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Abstract

A core tenet of precision oncology is the rational choice of drugs to interact with patient-specific
biological targets of interest, but it is currently difficult for researchers to obtain consistent and
well-supported target information for pharmaceutical drugs. We review current drug target
interaction resources and critically assess how supporting evidence is handled. We introduce the
concept of a unified Cancer Targetome to aggregate drug target interactions within an evidence-
based framework. We discuss current unmet needs and the implications for evidence based-clinical
omics. The focus of this review is precision oncology but the discussion is highly relevant to
targeted therapies of any area.
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Precision Oncology Requires Rigorous Drug Target Information

The advent of precision oncology (see Glossary) is often hallmarked with the development
of the targeted therapy imatinib to treat BCR/ABL 1 positive chronic myeloid leukemia
(CML) [1]. Over time, the term precision oncology has evolved to include the use of genetic
biomarkers to guide treatment selection as well as refer to the emerging paradigm of
treating cancer in a mutation-centric manner over a histology-centric manner [2—4].
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However, the promise of precision oncology has been dimmed with the realization that only
a small number of genetic variants in cancer are currently actionable with approved drugs
[2,5]. Much of the work focused on expanding what is considered to be actionable in cancer
genomics has focused on characterizing cancer-associated and driver genes and
prioritization of these candidates for therapeutic intervention [6-9]. But any endeavor to
expand the actionable space and thereby expand patient treatment options requires that we
have a working knowledge of the interactions between drugs and their biological targets.

As illustrated in Figure 1 (Key Figure), drug-target interactions play an integral role in
many different precision oncology applications. Clinical trials for cancer therapies are at the
forefront of design and methodology development [10]. Newly emerging trial designs
include umbrella trials, in which patients with the same type of cancer are assigned to
different treatment arms according to key genetic variants [11,12], and basket trials, in which
patients are assigned to treatment based on genetic variant but irrespective of cancer type
[13,14]. Both of these trial designs rely on drug-target interaction information.
Computational and predictive modeling approaches to predict drug response or anticipate
adverse drug reactions require both primary and secondary target information for a complete
picture [15-19]. Drug repurposing, or finding alternate uses for existing drugs often makes
use of secondary or so-called “off-target” binding, where a drug binds to a target other than
the one it was designed for [20,21]. Lastly, designing combinatorial drug treatment for a
patient based on multiple genetic variants requires knowledge of drugs interacting with
targets affected by each of those genetic variants [22]. Each of these examples requires
knowledge of the biological targets that a drug may potentially interact with, but the specific
context of a precision medicine application will dictate more or less rigorous requirements
for the strength of supporting evidence for a drug-target interaction. Because this
information can directly impact drug or target prioritization decisions and ultimately affect
treatment options for patients, it is imperative that researchers have access to drug-target
interaction information with clear literature and experimental evidence.

Historically, the scope of the approved drug-target interaction space has been difficult to pin
down precisely. Since the first characterization of the druggable genome [23,24] nearly
twenty years ago, estimates for the number of biological targets for approved drugs has
varied both with the definition of target and scope of data collection [25-30]. The realization
that many currently approved drugs display polypharmacological or non-selective behavior
[31] has added another layer of complexity to characterizing the drug-target interaction
space.

Current public informatics resources for drug-target interaction information do not reflect a
strong and consistent understanding of cancer drug binding across multiple targets. While
the broader drug-target interaction space in the public domain faces the limitation of sparsity
(only so many drug-target interaction pairs have been tested), there is a plethora of drug-
target interaction and bioactivity information that is available but currently underutilized by
the precision oncology research community. Hurdles to using this information include the
need for aggregation across resources, unclear reference lineage, and differing types of
supporting evidence. These challenges pose significant barriers to researchers looking to
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critically assess existing target annotations for a particular drug and this task quickly
becomes intractable as the number of drugs of interest increases.

Current Resources for Drug-Target Interactions

Here, we briefly review resources and databases for drug-target interaction information
(Table 1). Current resources for drug-target interaction data can be broadly categorized into
two types, drug-centric and bioactivity-centric resources. Resources such as DrugBank,
Therapeutic Targets Database, and KEGG Drug contain drug-target annotations supported
by literature evidence and are subject to manual curation, but they currently do not
incorporate experimental binding activity evidence [32-36]. Other resources, such as the
International Union of Basic and Clinical Pharmacology/British Pharmacological Society
(ITUPHAR/BPS) Guide to Pharmacology, include manually curated experimental binding
activities with drug-target annotations [37]. The Drug Gene Interaction Database aggregates
drug-target annotation across multiple sources, allowing the user to see the parent sources
and total literature reference count per drug-target interaction, but it does not currently
include binding activity evidence [38]. Other resources that provide experimental binding
evidence for target annotations for approved drugs and/or clinical trial drugs include
DrugCentral, Pharos, SuperTarget, and STITCH [9,39-41]. The Open Targets is a recently
released academic-industry collaborative resource that includes drug-target interaction
information, but it is currently more focused on enabling target validation efforts [42]. While
all of these resources allow for multiple targets per drug, differing standards for target
inclusion can result in discrepant target annotation across resources [43].

Bioactivity databases such as ChEMBL, BindingDB, and PubChem Bioassay aggregate
chemical compound experimental binding activity information through manual extraction or
text mining from the literature and other bioactivity databases [44-48]. These resources offer
different coverage with respect to compounds, targets, and interactions due to differences in
data scope, collection methods, and curation [49-51].

