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Abstract

A core tenet of precision oncology is the rational choice of drugs to interact with patient-specific 

biological targets of interest, but it is currently difficult for researchers to obtain consistent and 

well-supported target information for pharmaceutical drugs. We review current drug target 

interaction resources and critically assess how supporting evidence is handled. We introduce the 

concept of a unified Cancer Targetome to aggregate drug target interactions within an evidence-

based framework. We discuss current unmet needs and the implications for evidence based-clinical 

omics. The focus of this review is precision oncology but the discussion is highly relevant to 

targeted therapies of any area.
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Precision Oncology Requires Rigorous Drug Target Information

The advent of precision oncology (see Glossary) is often hallmarked with the development 

of the targeted therapy imatinib to treat BCR/ABL1 positive chronic myeloid leukemia 

(CML) [1]. Over time, the term precision oncology has evolved to include the use of genetic 

biomarkers to guide treatment selection as well as refer to the emerging paradigm of 

treating cancer in a mutation-centric manner over a histology-centric manner [2–4]. 
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However, the promise of precision oncology has been dimmed with the realization that only 

a small number of genetic variants in cancer are currently actionable with approved drugs 

[2,5]. Much of the work focused on expanding what is considered to be actionable in cancer 

genomics has focused on characterizing cancer-associated and driver genes and 

prioritization of these candidates for therapeutic intervention [6–9]. But any endeavor to 

expand the actionable space and thereby expand patient treatment options requires that we 

have a working knowledge of the interactions between drugs and their biological targets.

As illustrated in Figure 1 (Key Figure), drug-target interactions play an integral role in 

many different precision oncology applications. Clinical trials for cancer therapies are at the 

forefront of design and methodology development [10]. Newly emerging trial designs 

include umbrella trials, in which patients with the same type of cancer are assigned to 

different treatment arms according to key genetic variants [11,12], and basket trials, in which 

patients are assigned to treatment based on genetic variant but irrespective of cancer type 

[13,14]. Both of these trial designs rely on drug-target interaction information. 

Computational and predictive modeling approaches to predict drug response or anticipate 

adverse drug reactions require both primary and secondary target information for a complete 

picture [15–19]. Drug repurposing, or finding alternate uses for existing drugs often makes 

use of secondary or so-called “off-target” binding, where a drug binds to a target other than 

the one it was designed for [20,21]. Lastly, designing combinatorial drug treatment for a 

patient based on multiple genetic variants requires knowledge of drugs interacting with 

targets affected by each of those genetic variants [22]. Each of these examples requires 

knowledge of the biological targets that a drug may potentially interact with, but the specific 

context of a precision medicine application will dictate more or less rigorous requirements 

for the strength of supporting evidence for a drug-target interaction. Because this 

information can directly impact drug or target prioritization decisions and ultimately affect 

treatment options for patients, it is imperative that researchers have access to drug-target 

interaction information with clear literature and experimental evidence.

Historically, the scope of the approved drug-target interaction space has been difficult to pin 

down precisely. Since the first characterization of the druggable genome [23,24] nearly 

twenty years ago, estimates for the number of biological targets for approved drugs has 

varied both with the definition of target and scope of data collection [25–30]. The realization 

that many currently approved drugs display polypharmacological or non-selective behavior 

[31] has added another layer of complexity to characterizing the drug-target interaction 

space.

Current public informatics resources for drug-target interaction information do not reflect a 

strong and consistent understanding of cancer drug binding across multiple targets. While 

the broader drug-target interaction space in the public domain faces the limitation of sparsity 

(only so many drug-target interaction pairs have been tested), there is a plethora of drug-

target interaction and bioactivity information that is available but currently underutilized by 

the precision oncology research community. Hurdles to using this information include the 

need for aggregation across resources, unclear reference lineage, and differing types of 

supporting evidence. These challenges pose significant barriers to researchers looking to 
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critically assess existing target annotations for a particular drug and this task quickly 

becomes intractable as the number of drugs of interest increases.

