA), and IκBα and p-IκBα (CST, USA) overnight,
and then incubated with secondary antibody (Licor Biosci-
ences, USA).

2.9. TUNEL Assay. This was performed to examine the apo-
ptotic cells in the lung using the In Situ Cell Death POD kit
(Roche, USA) according to the standard protocol [25].

2.10. Immunohistochemistry (IHC). IHC was performed for
both macrophage and neutrophil infiltrations using CD11b
and Ly6G antibodies (Servicebio, China) [26].

2.11. Statistical Analysis. Results were presented as means
± standard error of the mean (SEM) of at least three repeat-
ing experiments. Statistical analysis was performed using
GraphPad Prism 5.0 (GraphPad Software Inc., San Diego,
CA). Analysis was performed using Student’s t-test or
one-way ANOVA. P < 0 05 was considered to be statisti-
cally significant.

Table 1: Primers for quantitative polymerase chain reaction.

Gene Primer Sequence

TNF-α
Forward 5′-CCCTCACACTCAGATCATCTTCT-3′
Reverse 5′-GCTACGACGTGGGCTACAG-3′

IL-1β
Forward 5′-GCAACTGTTCCTGAACTCAACT-3′
Reverse 5′-ATCTTTTGGGGTCCGTCAACT-3′

IL-10
Forward 5′-GCTCTTACTGACTGGCATGAG-3′
Reverse 5′-CGCAGCTCTAGGAGCATGTG-3′

iNOS
Forward 5′- GTTCTCAGCCCAACAATACAAGA-3′
Reverse 5′- GTGGACGGGTCGATGTCAC-3′

HMGB1
Forward 5′-GGCGAGCATCCTGGCTTATC-3′
Reverse 5′-GGCTGCTTGTCATCTGCTG-3′

TLR4
Forward 5′-AGGCACATGCTCTAGCACTAA-3′
Reverse 5′-AGGCTCCCCAGTTTAACTCTG-3′

β-Actin
Forward 5′-GGCTGTATTCCCCTCCATCG-3′
Reverse 5′-CCAGTTGGTAACAATGCCATGT-3′
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3. Results

3.1. Liver I/R Mediates Local Hepatic and Remote Lung
Injury. To determine whether reperfusion time could affect
the damage degree, we performed H&E staining of lung
and liver tissues in both I/R and Sham groups with/without
1 h of liver ischemia following 6h or 12h reperfusion. Results
demonstrated that the inflammatory cells and structural
damage are easily observed both in the liver as well as lung
tissues (Figure 1(a)). In addition, the degree of liver cell
injury was measured by serum aspartate aminotransferase
(AST) and alanine aminotransferase (ALT) levels. Results
showed that the levels were significantly increased in the
I/R group when compared with Sham group (Figure 1(b)).
However, there were no significant differences between
reperfusion at 6 h and 12 h. Hence, 6 h was used as the reper-
fusion time for the following experiments.

3.2. SQV Can Improve the Lung Injury Induced by Liver
Warm I/R. H&E staining was used to evaluate the general
morphology of lung tissues. Compared with the Sham group,
lung injury score displayed a higher level in the I/R group,
but a markedly decreased level in the I/R+ SQV group versus
the I/R group (Figure 2(a)). On the other hand, the EBA and
W/D ratio showed significant improvement of lung perme-
ability and edema by SQV (Figure 2(b)). Furthermore, total
cell counts and protein levels in the I/R group were signifi-
cantly higher than those in the Sham group, and all these

factors in the I/R+SQV group were significantly decreased
compared with those in the I/R group (Figure 2(c)). Finally,
apoptosis (Tunel+) assay was performed, which showed
reduced apoptotic rate in lung tissues after SQV treatment
in I/R mice (the red arrows, Figure 2(d)). Collectively, these
results indicated that SQV has a positive effect on attenuating
lung injury induced by liver warm I/R.