While bioactivity databases offer a wealth of potential compound-target information due to
large scale collection of high throughput screening results [52], they do not directly provide
drug-target interaction annotation, and it is therefore up to the user to determine an
appropriate binding activity threshold when collecting and assessing experimental binding
activity data. This presents its own challenge, as the choice of an appropriate activity
threshold depends on the biological context of the problem. For determining bioactivity of
compounds, the threshold of 10,000nM (10uM) is often used, but a much stricter threshold
of 100nM or under is more appropriate when requiring interactions to be relevant to drug
binding [31,53]. Paolini et al. required the best activity across assay types (ICsg, ECsg, Ki,
and Kg) to be less than 10,000nM in their analysis of global pharmacological space [31].
Similarly, Koutsakas ef a/. used a bioactivity threshold of 10,000nM to obtain a balance
between chemical space coverage and the inclusion of weakly active compounds [54]. This
bioactivity threshold has been used by others in target prediction methods [55,56], or
analysis of drug-target annotations [57], while other groups have used more conservative
bioactivity thresholds across assay types (1,000nM) [58] in target prediction or used only
single assay type (KD <3,000nM) in calculating selectivity measures [59]. Finan et al. used
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a threshold of 100nM on ChEMBL bioactivity data (across all assay types) to supplement
target annotation found in company pipelines and the literature for approved and clinical
trial drugs [60]. The Pharos platform, which presents data from the Target Central Resource
Database (and uses a Target Development Level scheme to group targets based on level of
study and association with small molecule bioactivity), uses bioactivity thresholds based on
target family specific cut-offs [9].

The Need for a Unified Cancer Targetome

While there are many resources for drug-target interaction and compound bioactivity data, it
is still an enormous task to collect, assess, potentially reconcile, and make informed
decisions about putative drug-target interactions. This challenge is illustrated by a recent
comprehensive analysis of all FDA-approved drugs, which curated all efficacy drug targets
(as defined by Santos et al.) through an extensive search of both prescribing information and
the scientific literature [30]. There is a critical need for aggregation of drug-target
information in a framework that allows for assessment of the supporting evidence for each
interaction.

We aggregate drug-target interaction and bioactivity data for FDA-approved antineoplastic
drugs from four publicly available resources and introduce a framework for categorizing the
type of evidence supporting each interaction to create a unified Cancer Targetome. Briefly,
we selected these four resources in an effort to obtain representative coverage of the drug-
target interaction space that is both publicly available and widely used by the research
community. DrugBank is a popular resource for drug and drug-target data that is used
widely by pharmacy and medicinal researchers, clinicians, educators, and the public [33].
Therapeutic Targets Database offers extended coverage for biological targets [61]. IUPHAR
utilizes expert manual curation and rigorously requires experimental binding evidence from
a primary source for all drug-target interactions [37]. However, IUPHAR typically provides
only one experimental binding assay value for each drug-target interaction, so we also
included an aggregated bioactivity database (BindingDB) in our collection efforts for the
Cancer Targetome. BindingDB provides a wide coverage of binding assay data by
aggregating across the scientific literature as well as from other bioactivity resources such as
ChEMBL and PubChem [45]. Across four resources (DrugBank, Therapeutic Targets
Database, IUPHAR, and BindingDB), we retrieved a total of 137 drugs and 658 targets
participating in a total of 6385 unique drug-target relationships. We emphasize that the
number of unique drug-target relationships should not be regarded as an estimate of actual
drug-target binding space, as many of these relationships are supported experimental binding
values that reflect very weak binding. DrugBank provided the highest coverage of drugs
participating in drug-target relationships while BindingDB provided the highest coverage of
targets participating in drug-target relationships (Supp. Figure 1). BindingDB also provided
the highest coverage of unique drug-target relationships, which can be interpreted as
experimentally tested drug-target interactions but not necessarily “true” drug-target binding
events.

To assess the strength of supporting evidence for collected drug-target interactions, we
develop a three level evidence scale. Evidence levels I, 11, or 11 are assigned to drug target
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relationships retrieved from a database with no additional supporting information, with
supporting literature information, or with supporting literature information and at least one
reported experimental binding value, respectively. Experimental binding values may be
reported as Kq, K, ICsq, or ECgq assay values. Because drug-target information is
aggregated across multiple databases, each unique drug-target relationship may have
different types of supporting evidence reported across all four databases and therefore can be
associated with multiple evidence levels. As we require increasing levels of supporting
evidence for drug-target relationships, we see an overall decrease in coverage of drugs,
targets, and unique relationships as expected (Figure 2). Within the Level Il evidence tier,
we can further threshold according to the numeric value of reported experimental binding
activities. This allows us to triage experimentally tested drug-target relationships to those
that have been reported with a binding value that is potentially relevant for drug and target
binding having clinical impact.

We demonstrate how the Cancer Targetome framework allows for filtering of aggregated
drug-target relationships to those meeting particular evidence criteria. For instance, to obtain
an estimate of drug-target interaction space for which there is strong experimental evidence
to support nanomolar binding interactions, e.g. relevant to clinically achievable doses for a
given drug, we can require Level 11 evidence and further threshold to reported binding
affinities less than 100nM, which produces a total of 529 unique drug-target interactions.
Interestingly, of these 529 putative drug-target binding interactions, the majority are reported
by only one database, with only a quarter of these putative binding interactions reported by
two or more databases (Supp. Figure 2A). Within this set of putative interactions, we can
also examine the “best” or minimum experimental binding affinity value reported for each
unique drug-target interaction and the database that is responsible for contributing this value.
While the majority of such minimum assay values are contributed by BindingDB, IUPHAR
contributes the minimum assay value for approximately 50 interactions (over 10%) (Supp.
Figure 2B). This example highlights the benefit of aggregation across multiple sources to
provide the research community with a more comprehensive resource for precision
oncology.