Current Resources for Drug-Target Interactions

Here, we briefly review resources and databases for drug-target interaction information 

(Table 1). Current resources for drug-target interaction data can be broadly categorized into 

two types, drug-centric and bioactivity-centric resources. Resources such as DrugBank, 

Therapeutic Targets Database, and KEGG Drug contain drug-target annotations supported 

by literature evidence and are subject to manual curation, but they currently do not 

incorporate experimental binding activity evidence [32–36]. Other resources, such as the 

International Union of Basic and Clinical Pharmacology/British Pharmacological Society 

(IUPHAR/BPS) Guide to Pharmacology, include manually curated experimental binding 

activities with drug-target annotations [37]. The Drug Gene Interaction Database aggregates 

drug-target annotation across multiple sources, allowing the user to see the parent sources 

and total literature reference count per drug-target interaction, but it does not currently 

include binding activity evidence [38]. Other resources that provide experimental binding 

evidence for target annotations for approved drugs and/or clinical trial drugs include 

DrugCentral, Pharos, SuperTarget, and STITCH [9,39–41]. The Open Targets is a recently 

released academic-industry collaborative resource that includes drug-target interaction 

information, but it is currently more focused on enabling target validation efforts [42]. While 

all of these resources allow for multiple targets per drug, differing standards for target 

inclusion can result in discrepant target annotation across resources [43].

Bioactivity databases such as ChEMBL, BindingDB, and PubChem Bioassay aggregate 

chemical compound experimental binding activity information through manual extraction or 

text mining from the literature and other bioactivity databases [44–48]. These resources offer 

different coverage with respect to compounds, targets, and interactions due to differences in 

data scope, collection methods, and curation [49–51].

While bioactivity databases offer a wealth of potential compound-target information due to 

large scale collection of high throughput screening results [52], they do not directly provide 

drug-target interaction annotation, and it is therefore up to the user to determine an 

appropriate binding activity threshold when collecting and assessing experimental binding 

activity data. This presents its own challenge, as the choice of an appropriate activity 

threshold depends on the biological context of the problem. For determining bioactivity of 

compounds, the threshold of 10,000nM (10μM) is often used, but a much stricter threshold 

of 100nM or under is more appropriate when requiring interactions to be relevant to drug 

binding [31,53]. Paolini et al. required the best activity across assay types (IC50, EC50, Ki, 

and Kd) to be less than 10,000nM in their analysis of global pharmacological space [31]. 

Similarly, Koutsakas et al. used a bioactivity threshold of 10,000nM to obtain a balance 

between chemical space coverage and the inclusion of weakly active compounds [54]. This 

bioactivity threshold has been used by others in target prediction methods [55,56], or 

analysis of drug-target annotations [57], while other groups have used more conservative 

bioactivity thresholds across assay types (1,000nM) [58] in target prediction or used only 

single assay type (KD <3,000nM) in calculating selectivity measures [59]. Finan et al. used 
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a threshold of 100nM on ChEMBL bioactivity data (across all assay types) to supplement 

target annotation found in company pipelines and the literature for approved and clinical 

trial drugs [60]. The Pharos platform, which presents data from the Target Central Resource 

Database (and uses a Target Development Level scheme to group targets based on level of 

study and association with small molecule bioactivity), uses bioactivity thresholds based on 

target family specific cut-offs [9].

The Need for a Unified Cancer Targetome

While there are many resources for drug-target interaction and compound bioactivity data, it 

is still an enormous task to collect, assess, potentially reconcile, and make informed 

decisions about putative drug-target interactions. This challenge is illustrated by a recent 

comprehensive analysis of all FDA-approved drugs, which curated all efficacy drug targets 

(as defined by Santos et al.) through an extensive search of both prescribing information and 

the scientific literature [30]. There is a critical need for aggregation of drug-target 

information in a framework that allows for assessment of the supporting evidence for each 

interaction.