3.3. SQV Regulates Macrophages in the Lungs after Liver I/R.
Both macrophages (CD11b+) and neutrophils (Ly6G+) play
crucial roles in the secretion of various cytokines. IHC indi-
cated that macrophages were mainly interfered by SQV treat-
ment in the liver I/R mice (the red arrows marked,
Figure 3(a)). In addition, MIP-2 levels in the bronchoalveolar
lavage fluid (BALF) were downregulated in I/R mice with
SQV treatment (Figure 3(b)). Moreover, the NF-kB pathway
plays a major role in promoting the release of cytokines;
changes to endogenous NF-kB can be measured by the IκBα
degradation, which begins degradation when NF-kB is
activated [27]. Western blot analysis (Figure 3(c)) exhibited
a significant upregulation of IκBα in the lungs of I/R mice
when treated with SQV.

3.4. SQV Suppresses Proinflammatory Cytokines and
Upregulates the Release of Anti-Inflammatory Cytokines in
the Serum and BALF following Liver Warm I/R. To test
whether SQV affects the production of cytokines, ELISA
was performed. BALF proinflammatory cytokines, TNF-α,
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Figure 1: Liver I/R leads to local hepatic and remote lung injury. Liver and lung sections stained with H&E after liver reperfusion at 6 h or 12 h
(a). Concentrations of AST andALTwere detected following liver reperfusion at 6 h or 12 h (b). GraphPad values are presented asmean± SEM.
∗P < 0 05 versus the Sham group.
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and IL-6 were increased in the I/R group compared with the
Sham group, but their levels were markedly decreased in the
I/R+SQV group. In addition, IL-10, as an anti-inflammatory
factor, was increased in BALF in the I/R group compared to

the Sham group. Otherwise, the IL-10 levels were much
higher in the I/R+ SQV group compared to the I/R group
(Figure 4(a)). Similar results were observed in the serum
(Figure 4(b)).
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Figure 2: SQV could improve the lung injury induced by liver warm I/R. H&E staining and histological alterations of lung parenchyma were
graded (a). Degrees of lung permeability and edema were reflected by EBA andW/D ratio (b). The total cell counts and protein concentration
in BALF (c). Apoptotic assay (Tunel+) was performed in the lung tissues of mice with or without SQV treatment after liver I/R (d). GraphPad
values are presented as mean± SEM. ∗P < 0 05 versus the Sham group; #P < 0 05 compared to the liver warm I/R group.
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3.5. SQV Affects Cytokines at the Gene Transcriptional Level
in Lung Tissues after Liver I/R. qPCR was performed to
further investigate the effects of SQV on the production
of various factors. To meet our expectation, proinflamma-
tory factors, such as TNF-α, IL-6, IL-1β, and iNOS, were
all significantly increased in the I/R group compared to
the Sham group, but a significant decrease in the transcrip-
tion of these genes was observed compared to the I/R+SQV
group (Figure 5(a)). Of course, the expression of IL-10
followed the results of its protein level in serum and BALF
(Figure 5(b)).

3.6. SQV Attenuates HMGB1 and TLR4 Expression Levels
and Affects Phosphorylation of MAPK Signaling Proteins in
the Lung Tissues after Liver I/R. Western blot and qPCR
were performed to investigate the underlying mechanism
of SQV. Results revealed reduced inflammation of liver I/R
after SQV treatment. TLR4 (Figure 6(a)) and HMGB1
(Figure 6(b)) protein levels were distinctively increased in
the I/R group compared to the Sham group and visually
decreased in the I/R+ SQV group by immunoblotting.
Similar results were confirmed by qPCR (Figure 6(c)). Phos-
phorylation of MAPK signaling proteins was also measured
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Figure 3: SQV regulates macrophages in the lung after liver I/R. IHC was used to stain either macrophages (CD11b+) or neutrophils (Ly6G+)
in the lung tissue after SQV treatment (a). As well, the MIP-2 levels in BALF were tested by ELISA (b). IκBα and p-IκBα activation of local
lung tissue from all groups was assessed byWestern blot (c). GraphPad values are presented as mean± SEM. ∗P < 0 05 versus the Sham group;
#P < 0 05 compared to the liver warm I/R group.
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(Figure 6(d)). Interestingly, phosphorylated JNK and P38
were markedly decreased in the I/R+ SQV group compared
to the I/R group, but showed no change in the ERK