Protein Kinase Inhibitors Are Highly Experimentally Tested Against Targets

The majority of antineoplastic drugs have been experimentally tested against less than
twenty protein targets. This sparsity of the publicly available drug-target interaction space
has been discussed by others [62] and presents a key limitation for efforts by the research
community to assess drug promiscuity, or binding to “secondary” targets. However, a small
set of drugs (all protein kinase inhibitors) have been experimentally tested with more than
three hundred targets (Supp. Figure 3), providing us with several examples of drugs with
extensive binding data with which we may assess potential target interactions and provide
recommendations for future drug-target interaction curation efforts.

This meets expectations given the enormous resource commitment to targeting kinases in
oncology following the break-through drug imatinib [63]. For instance, Davis et al.
performed an extensive and comprehensive analysis of kinase inhibitor selectivity, including
both approved and investigational stage drugs [59,64]. Experimental binding results for
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select approved cancer drugs from their analysis are included in our aggregated resource due
to our data collection from the bioactivity database BindingDB. Among this set of highly
tested kinase inhibitors, we see variation in the number of interacting targets for each drug
(Supp. Figure 4). As we threshold the experimental binding evidence to stronger binding
affinities (10,000nM, 1000nM, 100nM), we see that some drugs have a small number of
targets meeting strong binding affinity criteria, such as afatinib, imatinib, and lapatinib,
while other drugs have a seemingly high number of targets, such as bosutinib, crizotinib,
dasatinib, and sunitinib. Due to the high number of experimentally tested targets for this
subset of drugs, we can perform deeper data quality analysis and in particular investigate the
contribution of different experimental binding activity types.

Imatinib and Vandetanib Use Cases

We highlight two use cases for the drugs imatinib and vandetanib. Both of these drugs are
protein kinase inhibitors and have extensive binding activity information available across a
large number of targets. Using the Cancer Targetome evidence framework, we assess the
experimental evidence supporting target binding for imatinib and vandetanib at the strict
threshold of 100nM. In Figure 3A we show all targets for imatinib with experimental
binding evidence under 100nM. While there are a total of fourteen targets with assay
evidence under 100nM, tyrosine-protein kinase ABL1 (ABL1), the canonical target of
imatinib [1,63,65] notably has low nanomolar assay evidence across all four binding assay
types (Kp, K;, ICsq, and ECgp). For Kp, K;j, and 1Cgq assay evidence, ABL1 has multiple
low nanomolar assay values, which lends more confidence to ABL1 being a biological target
of the drug imatinib. Furthermore, for each of the four binding assay types, ABL1 has either
the lowest or second-lowest assay value for target interactions with imatinib (Figure 3A).
The case of imatinib serves as an example where evidence of the canonical “primary” target
can be seen in experimental binding data. In the cases where a target other than ABL1
occupies the best or close to the best assay value (epithelial discoidin domain-containing
receptor 1 (DDR1), platelet-derived growth factor alpha (PDGFRA), and platelet-derived
growth factor beta (PDGFRB)), there is binding assay support from only one or two of the
binding assay types rather than all four binding types, as in the case of ABL1.

In Figure 3B we show all targets for vandetanib with experimental binding evidence under
100nM. In total, there are twenty-six unique targets meeting these criteria but we see a
striking discordance in the type of binding assay support available for these targets.
Experimental Kp values indicate that tyrosine-protein kinase ABL1 (ABL1), mast/stem cell
growth factor receptor Kit (KIT), receptor-interacting serine/threonine-protein kinase 2
(RIPK2), epidermal growth factor receptor (EGFR), and proto-oncogene tyrosine-protein
kinase receptor Ret (RET) have very low nanomolar experimental evidence. Experimental
ICsq values indicate that vascular endothelial growth factor receptor 2 (KDR or VEGFR2),
EGFR, vascular endothelial growth factor receptor 1 (FLT1), and proto-oncogene tyrosine-
protein kinase Src (SRC) all have evidence for interaction at very low nanomolar evidence.
According to KD assay evidence, EGFR is strongly supported as a target (multiple low
nanomolar assay values), while according to 1Csq assay evidence, KDR is strongly
supported as a target. For vandetanib, there were no ECsq binding assay values available and
no K;j binding assay values under 100,000nM available.
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Interestingly, vandetanib is considered to be a dual KDR and EGFR inhibitor, or in some
cases a multiple kinase inhibitor for EGFR, KDR, and RET [63,66,67]. A literature search
reveals that while originally designed to inhibit KDR, vandetanib exhibited additional
activity with EGFR in preliminary lead candidate stages [67]. These results prompted further
testing which established vandetanib as inhibiting EGFR in mouse cells, human cancer cells,
and in seven human cell lines lacking the target KDR [68]. This example highlights the rich
contextual information for drug-target interactions that is currently not captured in drug-
target interaction or bioactivity resources.

Next Steps for Drug-Target Interaction Evidence Curation

A unified Cancer Targetome framework provides researchers with access to cancer drug-
target relationships from the public domain that are accompanied by transparent literature
and experimental binding evidence lineage. The proposed evidence framework allows
researchers to prioritize drug-target relationships according to the evidence criteria that are
best suited to their research aims. Transparent and well-evidenced drug-target interactions
will enable higher confidence and more informed decision making in the prioritization of
drugs and targets in precision oncology efforts.