We aggregate drug-target interaction and bioactivity data for FDA-approved antineoplastic 

drugs from four publicly available resources and introduce a framework for categorizing the 

type of evidence supporting each interaction to create a unified Cancer Targetome. Briefly, 

we selected these four resources in an effort to obtain representative coverage of the drug-

target interaction space that is both publicly available and widely used by the research 

community. DrugBank is a popular resource for drug and drug-target data that is used 

widely by pharmacy and medicinal researchers, clinicians, educators, and the public [33]. 

Therapeutic Targets Database offers extended coverage for biological targets [61]. IUPHAR 

utilizes expert manual curation and rigorously requires experimental binding evidence from 

a primary source for all drug-target interactions [37]. However, IUPHAR typically provides 

only one experimental binding assay value for each drug-target interaction, so we also 

included an aggregated bioactivity database (BindingDB) in our collection efforts for the 

Cancer Targetome. BindingDB provides a wide coverage of binding assay data by 

aggregating across the scientific literature as well as from other bioactivity resources such as 

ChEMBL and PubChem [45]. Across four resources (DrugBank, Therapeutic Targets 

Database, IUPHAR, and BindingDB), we retrieved a total of 137 drugs and 658 targets 

participating in a total of 6385 unique drug-target relationships. We emphasize that the 

number of unique drug-target relationships should not be regarded as an estimate of actual 

drug-target binding space, as many of these relationships are supported experimental binding 

values that reflect very weak binding. DrugBank provided the highest coverage of drugs 

participating in drug-target relationships while BindingDB provided the highest coverage of 

targets participating in drug-target relationships (Supp. Figure 1). BindingDB also provided 

the highest coverage of unique drug-target relationships, which can be interpreted as 

experimentally tested drug-target interactions but not necessarily “true” drug-target binding 

events.

To assess the strength of supporting evidence for collected drug-target interactions, we 

develop a three level evidence scale. Evidence levels I, II, or III are assigned to drug target 
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relationships retrieved from a database with no additional supporting information, with 

supporting literature information, or with supporting literature information and at least one 

reported experimental binding value, respectively. Experimental binding values may be 

reported as Kd, Ki, IC50, or EC50 assay values. Because drug-target information is 

aggregated across multiple databases, each unique drug-target relationship may have 

different types of supporting evidence reported across all four databases and therefore can be 

associated with multiple evidence levels. As we require increasing levels of supporting 

evidence for drug-target relationships, we see an overall decrease in coverage of drugs, 

targets, and unique relationships as expected (Figure 2). Within the Level III evidence tier, 

we can further threshold according to the numeric value of reported experimental binding 

activities. This allows us to triage experimentally tested drug-target relationships to those 

that have been reported with a binding value that is potentially relevant for drug and target 

binding having clinical impact.

We demonstrate how the Cancer Targetome framework allows for filtering of aggregated 

drug-target relationships to those meeting particular evidence criteria. For instance, to obtain 

an estimate of drug-target interaction space for which there is strong experimental evidence 

to support nanomolar binding interactions, e.g. relevant to clinically achievable doses for a 

given drug, we can require Level III evidence and further threshold to reported binding 

affinities less than 100nM, which produces a total of 529 unique drug-target interactions. 

Interestingly, of these 529 putative drug-target binding interactions, the majority are reported 

by only one database, with only a quarter of these putative binding interactions reported by 

two or more databases (Supp. Figure 2A). Within this set of putative interactions, we can 

also examine the “best” or minimum experimental binding affinity value reported for each 

unique drug-target interaction and the database that is responsible for contributing this value. 

While the majority of such minimum assay values are contributed by BindingDB, IUPHAR 

contributes the minimum assay value for approximately 50 interactions (over 10%) (Supp. 

Figure 2B). This example highlights the benefit of aggregation across multiple sources to 

provide the research community with a more comprehensive resource for precision 

oncology.