phosphorylation. Overall, these results implied that SQV
could mediate the TLR4/HMGB1-JNK and P38 MAPK sig-
naling pathways to improve lung injury after liver I/R.
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Figure 4: SQV suppresses the level of proinflammatory cytokines and upregulates the level of anti-inflammatory cytokines in the serum and
BALF following liver warm I/R. ELISA was performed to check the concentration of cytokines, such as IL-6, TNF-α, and IL-10 in BALF
(a) and serum (b). GraphPad values are presented as mean± SEM. ∗P < 0 05 versus the Sham group; #P < 0 05 compared to the liver
warm I/R group.
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Figure 5: SQV inhibits transcriptional expression of proinflammatory factors and enhances transcriptional expression of anti-inflammatory
factors in lung tissue after liver I/R. qPCRwas performed to check the expression of proinflammatory factors of IL-6, TNF-α, IL-1β, and iNOS
(a) and anti-inflammatory factor, IL-10 (b). GraphPad values were presented as means± SEM. ∗P < 0 05 versus the Sham group; #P < 0 05
compared to the liver warm I/R group.
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3.7. HMGB1 and P-JNK/P38 Markedly Attenuate in Lung
Tissue from TLR4-Targeted Mice. Previous studies suggested
that the TLR4 system may play a key role in HMGB1-
mediated hepatic I/R injury, and TLR4-targeted mice were
not affected by administration of rHMGB1 or neutralizing
antibodies to HMGB1 in liver I/R compared with TLR4-
intact mice [10]. So, we used TLR4−/− mice to explore
whether TLR4 would change the release of HMGB1 and
decrease the phosphorylation of JNK/P38 MAPKs in lung
tissues after liver I/R. Western blot analysis was performed
on lung lysates from TLR4−/− mice subjected to liver I/R or
not (Figure 7). Following 1h of warm ischemia and 6h
of reperfusion, HMGB1 protein expression demonstrated
no upregulation in the TLR4−/− mice compared to wild-
type mice (Figure 7(c)). Also, P38 (Figure 7(a)) and JNK
phosphorylation (Figure 7(b)) in TLR4−/− mice with liver
I/R were reduced than TLR4-intact mice.

3.8. P38 and JNK Inhibitors Can Attenuate the Lung Injury
Induced by Liver I/R. Finally, we investigated whether
P38/JNK MAPKs were downstream molecules of TLR4/
HMGB1-denpendent signaling pathways. Wild-type mice

with liver I/R pretreated with SB203580 or SP600125 were
taken as the experimental group. Lung H&E staining was
performed (Figures 8(a) and 8(b)). Results showed that both
inhibitors were markedly improved in the I/R+ SQV group
compared to the I/R group. Furthermore, we detected the
lung W/D ratio, total cell counts, and protein concentrations
in BALF to conform our expectations. Results demonstrated
that both inhibitors could relieve lung injury induced by liver
I/R (Figures 8(c) and 8(d)). Importantly, the HMGB1 pro-
tein level was not markedly decreased by the SB203580
(Figure 8(e)) and SP600125 (Figure 8(f)) treatment groups
in liver I/R. These results indicated that P38/JNK MAPKs
were located in the downstream of TLR4/HMGB1.