However, examining the factors needed for the creation of the Cancer Targetome reveals
critical unmet needs. In particular, the vandetanib use case highlights the need for binding
assay metadata. While we were able to retrieve and assess experimental binding affinities
between vandetanib and many biological targets, we must also consider the information that
is not captured in this process. Namely, we are currently not able to capture metadata such as
the cell line used in experimental binding assays, tumor or non-tumor status of the cell line,
and whether the cell line is derived from patient cells. The availability of this metadata
would allow for further tiering of drug-target binding evidence to aid target prioritization.
For instance, the category we have proposed for experimental binding evidence (Level II)
could be further subdivided into tiers indicating whether the interaction has been tested in
non-cancer cells, cancer cells, or cells that are patient-derived. Further tiering could be used
to capture metadata indicating whether other targets were knocked down or remained
functional during the experimental binding assay for the target of interest. This metadata is
invaluable to prioritization of drug-target binding information in precision oncology, where
it is critical to know whether experimental evidence was obtained using cancer or non-
cancer cell lines.

Mapping Drug-Target Interactions to Pathways

Given the dysregulation that can occur in multiple pathways in cancer, there has been
increasing attention and effort dedicated to targeting cellular pathways, particularly through
the use of combination drug therapies [22,69]. We conducted a simple pathway analysis to
assess the targeted pathway coverage of approved cancer drugs. Briefly, we mapped all
targets participating in drug-target relationships to Reactome pathways using increasingly
strict supporting evidence requirements. Reactome is a comprehensive open source pathway
resource widely used by the research community [70]. Cellular pathways in Reactome are
organized in a hierarchical manner, allowing for smooth pathway navigation and improved
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integration with external data resources. We designate those biological pathways containing
one or more drug targets as “light” or potentially targetable by approved antineoplastic
drugs. Conversely, biological pathways containing no drug targets are “dark” or currently
out of scope for approved antineoplastic drugs. While a considerable portion of pathways
(approximately 60%) are light to antineoplastic drugs when we consider any type of
supporting evidence for drug-target interactions, this should be considered the most liberal
estimate of potentially targetable pathways (Table 2). A more reasonable estimate is
obtained when we require drug-target relationships to be supported by experimental binding
evidence with a reported assay value of less than 100nM. This estimate indicates that there is
strong evidence for approved antineoplastic drugs targeting approximately 39% of Reactome
pathways. Depending upon distribution of key molecular aberrations for a given patient
among the light and dark pathways, the evidence based curation as presented and envisioned
herein will refine selection of therapeutics and in some cases could dramatically limit
therapeutic options. We highlight the NOTCH Signaling pathway in Box 1, which contains
several dark child pathways. Dark pathways that are currently out of scope of FDA-approved
cancer drugs present areas for future cancer therapeutics development.

Concluding Remarks

We foresee the possibility that these analyses will allow weighting the level, extent and type
of evidence to guide prioritization of drugs moving to the clinic, for better synchronization
of preclinical promise and patient benefit. Recently, attention has been drawn to the need for
evidence quantification of patient-specific alterations in tumors in order to guide decisions
about actionable therapies [5]. A similar characterization of evidence is also needed for
drug-target and drug-pathway interactions if we hope to unite drug-target information with
patient-specific information and develop targeted therapies (Box 2 and Outstanding
Questions). In particular, evidence characterization frameworks accommodate the inherent
uncertainty in the targetome space due to multiple types of supporting evidence.

Given the recent attention and dedication of resources to investigate understudied areas of
the druggable genome by the NIH Illuminating the Druggable Genome Consortium, we
believe this work will be of current interest to the larger precision medicine community. This
has implications for other therapeutics areas of interest with respect to guided investigation
into understudied and underdeveloped therapeutic drugs, targets, and pathways.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Glossary
biomarker
a biological indicator used here to refer to presence of a particular genetic mutation
Cancer Targetome
a unified concept for all target annotations of FDA-approved cancer drugs aggregated across
the public domain and encompassing multiple types of supporting evidence
combinatorial drug treatment
drug regimen composed of more than one drug
druggable genome
subset of human genome that encodes proteins targeted by pharmaceutical drugs
drug-target interaction
a physical binding relationship between a drug molecule and a target entity
polypharmacology
disposition of drugs to bind to more than one biological target
precision oncology
treatment rationale that aims to match patients with therapies based on their genetic
information for improved outcome
target
biological entity of interest whose activity inside cells is modulated by drug
targeted therapy
drug that interacts with a particular biological entity often by design
References

1. Druker BJ, et al. Efficacy and safety of a specific inhibitor of the BCR-ABL tyrosine kinase in
chronic myeloid leukemia. N Engl J Med. 2001; 344:1031-1037. [PubMed: 11287972]

2. Prasad V, et al. Precision oncology: origins, optimism, and potential. Lancet Oncol. 2016; 17:e81—
e86. [PubMed: 26868357]

3. What Precisely Is Precision Oncology—and Will It Work? - The ASCO Post. [Online]. Available:
http://www.ascopost.com/issues/january-25-2017/what-precisely-is-precision-oncology-and-will-it-
work/. [Accessed: 26-May-2017]

4. Saad ED, et al. Precision medicine needs randomized clinical trials. Nat Rev Clin Oncol. 2017;
14:317-323. [PubMed: 28169302]

5. Andre F, et al. Prioritizing targets for precision cancer medicine. Ann Oncol. 2014; 25:2295-2303.
[PubMed: 25344359]

6. Watson IR, et al. Emerging patterns of somatic mutations in cancer. Nat Rev Genet. 2013; 14:703—
718. [PubMed: 24022702]

7. Hudson (Chairperson) TJ, et al. International network of cancer genome projects. Nature. 2010;
464:993-998. [PubMed: 20393554]

8. McLendon R, et al. Comprehensive genomic characterization defines human glioblastoma genes and
core pathways. Nature. 2008; 455:1061-1068. [PubMed: 18772890]

Trends Pharmacol Sci. Author manuscript; available in PMC 2018 December 01.


http://www.ascopost.com/issues/january-25-2017/what-precisely-is-precision-oncology-and-will-it-work/
http://www.ascopost.com/issues/january-25-2017/what-precisely-is-precision-oncology-and-will-it-work/

1duosnuen Joyiny 1duosnuey Joyiny 1duosnuen Joyiny

1duosnuep Joyiny

Blucher et al.