Protein Kinase Inhibitors Are Highly Experimentally Tested Against Targets

The majority of antineoplastic drugs have been experimentally tested against less than 

twenty protein targets. This sparsity of the publicly available drug-target interaction space 

has been discussed by others [62] and presents a key limitation for efforts by the research 

community to assess drug promiscuity, or binding to “secondary” targets. However, a small 

set of drugs (all protein kinase inhibitors) have been experimentally tested with more than 

three hundred targets (Supp. Figure 3), providing us with several examples of drugs with 

extensive binding data with which we may assess potential target interactions and provide 

recommendations for future drug-target interaction curation efforts.

This meets expectations given the enormous resource commitment to targeting kinases in 

oncology following the break-through drug imatinib [63]. For instance, Davis et al. 
performed an extensive and comprehensive analysis of kinase inhibitor selectivity, including 

both approved and investigational stage drugs [59,64]. Experimental binding results for 
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select approved cancer drugs from their analysis are included in our aggregated resource due 

to our data collection from the bioactivity database BindingDB. Among this set of highly 

tested kinase inhibitors, we see variation in the number of interacting targets for each drug 

(Supp. Figure 4). As we threshold the experimental binding evidence to stronger binding 

affinities (10,000nM, 1000nM, 100nM), we see that some drugs have a small number of 

targets meeting strong binding affinity criteria, such as afatinib, imatinib, and lapatinib, 

while other drugs have a seemingly high number of targets, such as bosutinib, crizotinib, 

dasatinib, and sunitinib. Due to the high number of experimentally tested targets for this 

subset of drugs, we can perform deeper data quality analysis and in particular investigate the 

contribution of different experimental binding activity types.

Imatinib and Vandetanib Use Cases

We highlight two use cases for the drugs imatinib and vandetanib. Both of these drugs are 

protein kinase inhibitors and have extensive binding activity information available across a 

large number of targets. Using the Cancer Targetome evidence framework, we assess the 

experimental evidence supporting target binding for imatinib and vandetanib at the strict 

threshold of 100nM. In Figure 3A we show all targets for imatinib with experimental 

binding evidence under 100nM. While there are a total of fourteen targets with assay 

evidence under 100nM, tyrosine-protein kinase ABL1 (ABL1), the canonical target of 

imatinib [1,63,65] notably has low nanomolar assay evidence across all four binding assay 

types (KD, Ki, IC50, and EC50). For KD, Ki, and IC50 assay evidence, ABL1 has multiple 

low nanomolar assay values, which lends more confidence to ABL1 being a biological target 

of the drug imatinib. Furthermore, for each of the four binding assay types, ABL1 has either 

the lowest or second-lowest assay value for target interactions with imatinib (Figure 3A). 

The case of imatinib serves as an example where evidence of the canonical “primary” target 

can be seen in experimental binding data. In the cases where a target other than ABL1 

occupies the best or close to the best assay value (epithelial discoidin domain-containing 

receptor 1 (DDR1), platelet-derived growth factor alpha (PDGFRA), and platelet-derived 

growth factor beta (PDGFRB)), there is binding assay support from only one or two of the 

binding assay types rather than all four binding types, as in the case of ABL1.

In Figure 3B we show all targets for vandetanib with experimental binding evidence under 

100nM. In total, there are twenty-six unique targets meeting these criteria but we see a 

striking discordance in the type of binding assay support available for these targets. 

Experimental KD values indicate that tyrosine-protein kinase ABL1 (ABL1), mast/stem cell 

growth factor receptor Kit (KIT), receptor-interacting serine/threonine-protein kinase 2 

(RIPK2), epidermal growth factor receptor (EGFR), and proto-oncogene tyrosine-protein 

kinase receptor Ret (RET) have very low nanomolar experimental evidence. Experimental 

IC50 values indicate that vascular endothelial growth factor receptor 2 (KDR or VEGFR2), 

EGFR, vascular endothelial growth factor receptor 1 (FLT1), and proto-oncogene tyrosine-

protein kinase Src (SRC) all have evidence for interaction at very low nanomolar evidence. 