4. Discussion

Liver I/R was categorized into warm ischemia and cold ische-
mia; however, the two types share a common mechanism in
the disease etiology, including primarily local damage and
sequential systematic inflammatory cascade [28, 29] injury
to the remote organs [30], especially to the lung. This nonin-
fective inflammation in the lung activates various specific or
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Figure 6: SQV attenuates HMGB1 and TLR4 expressions and affects phosphorylation of MAPK signaling proteins in the lung tissue after
liver I/R. Western blot was used to reflect the protein levels of TLR4 (a) and HMGB1 (b); the phosphorylation of ERK, P38, and JNK were
also checked by immunoblotting analysis (d). qPCR was performed to confirm the expression level of TLR4 and HMGB1 (c). GraphPad
values are presented as means± SEM. ∗P < 0 05 versus the Sham group; #P < 0 05 compared to the liver warm I/R group.
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nonspecific signaling pathways. This in turn aggravates the
uncontrolled inflammatory responses, leading to systemic
inflammatory response syndrome (SIRS), acute lung injury/
acute respiratory distress syndrome (ALI/ARDS), and even
to death [31, 32].

HMGB1 is considered as a late mediator compared with
the release of other cytokines [33, 34], such as TNF and IL-
1, in response to lethality during sepsis as well as after necro-
sis, but not apoptosis or death. However, Tsung et al. have
exhibited that HMGB1 was upregulated early in the cultured
hepatocytes during hypoxia and warm hepatic I/R in vivo
[10]. TLR4 has been involved in I/R-induced inflammation
in several organs in addition to the liver [35]. Our recent
wok found that TLR4 combined with Wnt-induced secreted
protein-1 (WISP1) participated in liver I/R injury [9]. How-
ever, TLR4 combined with HMGB1 participates in I/R
injury, which is a traditional signaling pathway, and its
involvement in the liver I/R-induced lung inflammation
and injury is still unclear.

The purpose of our study was to test whether the first-
generation HIV protease inhibitor, SQV, could inhibit
TLR4/HMGB1 signaling to protect lung inflammation and

injury induced by liver I/R. The major and novel findings
of this investigation include the following: (a) SQV improved
the lung structure injury, edema, and permeability induced
by liver warm I/R; (b) SQV attenuated the expression of pro-
inflammatory factors, such as IL-6, TNF-α, IL-1β, and iNOS,
while upregulated the expression of anti-inflammatory
factor, IL-10; (c) SQV decreased the circulating and lung
BALF profactor levels, IL-6 and TNF-α, and enhanced the
antifactor level of IL-10; (d) MIP-2 and IκBα levels were reg-
ulated by SQV in the lung after liver I/R; in addition, the neu-
trophils displayed subtle changes, but macrophages as well as
the apoptotic cells in lung tissue after SQV treatment were
markedly decreased; (e) TLR4, HMGB1, and phosphorylated
P38/JNK MAPKs were markedly suppressed by SQV in the
lung tissues during liver I/R. Meanwhile, as HMGB1 can be
released from both apoptotic cells and necrotic cells after
liver IR, so, circulating HMGB1 levels were detected and sig-
nificantly increased after liver I/R, but reversed by SQV treat-
ment (Figure Supplement 1). These results provide evidence
that SQV could fight against liver I/R injury.

To further study the mechanism of TLR4/HMGB1-P38/
JNK MAPK pathway-mediated lung injury in hepatic I/R,
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Figure 7: HMGB1 and p-P38/JNK were markedly attenuated in the lung tissues in TLR4-targeted mice. Lung homogenates of all groups
extracted the proteins to check the phosphorylation of P38 (a) and JNK (b); HMGB1 level was also checked (c). GraphPad values are
presented as mean± SEM. ∗P < 0 05 versus the Sham group; #P < 0 05 compared to the liver warm I/R group.
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we used TLR4−/− mice as a vehicle to observe the changes of
HMGB1 and phosphorylated P38/JNK in the lung tissues in
liver I/R. Our results (Figure 7) showed that HMGB1 and
phosphorylation of MAPK were significantly decreased. Fur-
thermore, P38 and JNK inhibitors were administered in liver
I/R wild-type mice (Figure 8) to demonstrate that MAPKs
were present in the downstream inflammatory signaling
pathway of HMGB1, which affected the degree of lung dam-
age in liver I/R mice. Nevertheless, it is still unknown
whether upregulation of HMGB1 is released from the liver
through blood circulation or production by itself or both
together. Though SQV could exert anti-inflammatory effect
by the TLR4/HMGB1 MAPK signaling pathway, the in-
depth relation between them needs further exploration.