Page 10

9. Nguyen DT, et al. Pharos: Collating protein information to shed light on the druggable genome.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.
25.

26.

27.

28.

29.

30.

31.

32.

Nucleic Acids Res. 2017; 45:D995-D1002. [PubMed: 27903890]

Biankin AV, et al. Patient-centric trials for therapeutic development in precision oncology. Nature.
2015; 526:361-370. [PubMed: 26469047]

Kim ES, et al. The BATTLE Trial: Personalizing Therapy for Lung Cancer. Cancer Discov. 2011,
1:44-53. [PubMed: 22586319]

The I-SPY 1 TRIAL Investigators. et al. Chemotherapy response and recurrence-free survival in
neoadjuvant breast cancer depends on biomarker profiles: results from the I-SPY 1 TRIAL
(CALGB 150007/150012; ACRIN 6657). Breast Cancer Res Treat. 2012; 132:1049-1062.
[PubMed: 22198468]

Redig AJ, J&nne PA. Basket trials and the evolution of clinical trial design in an era of genomic
medicine. J Clin Oncol. 2015; 33:975-977. [PubMed: 25667288]

Lopez-Chavez A, et al. Molecular Profiling and Targeted Therapy for Advanced Thoracic
Malignancies: A Biomarker-Derived, Multiarm, Multihistology Phase Il Basket Trial. J Clin
Oncol. 2015; 33:1000-1007. [PubMed: 25667274]

Xie L, et al. Drug Discovery Using Chemical Systems Biology: Identification of the Protein-
Ligand Binding Network To Explain the Side Effects of CETP Inhibitors. PLoS Comput Biol.
2009; 5:1000387. [PubMed: 19436720]

Pauwels E, et al. Predicting drug side-effect profiles: a chemical fragment-based approach. BMC
Bioinformatics. 2011; 12:169. [PubMed: 21586169]

Johns DG, et al. On-and Off-Target Pharmacology of Torcetrapib. Drugs. 2012; 72:491-507.
[PubMed: 22356288]

Berger SI, lyengar R. Role of systems pharmacology in understanding drug adverse events. Wiley
Interdiscip Rev Syst Biol Med. 2011; 3:129-135. [PubMed: 20803507]

Zhao S, et al. Systems Pharmacology of Adverse Event Mitigation by Drug Combinations. Sci
Transl Med. 2013; 5:206ra140-206ral40.

Dudley JT, et al. Exploiting drug-disease relationships for computational drug repositioning. Brief
Bioinform. 2011; 12:303-311. [PubMed: 21690101]

Corsello SM, et al. The Drug Repurposing Hub: a next-generation drug library and information
resource. Nat Med. 2017; 23:405-408. [PubMed: 28388612]

Hopkins AL. Network pharmacology: the next paradigm in drug discovery. Nat Chem Biol. 2008;
4:682-690. [PubMed: 18936753]

Drews J. Genomic sciences and the medicine of tomorrow. Nat Biotechnol. 1996; 14:1516-1518.
[PubMed: 9634812]

Drews J, Ryser S. Classic drug targets. Nat Biotechnol. 1997; 15:1350-1350.

Hopkins AL, Groom CR. The druggable genome. Nat Rev Drug Discov. 2002; 1:727-730.
[PubMed: 12209152]

Imming P, et al. Drugs, their targets and the nature and number of drug targets. Nat Rev Drug
Discov. 2006; 5:821-834. [PubMed: 17016423]

Overington JP, et al. How many drug targets are there? Nat Rev Drug Discov. 2006; 5:993-996.
[PubMed: 17139284]

Rask-Andersen M, et al. Trends in the exploitation of novel drug targets. Nat Rev Drug Discov.
2011; 10:579-590. [PubMed: 21804595]

Rask-Andersen M, et al. The Druggable Genome: Evaluation of Drug Targets in Clinical Trials
Suggests Major Shifts in Molecular Class and Indication. Annu Rev Pharmacol Toxicol. 2014;
54:9-26. [PubMed: 24016212]

Santos R, et al. A comprehensive map of molecular drug targets. Nat Rev Drug Discov. 2016; doi:
10.1038/nrd.2016.230

Paolini GV, et al. Global mapping of pharmacological space. Nat Biotechnol. 2006; 24:805-815.
[PubMed: 16841068]

Wishart DS. DrugBank: a comprehensive resource for in silico drug discovery and exploration.
Nucleic Acids Res. 2006; 34:D668-D672. [PubMed: 16381955]

Trends Pharmacol Sci. Author manuscript; available in PMC 2018 December 01.