According to KD assay evidence, EGFR is strongly supported as a target (multiple low 

nanomolar assay values), while according to IC50 assay evidence, KDR is strongly 

supported as a target. For vandetanib, there were no EC50 binding assay values available and 

no Ki binding assay values under 100,000nM available.
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Interestingly, vandetanib is considered to be a dual KDR and EGFR inhibitor, or in some 

cases a multiple kinase inhibitor for EGFR, KDR, and RET [63,66,67]. A literature search 

reveals that while originally designed to inhibit KDR, vandetanib exhibited additional 

activity with EGFR in preliminary lead candidate stages [67]. These results prompted further 

testing which established vandetanib as inhibiting EGFR in mouse cells, human cancer cells, 

and in seven human cell lines lacking the target KDR [68]. This example highlights the rich 

contextual information for drug-target interactions that is currently not captured in drug-

target interaction or bioactivity resources.

Next Steps for Drug-Target Interaction Evidence Curation

A unified Cancer Targetome framework provides researchers with access to cancer drug-

target relationships from the public domain that are accompanied by transparent literature 

and experimental binding evidence lineage. The proposed evidence framework allows 

researchers to prioritize drug-target relationships according to the evidence criteria that are 

best suited to their research aims. Transparent and well-evidenced drug-target interactions 

will enable higher confidence and more informed decision making in the prioritization of 

drugs and targets in precision oncology efforts.

However, examining the factors needed for the creation of the Cancer Targetome reveals 

critical unmet needs. In particular, the vandetanib use case highlights the need for binding 

assay metadata. While we were able to retrieve and assess experimental binding affinities 

between vandetanib and many biological targets, we must also consider the information that 

is not captured in this process. Namely, we are currently not able to capture metadata such as 

the cell line used in experimental binding assays, tumor or non-tumor status of the cell line, 

and whether the cell line is derived from patient cells. The availability of this metadata 

would allow for further tiering of drug-target binding evidence to aid target prioritization. 

For instance, the category we have proposed for experimental binding evidence (Level III) 

could be further subdivided into tiers indicating whether the interaction has been tested in 

non-cancer cells, cancer cells, or cells that are patient-derived. Further tiering could be used 

to capture metadata indicating whether other targets were knocked down or remained 

functional during the experimental binding assay for the target of interest. This metadata is 

invaluable to prioritization of drug-target binding information in precision oncology, where 

it is critical to know whether experimental evidence was obtained using cancer or non-

cancer cell lines.

Mapping Drug-Target Interactions to Pathways

Given the dysregulation that can occur in multiple pathways in cancer, there has been 

increasing attention and effort dedicated to targeting cellular pathways, particularly through 

the use of combination drug therapies [22,69]. We conducted a simple pathway analysis to 

assess the targeted pathway coverage of approved cancer drugs. Briefly, we mapped all 

targets participating in drug-target relationships to Reactome pathways using increasingly 

strict supporting evidence requirements. Reactome is a comprehensive open source pathway 

resource widely used by the research community [70]. Cellular pathways in Reactome are 

organized in a hierarchical manner, allowing for smooth pathway navigation and improved 
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integration with external data resources. We designate those biological pathways containing 

one or more drug targets as “light” or potentially targetable by approved antineoplastic 

drugs. Conversely, biological pathways containing no drug targets are “dark” or currently 

out of scope for approved antineoplastic drugs. While a considerable portion of pathways 

(approximately 60%) are light to antineoplastic drugs when we consider any type of 

supporting evidence for drug-target interactions, this should be considered the most liberal 

estimate of potentially targetable pathways (Table 2). A more reasonable estimate is 

obtained when we require drug-target relationships to be supported by experimental binding 

evidence with a reported assay value of less than 100nM. This estimate indicates that there is 

strong evidence for approved antineoplastic drugs targeting approximately 39% of Reactome 

pathways. Depending upon distribution of key molecular aberrations for a given patient 

among the light and dark pathways, the evidence based curation as presented and envisioned 

herein will refine selection of therapeutics and in some cases could dramatically limit 

therapeutic options. We highlight the NOTCH Signaling pathway in Box 1, which contains 

several dark child pathways. Dark pathways that are currently out of scope of FDA-approved 

cancer drugs present areas for future cancer therapeutics development.