The receptor for advanced glycation end products (RAGEs)
[20, 36] is also known as the receptor for HMGB1, and it
plays a much important role in lung injury in liver I/R. In
contrast, the ERK phosphorylation showed differences from
P38 and JNK phosphorylation in liver I/R with/without SQV
treatment. Hence, it is considered as an interesting point and
needs further investigation.

5. Conclusion

Above all, our study demonstrated that SQV can attenuate
lung injury induced by liver warm I/R via the HMGB1- and
p38/JNK-mediated TLR-4-dependent signaling pathways.

Sham

I/R

DMSO P38 inhibitor

10

8
⁎

6

4

2

0

Lu
ng

 in
ju

ry
 sc

or
e

Sham
(DMSO)

I/R
(DMSO)

Sham
(SB203580)

I/R
(SB203580)

#

(a)

DMSO JNK inhibitor

Sham

I/R

10

8
⁎

6

4

2

0

Lu
ng

 in
ju

ry
 sc

or
e

Sham
(DMSO)

I/R
(DMSO)

Sham
(SP600125)

I/R
(SP600125)

#

(b)

10

8

⁎

6

4

2

0

Lu
ng

 W
/D

 w
ei

gh
t r

at
io

Sham
(DMSO)

I/R
(DMSO)

Sham
(SB203580)

I/R
(SB203580)

#

10

8
⁎

6

4

2

0To
ta

l c
el

l c
ou

nt
s (

10
5 

/m
L)

Sham
(DMSO)

I/R
(DMSO)

Sham
(SB203580)

I/R
(SB203580)

#

10

8

⁎

6

4

2

0

Pr
ot

ei
n 

co
nc

en
tr

at
io

n 
in

 B
A

LF
 (g

/L
)

Sham
(DMSO)

I/R
(DMSO)

Sham
(SB203580)

I/R
(SB203580)

#

(c)

10

8

⁎

6

4

2

0

Lu
ng

 W
/D

 w
ei

gh
t r

at
io

Sham
(DMSO)

I/R
(DMSO)

Sham
(SP600125)

I/R
(SP600125)

#

10

8

⁎

6

4

2

0To
ta

l c
el

l c
ou

nt
s (

10
5 

/m
L)

Sham
(DMSO)

I/R
(DMSO)

Sham
(SP600125)

I/R
(SP600125)

#

10

8
⁎

6

4

2

0

Pr
ot

ei
n 

co
nc

en
tr

at
io

n 
in

 B
A

LF
 (g

/L
)

Sham
(DMSO)

I/R
(DMSO)

Sham
(SP600125)

I/R
(SP600125)

#

(d)

HMBG1

�훽-Actin

SB203580DMSO SB203580DMSO
Sham I/R

(e)

HMBG1

�훽-Actin

SP600125DMSO
Sham I/R

SP600125DMSO

(f)

Figure 8: P38 and JNK inhibitors could make little difference on HMGB1 protein level in lung tissue but still relieve the lung injury induced
by liver I/R. H&E staining and histological alterations of lung parenchyma were shown (a, b). Degree of lung edema and permeability were
reflected byW/D ratio, total cell counts, and protein concentration in BALF (c, d). HMGB1 from both inhibitors with or without treatment of
lung tissue was also checked (e, f). GraphPad values are presented as mean± SEM. ∗P < 0 05 versus the Sham group; #P < 0 05 compared to
the liver warm I/R group.
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