1duosnuen Joyiny 1duosnuey Joyiny 1duosnuen Joyiny

1duosnuep Joyiny

Blucher et al.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44,

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

Page 11

Law V, et al. DrugBank 4.0: shedding new light on drug metabolism. Nucleic Acids Res. 2014;
42:D1091-D1097. [PubMed: 24203711]

Chen X, et al. TTD: Therapeutic Target Database. Nucleic Acids Res. 2002; 30:412-415.
[PubMed: 11752352]

Kanehisa M, et al. KEGG for representation and analysis of molecular networks involving diseases
and drugs. Nucleic Acids Res. 2010; 38:D355-D360. [PubMed: 19880382]

Kanehisa M, et al. KEGG: new perspectives on genomes, pathways, diseases and drugs. Nucleic
Acids Res. 2017; 45:D353-D361. [PubMed: 27899662]

Pawson AJ, et al. The IUPHAR/BPS Guide to PHARMACOLOGY: an expert-driven
knowledgebase of drug targets and their ligands. Nucleic Acids Res. 2014; 42:D1098-D1106.
[PubMed: 24234439]

Griffith M, et al. DGIdb: mining the druggable genome. Nat Methods. 2013; 10:1209-1210.
[PubMed: 24122041]

Ursu O, et al. DrugCentral: online drug compendium. Nucleic Acids Res. 2017; 45:D932-D939.
[PubMed: 27789690]

Hecker N, et al. SuperTarget goes quantitative: update on drug-target interactions. Nucleic Acids
Res. 2012; 40:D1113-D1117. [PubMed: 22067455]

Kuhn M, et al. STITCH 4: integration of protein-chemical interactions with user data. Nucleic
Acids Res. 2014; 42:D401-D407. [PubMed: 24293645]

Koscielny G, et al. Open Targets: a platform for therapeutic target identification and validation.
Nucleic Acids Res. 2017; 45:D985-D994. [PubMed: 27899665]

Hu Y, Bajorath J. Compound promiscuity: what can we learn from current data? Drug Discov
Today. 2013; 18:644-650. [PubMed: 23524195]

Bento AP, et al. The ChEMBL bioactivity database: an update. Nucleic Acids Res. 2014;
42:D1083-D1090. [PubMed: 24214965]

Gilson MK, et al. BindingDB in 2015: A public database for medicinal chemistry, computational
chemistry and systems pharmacology. Nucleic Acids Res. 2016; 44:D1045-D1053. [PubMed:
26481362]

Wang Y, et al. PubChem’s BioAssay Database. Nucleic Acids Res. 2011; 40:D400-D412.
[PubMed: 22140110]

Wang Y, et al. PubChem BioAssay: 2014 update. Nucleic Acids Res. 2014; 42:D1075-D1082.
[PubMed: 24198245]

Bellis LJ, et al. Collation and data-mining of literature bioactivity data for drug discovery. Biochem
Soc Trans. 2011; 39:1365-1370. [PubMed: 21936816]

Southan C, et al. Quantitative assessment of the expanding complementarity between public and
commercial databases of bioactive compounds. J Cheminformatics. 2009; 1:10.

Southan C, et al. Comparing the Chemical Structure and Protein Content of ChEMBL, DrugBank,
Human Metabolome Database and the Therapeutic Target Database. Mol Inform. 2013; 32:881-
897. [PubMed: 24533037]

Tiikkainen P, Franke L. Analysis of Commercial and Public Bioactivity Databases. J Chem Inf
Model. 2012; 52:319-326. [PubMed: 22145975]

Li Q, et al. PubChem as a public resource for drug discovery. Drug Discov Today. 2010; 15:1052—
1057. [PubMed: 20970519]

Wang Y, et al. Evidence-Based and Quantitative Prioritization of Tool Compounds in Phenotypic
Drug Discovery. Cell Chem Biol. 2016; 23:862—-874. [PubMed: 27427232]

Koutsoukas A, et al. In Silico Target Predictions: Defining a Benchmarking Data Set and
Comparison of Performance of the Multiclass Naive Bayes and Parzen-Rosenblatt Window. J
Chem Inf Model. 2013; 53:1957-1966. [PubMed: 23829430]

Mervin LH, et al. Target prediction utilising negative bioactivity data covering large chemical
space. J Cheminformatics. 2015; 7

Lim H, et al. Large-Scale Off-Target Identification Using Fast and Accurate Dual Regularized One-
Class Collaborative Filtering and Its Application to Drug Repurposing. PLoS Comput Biol. 2016;
12:e1005135. [PubMed: 27716836]

Trends Pharmacol Sci. Author manuscript; available in PMC 2018 December 01.



1duosnuen Joyiny 1duosnuey Joyiny 1duosnuen Joyiny

1duosnuep Joyiny

Blucher et al.

57.

58.

59.

60.

61.

62.

63.

64.

65.

66.

67.

68.

69.

70.

71.

72.

73.

74.

Page 12

Hu Y, Bajorath J. Many structurally related drugs bind different targets whereas distinct drugs
display significant target overlap. RSC Adv. 2012; 2:3481.

Afzal AM, et al. A multi-label approach to target prediction taking ligand promiscuity into account.
J Cheminformatics. 2015; 7

Davis MI, et al. Comprehensive analysis of kinase inhibitor selectivity. Nat Biotechnol. 2011;
29:1046-1051. [PubMed: 22037378]

Finan C, et al. The druggable genome and support for target identification and validation in drug
development. Sci Transl Med. 2017; 9

Yang H, et al. Therapeutic target database update 2016: enriched resource for bench to clinical
drug target and targeted pathway information. Nucleic Acids Res. 2016; 44:D1069-D1074.
[PubMed: 26578601]

Mestres J, et al. Data completeness—the Achilles heel of drug-target networks. Nat Biotechnol.
2008; 26:983-984. [PubMed: 18779805]

Wu P, et al. FDA-approved small-molecule kinase inhibitors. Trends Pharmacol Sci. 2015; 36:422—
439. [PubMed: 25975227]

Karaman MW, et al. A quantitative analysis of kinase inhibitor selectivity. Nat Biotechnol. 2008;
26:127-132. [PubMed: 18183025]

Druker BJ, et al. Effects of a selective inhibitor of the Abl tyrosine kinase on the growth of Bcr—
Abl positive cells. Nat Med. 1996; 2:561-566. [PubMed: 8616716]