Concluding Remarks

We foresee the possibility that these analyses will allow weighting the level, extent and type 

of evidence to guide prioritization of drugs moving to the clinic, for better synchronization 

of preclinical promise and patient benefit. Recently, attention has been drawn to the need for 

evidence quantification of patient-specific alterations in tumors in order to guide decisions 

about actionable therapies [5]. A similar characterization of evidence is also needed for 

drug-target and drug-pathway interactions if we hope to unite drug-target information with 

patient-specific information and develop targeted therapies (Box 2 and Outstanding 

Questions). In particular, evidence characterization frameworks accommodate the inherent 

uncertainty in the targetome space due to multiple types of supporting evidence.

Given the recent attention and dedication of resources to investigate understudied areas of 

the druggable genome by the NIH Illuminating the Druggable Genome Consortium, we 

believe this work will be of current interest to the larger precision medicine community. This 

has implications for other therapeutics areas of interest with respect to guided investigation 

into understudied and underdeveloped therapeutic drugs, targets, and pathways.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Glossary

biomarker
a biological indicator used here to refer to presence of a particular genetic mutation

Cancer Targetome
a unified concept for all target annotations of FDA-approved cancer drugs aggregated across 

the public domain and encompassing multiple types of supporting evidence

combinatorial drug treatment
drug regimen composed of more than one drug

druggable genome
subset of human genome that encodes proteins targeted by pharmaceutical drugs

drug-target interaction
a physical binding relationship between a drug molecule and a target entity

polypharmacology
disposition of drugs to bind to more than one biological target

precision oncology
treatment rationale that aims to match patients with therapies based on their genetic 

information for improved outcome

target
biological entity of interest whose activity inside cells is modulated by drug

targeted therapy
drug that interacts with a particular biological entity often by design
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Trends

• Precision oncology, which aims to rationally select treatments for patients 

based on their genetic information, has a key dependency on drug to target 

annotation that is often overlooked.

• While “patient-specific” treatment broadly encompasses all aspects of a 

patient’s health, such as additional diagnoses, other prescribed medications, 

or even adverse effects experienced in response to therapy, our scope for this 

article is focused narrowly on use of the term “patient-specific” to mean those 

biological targets specific to a patient’s cancerous cells that may be 

modulated to have a therapeutic effect.

• Drug-target annotation is often heavily biased towards primary targets with 

limited or difficult to find information on secondary targets.

• Resources for drug-target interactions differ in coverage, consistency, and 

evidence curation which makes it challenging for researchers to obtain 

credible and reproducible drug to target annotation.
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Outstanding Questions

• How will we prioritize drug-target annotations in a way that reflects weight of 

supporting experimental evidence, i.e. both qualitative and quantitative 

evidence?

• What is the best way to handle discordant binding assay values for the same 

drug-target interaction? Additional assay metadata such as cell line, cancer 

status, and target knockdowns can provide critical context that would affect 

prioritization of drug-target annotations within precision oncology pipelines. 

In the absence of this data, how do we best incorporate this uncertainty?

• How well does the public domain drug-target interaction space approximate 

the fully tested drug-target interaction space? We must consider that publicly 

available data is incomplete as much of the tested drug-target interaction 

space is proprietary.

• How will our knowledge base change as we add incoming information on 

promising new therapies, for instance from targeted immune checkpoint 

inhibitors? While our data collection included immune checkpoint inhibitors 

such as ipilimumab and nivolumab, there was limited target information 

available for these drugs from the public resources used here. As immune 

checkpoint inhibitor therapy is showing considerable promise, we would 

expect more publicly available data for these drugs is on the horizon and will 

soon be accessible to drug-target interaction databases.