Knowles PP, et al. Structure and Chemical Inhibition of the RET Tyrosine Kinase Domain. J Biol
Chem. 2006; 281:33577-33587. [PubMed: 16928683]

Wedge SR, et al. ZD6474 inhibits vascular endothelial growth factor signaling, angiogenesis, and
tumor growth following oral administration. Cancer Res. 2002; 62:4645-4655. [PubMed:
12183421]

Ciardiello F, et al. Antitumor effects of ZD6474, a small molecule vascular endothelial growth
factor receptor tyrosine kinase inhibitor, with additional activity against epidermal growth factor
receptor tyrosine kinase. Clin Cancer Res Off J Am Assoc Cancer Res. 2003; 9:1546-1556.
Jimeno A, Hidalgo M. Multitargeted therapy: Can promiscuity be praised in an era of political
correctness? Crit Rev Oncol Hematol. 2006; 59:150-158. [PubMed: 16843676]

Fabregat A, et al. The Reactome pathway Knowledgebase. Nucleic Acids Res. 2016; 44:D481-
D487. [PubMed: 26656494]

Espinoza I, Miele L. Notch inhibitors for cancer treatment. Pharmacol Ther. 2013; 139:95-110.
[PubMed: 23458608]

Yuan X, et al. Notch signaling: An emerging therapeutic target for cancer treatment. Cancer Lett.
2015; 369:20-27. [PubMed: 26341688]

Sioutos N, et al. NCI Thesaurus: A semantic model integrating cancer-related clinical and
molecular information. J Biomed Inform. 2007; 40:30-43. [PubMed: 16697710]
Guerrero-Preston R, et al. Key tumor suppressor genes inactivated by “greater promoter”
methylation and somatic mutations in head and neck cancer. Epigenetics. 2014; 9:1031-1046.
[PubMed: 24786473]

Trends Pharmacol Sci. Author manuscript; available in PMC 2018 December 01.



1duosnuepy Joyiny 1duosnuely Joyiny 1duosnuey Joyiny

1duosnuep Joyiny

Blucher et al.

Page 13

Trends

Precision oncology, which aims to rationally select treatments for patients
based on their genetic information, has a key dependency on drug to target
annotation that is often overlooked.

While “patient-specific” treatment broadly encompasses all aspects of a
patient’s health, such as additional diagnoses, other prescribed medications,
or even adverse effects experienced in response to therapy, our scope for this
article is focused narrowly on use of the term “patient-specific” to mean those
biological targets specific to a patient’s cancerous cells that may be
modulated to have a therapeutic effect.

Drug-target annotation is often heavily biased towards primary targets with
limited or difficult to find information on secondary targets.

Resources for drug-target interactions differ in coverage, consistency, and
evidence curation which makes it challenging for researchers to obtain
credible and reproducible drug to target annotation.
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Outstanding Questions

How will we prioritize drug-target annotations in a way that reflects weight of
supporting experimental evidence, i.e. both qualitative and quantitative
evidence?

What is the best way to handle discordant binding assay values for the same
drug-target interaction? Additional assay metadata such as cell line, cancer
status, and target knockdowns can provide critical context that would affect
prioritization of drug-target annotations within precision oncology pipelines.
In the absence of this data, how do we best incorporate this uncertainty?

How well does the public domain drug-target interaction space approximate
the fully tested drug-target interaction space? We must consider that publicly
available data is incomplete as much of the tested drug-target interaction
space is proprietary.

How will our knowledge base change as we add incoming information on
promising new therapies, for instance from targeted immune checkpoint
inhibitors? While our data collection included immune checkpoint inhibitors
such as ipilimumab and nivolumab, there was limited target information
available for these drugs from the public resources used here. As immune
checkpoint inhibitor therapy is showing considerable promise, we would
expect more publicly available data for these drugs is on the horizon and will
soon be accessible to drug-target interaction databases.

How do we develop similar evidence frameworks for drug-target annotations
in other therapeutic areas? Given that precision oncology is at the forefront of
targeted therapy development, we would expect this domain to be one of the
best characterized areas. Will the heterogeneity in annotation and data
availability prevent the ultimate promise of drug repurposing across
therapeutic domains?
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Box 1
Pathway Example: NOTCH Signaling

Dark pathways are of particular interest for future drug discovery and development
efforts as they are currently outside the scope of approved cancer agents. We highlight the
NOTCH signaling pathway, which is light at the topmost hierarchical level but contains
several dark child pathways (Figure ). Dysregulated NOTCH signaling has been
implicated in breast, prostate, lung, head and neck, and central nervous system cancers as
well as T-cell leukemia and has thus been identified as a therapeutic target of interest
[71-74]. Three of the five child pathways of NOTCH signaling are currently dark to
cancer drugs (Signaling by NOTCHZ2, Signaling by NOTCH3, and Signaling by
NOTCH4). We highlight the light child pathway Pre-NOTCH Expression and Processing
in the figure inset, which shows that there are two drugs potentially interacting with two
targets in this pathway. Arsenic trioxide putatively interacts with transcription factor
AP-1 (JUN, UniProt P05412) and G1/S-specific cyclin-D1 (CCND1, UniProt P24385),
while vinblastine sulfate putatively interacts with JUN. However, all three of these drug-
target relationships have Level Il evidence only, as there is no accompanying
experimental binding evidence. Therefore, if we assess light pathway coverage while
requiring at least experimental binding evidence for drug-target interactions, this nested
pathway goes dark. We use this example to illustrate that the classification of a particular
pathway as light or dark to approved cancer drugs is directly impacted by the strength of
supporting evidence for the drug-target interactions involving the pathway of interest.
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Figure I. Signaling by NOTCH Pathway