• How do we develop similar evidence frameworks for drug-target annotations 

in other therapeutic areas? Given that precision oncology is at the forefront of 

targeted therapy development, we would expect this domain to be one of the 

best characterized areas. Will the heterogeneity in annotation and data 

availability prevent the ultimate promise of drug repurposing across 

therapeutic domains?
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Box 1

Pathway Example: NOTCH Signaling

Dark pathways are of particular interest for future drug discovery and development 

efforts as they are currently outside the scope of approved cancer agents. We highlight the 

NOTCH signaling pathway, which is light at the topmost hierarchical level but contains 

several dark child pathways (Figure I). Dysregulated NOTCH signaling has been 

implicated in breast, prostate, lung, head and neck, and central nervous system cancers as 

well as T-cell leukemia and has thus been identified as a therapeutic target of interest 

[71–74]. Three of the five child pathways of NOTCH signaling are currently dark to 

cancer drugs (Signaling by NOTCH2, Signaling by NOTCH3, and Signaling by 

NOTCH4). We highlight the light child pathway Pre-NOTCH Expression and Processing 

in the figure inset, which shows that there are two drugs potentially interacting with two 

targets in this pathway. Arsenic trioxide putatively interacts with transcription factor 

AP-1 (JUN, UniProt P05412) and G1/S-specific cyclin-D1 (CCND1, UniProt P24385), 

while vinblastine sulfate putatively interacts with JUN. However, all three of these drug-

target relationships have Level II evidence only, as there is no accompanying 

experimental binding evidence. Therefore, if we assess light pathway coverage while 

requiring at least experimental binding evidence for drug-target interactions, this nested 

pathway goes dark. We use this example to illustrate that the classification of a particular 

pathway as light or dark to approved cancer drugs is directly impacted by the strength of 

supporting evidence for the drug-target interactions involving the pathway of interest.
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Figure I. Signaling by NOTCH Pathway
Signaling by NOTCH is a light or potentially targetable pathway when considering drug-

target relationships supported by any level of evidence. Main Figure. Of the five child 

pathways in Signaling by NOTCH, two are light (gold) and three are dark (blue) to 

current approved antineoplastic drugs. Inset. The light child pathway Pre-NOTCH 

Expression and Processing contains two targets, JUN and CCND1 that are putatively 

targeted by antineoplastic drugs. This pathway is light when including drug-target 

interactions of Level II evidence, but goes dark when Level III evidence is required.
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Box 2

Mapping Evidence Levels to Precision Oncology Applications

The appropriate level of evidence to require when including drug-target interactions in 

precision oncology applications will be heavily context-dependent. In Figure 1, we 

detailed several examples of precision oncology applications that have a key dependency 

on drug-target interactions. For applications that are exploratory or hypothesis-generating 

in nature, such as computational and predictive modeling (Figure 1 Panel B), the use of 

drug-target interactions supported by Level I or Level II will often be appropriate. Such 

applications would benefit from casting a wider net of drug-target interactions so that all 

options can be explored. Similarly, exploratory work geared towards drug repurposing 

(Figure 1 Panel C), such as the inclusion of FDA-approved drugs on a screening panel for 

an indication other than the drug’s primary one, may also benefit from liberal evidence 

requirements that allow for investigation of all possibly relevant drug-target interactions. 

While additional Level III experimental binding evidence would lend support to these 

interactions being potentially relevant for human physiology, this will always be 

necessary at the discovery stage. Applications involving the planned use of a drug in a 

patient, however, will require (at a minimum) rigorous Level III experimental binding 

assay evidence. These applications could include off-label use of a drug, design of 

combination therapies (Figure 1 Panel D), or inclusion of an already-approved drug in a 

clinical trial for an alternate indication (Figure 1 Panel A). In these examples, choice of 

therapy may be driven by a patient’s particular molecular aberrations if there is 

substantial evidence that those aberrations can be targeted by an existing pharmaceutical 

therapy. The requirements for evidence supporting such drug-target interactions must be 

very rigorous - meaning very low nanomolar binding evidence for a drug-target 

interaction, ideally across binding assay types and from multiple, independent sources. 