Signaling by NOTCH is a light or potentially targetable pathway when considering drug-
target relationships supported by any level of evidence. Main Figure. Of the five child
pathways in Signaling by NOTCH, two are light (gold) and three are dark (blue) to
current approved antineoplastic drugs. Inset. The light child pathway Pre-NOTCH
Expression and Processing contains two targets, JUN and CCND1 that are putatively
targeted by antineoplastic drugs. This pathway is light when including drug-target
interactions of Level Il evidence, but goes dark when Level Il evidence is required.
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Box 2
Mapping Evidence Levels to Precision Oncology Applications

The appropriate level of evidence to require when including drug-target interactions in
precision oncology applications will be heavily context-dependent. In Figure 1, we
detailed several examples of precision oncology applications that have a key dependency
on drug-target interactions. For applications that are exploratory or hypothesis-generating
in nature, such as computational and predictive modeling (Figure 1 Panel B), the use of
drug-target interactions supported by Level | or Level Il will often be appropriate. Such
applications would benefit from casting a wider net of drug-target interactions so that all
options can be explored. Similarly, exploratory work geared towards drug repurposing
(Figure 1 Panel C), such as the inclusion of FDA-approved drugs on a screening panel for
an indication other than the drug’s primary one, may also benefit from liberal evidence
requirements that allow for investigation of all possibly relevant drug-target interactions.
While additional Level 111 experimental binding evidence would lend support to these
interactions being potentially relevant for human physiology, this will always be
necessary at the discovery stage. Applications involving the planned use of a drug in a
patient, however, will require (at a minimum) rigorous Level 111 experimental binding
assay evidence. These applications could include off-label use of a drug, design of
combination therapies (Figure 1 Panel D), or inclusion of an already-approved drug in a
clinical trial for an alternate indication (Figure 1 Panel A). In these examples, choice of
therapy may be driven by a patient’s particular molecular aberrations if there is
substantial evidence that those aberrations can be targeted by an existing pharmaceutical
therapy. The requirements for evidence supporting such drug-target interactions must be
very rigorous - meaning very low nanomolar binding evidence for a drug-target
interaction, ideally across binding assay types and from multiple, independent sources.
As mentioned previously, experimental metadata (such as cell line information) will also
be necessary for rigorous evaluation and prioritization of drug-target interactions. For
clinical applications of drugs in patients, we emphasize that drug-target interaction
evidence (even rigorously supported evidence) is intended to supplement but never to
replace an oncologist’s or tumor board’s expertise and recommendations. We envision
the use of this information as one line of evidence among the many that are evaluated by
medical experts when deciding the best course of action for a patient.
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Figure 1. Precision Oncology Applications Rely on Drug-Target Interaction Information. A.
Umbrella Clinical Trial with Multiple Treatment Arms

Patients are assigned to different treatment arms in clinical trial according to their genetic
alterations. Drug treatments in each arm are determined according to interactions between
drugs and priority genomic variants in tumor. B. Predictive Modeling e.g. Predicting Drug
Response or Adverse Drug Reactions. Patient genomic data is used with in silico drug
treatment simulation to predict which patients will respond beneficially (or adversely) to
particular drug treatments. C. Repurposing Drug for Alternate Therapeutic Use. Drug
binding information at additional or “secondary” targets can be used to repurpose a drug for
a secondary therapeutic indication. D. Combinatorial Drug Treatment. A combined
treatment of drugs is chosen for a patient using his or her genetic variant information and
prioritization of variant-related targets according to known interactions with existing drugs.
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Figure 2. Cancer Targetome Aggregated Counts for Drugs, Targets, and Unique Interactions by
Evidence Level

Drugs are FDA-approved antineoplastic drugs (total 137), targets are unique human UniProt
Accession IDs (total 658) and interactions are unique relationships (total 6385) between one
drug and one target. Counts are colored by supporting evidence level: Level | indicates
database annotation only, Level Il indicates database and literature reference annotation,
Level Il indicates database, literature, and experimental binding value annotation. Level 111
Exact refers to annotation of a binding value with an exact (“=") binding value reported,
rather than “<” or “>”. Thresholds on Level Il binding activities were applied at 10,000nM,
1,000nM, and 100nM.
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Figure 3. A. Imatinib Target Interactions Under 100nM. Colored by Target, bin width=1nM
Imatinib has experimental binding evidence for fourteen different targets under 100nM.

ABL1 stands out as it has many low nanomolar assay results and it occupies the best or
second best assay value for each binding assay type. B. Vandetanib Target Interactions
Under 100nM. Colored by Target, bin width=1nM. Vandetanib has experimental binding
evidence for interacting with twenty-six different targets under 100nM. Kp and ICsq assay
evidence provide strong support for different targets for vandetanib (EGFR and KDR,
respectively). Vandetanib does not have any targets supported by ECsq assay evidence and
does not have any targets supported by <100,000nM K assay evidence.
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Table 2
Light Pathways of the Cancer Targetome, by Supporting Evidence Level

All unique targets involved in drug-target relationships (supported by indicated evidence levels) were mapped
to Reactome pathways. The number of unique targets within the set of drug-target relationships is shown in the
second column. A pathway is considered light if it contains at least one drug target.

Evidence Level Required Number of Unique Number of Light Total Number of Percent Light Pathways
Targets Pathways Pathways
Levels I, 11, 11 658 1214 2008 60.46%
Levels 11, 111* 651 1213 2008 60.40 %
Level 111 558 1139 2008 56.72 %
Level 111 Exact 511 1091 2008 54.33 %
Level 11l Exact, Threshold <100nM 246 790 2008 39.34 %
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