As mentioned previously, experimental metadata (such as cell line information) will also 

be necessary for rigorous evaluation and prioritization of drug-target interactions. For 

clinical applications of drugs in patients, we emphasize that drug-target interaction 

evidence (even rigorously supported evidence) is intended to supplement but never to 

replace an oncologist’s or tumor board’s expertise and recommendations. We envision 

the use of this information as one line of evidence among the many that are evaluated by 

medical experts when deciding the best course of action for a patient.
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Figure 1. Precision Oncology Applications Rely on Drug-Target Interaction Information. A. 
Umbrella Clinical Trial with Multiple Treatment Arms
Patients are assigned to different treatment arms in clinical trial according to their genetic 

alterations. Drug treatments in each arm are determined according to interactions between 

drugs and priority genomic variants in tumor. B. Predictive Modeling e.g. Predicting Drug 
Response or Adverse Drug Reactions. Patient genomic data is used with in silico drug 

treatment simulation to predict which patients will respond beneficially (or adversely) to 

particular drug treatments. C. Repurposing Drug for Alternate Therapeutic Use. Drug 

binding information at additional or “secondary” targets can be used to repurpose a drug for 

a secondary therapeutic indication. D. Combinatorial Drug Treatment. A combined 

treatment of drugs is chosen for a patient using his or her genetic variant information and 

prioritization of variant-related targets according to known interactions with existing drugs.
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Figure 2. Cancer Targetome Aggregated Counts for Drugs, Targets, and Unique Interactions by 
Evidence Level
Drugs are FDA-approved antineoplastic drugs (total 137), targets are unique human UniProt 

Accession IDs (total 658) and interactions are unique relationships (total 6385) between one 

drug and one target. Counts are colored by supporting evidence level: Level I indicates 

database annotation only, Level II indicates database and literature reference annotation, 

Level III indicates database, literature, and experimental binding value annotation. Level III 

Exact refers to annotation of a binding value with an exact (“=”) binding value reported, 

rather than “<” or “>”. Thresholds on Level III binding activities were applied at 10,000nM, 

1,000nM, and 100nM.
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Figure 3. A. Imatinib Target Interactions Under 100nM. Colored by Target, bin width=1nM
Imatinib has experimental binding evidence for fourteen different targets under 100nM. 

ABL1 stands out as it has many low nanomolar assay results and it occupies the best or 

second best assay value for each binding assay type. B. Vandetanib Target Interactions 
Under 100nM. Colored by Target, bin width=1nM. Vandetanib has experimental binding 

evidence for interacting with twenty-six different targets under 100nM. KD and IC50 assay 

evidence provide strong support for different targets for vandetanib (EGFR and KDR, 

respectively). Vandetanib does not have any targets supported by EC50 assay evidence and 

does not have any targets supported by <100,000nM Ki assay evidence.
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Table 2
Light Pathways of the Cancer Targetome, by Supporting Evidence Level

All unique targets involved in drug-target relationships (supported by indicated evidence levels) were mapped 

to Reactome pathways. The number of unique targets within the set of drug-target relationships is shown in the 

second column. A pathway is considered light if it contains at least one drug target.

Evidence Level Required Number of Unique 
Targets

Number of Light 
Pathways

Total Number of 
Pathways

Percent Light Pathways

Levels I, II, III 658 1214 2008 60.46%

Levels II, III* 651 1213 2008 60.40 %

Level III 558 1139 2008 56.72 %

Level III Exact 511 1091 2008 54.33 %

Level III Exact, Threshold <100nM 246 790 2008 39.34 %
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