
Genetic Modifiers of Duchenne and Facioscapulohumeral 
Muscular Dystrophies

Rylie M. Hightower, BSN1 and Matthew S. Alexander, PhD2,3,4

1University of Alabama at Birmingham Graduate School of Biomedical Sciences, Birmingham, AL 
35294

2Department of Pediatrics, Division of Neurology at Children’s of Alabama and the University of 
Alabama at Birmingham, Birmingham, AL, 35294

3Department of Genetics, the University of Alabama at Birmingham, Birmingham, AL, 35294

Abstract

Muscular dystrophy is defined as the progressive wasting of skeletal muscles that is caused by 

inherited or spontaneous genetic mutations. Next-generation sequencing (NGS) has greatly 

improved the accuracy and speed of diagnosis for different types of muscular dystrophy. 

Advancements in depth of coverage, convenience, and overall reduced cost, have led to the 

identification of genetic modifiers that are responsible for phenotypic variability in affected 

patients. These genetic modifiers have been postulated to explain key differences in disease 

phenotypes including age of loss of ambulation, steroid-responsiveness, and the presence or 

absence of cardiac defects in patients with the same form of muscular dystrophy. Here we review 

and highlight recent findings on genetic modifiers of Duchenne and Facioscapulohumeral 

muscular dystrophies based on animal and clinical studies. These genetic modifiers hold great 

promise to be developed into novel therapeutic targets for the treatment of muscular dystrophies.
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Introduction

Duchenne muscular dystrophy (DMD) is the most common form of muscular dystrophy 

worldwide with estimates of incidence ranging from 1:3500 to more recent estimates of 
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1:5000 live male births(1, 2). The genetic cause of DMD was identified in 1986 as 

pathogenic loss-of-function mutations in the dystrophin (DMD) gene that lead to 

insufficient, and sometimes undetectable, levels of a functional dystrophin protein(3). 

Conversely, in Becker muscular dystrophy (BMD) a partially-functional, truncated 

dystrophin protein is produced, typically resulting in a milder clinical pathology(3–6). DMD 

patients have severe, progressive skeletal muscle wasting and cardiac defects. Many DMD 

patients lose ambulation by their first decade of life(7). An interesting yet understudied 

aspect of DMD pathology is that approximately 20–25% of DMD boys develop significant 

cognitive issues that fall into the Autism spectrum disorder (ASD) scale(7, 8). One 

explanation for this variation in DMD boys is the alteration in expression levels of neuronal 

dystrophin protein isoforms, although it remains unclear as to why some DMD boys develop 

cognitive impairment and others have normal intelligence(9–13). As biochemical and 

molecular techniques for muscular dystrophy diagnostics improved, additional Dystrophin-

interacting proteins were identified(14–16). These proteins are part of a Dystrophin-

associated protein complex (DAPC) that bridges the actin cytoskeleton with the extracellular 

matrix (ECM)(17). With the advancement in genomic sequencing and coverage of the 

human genome, improved gene panels shifted muscular dystrophy diagnostic methods from 

predominantly pathology/histology-based to Sanger sequencing and later whole exome/

genome sequencing (WES/WGS)(18–24).

The sequencing of increasingly larger numbers of exomes and genomes from healthy and 

diseased individuals permits large-scale genetic analyses of modifiers of diseases. The 

Exome Aggregation Consortium (ExAC) and 100,000 genomes project (UK) have banked 

large datasets of publically available genomic information(25, 26). Genomic analyses of 

children with Mendelian diseases have revealed that genetic modifiers of diseases have an 

incomplete penetrance of disease symptoms and pathogenicity(27). Indeed, many predicted 

loss-of-function (LoF) pathogenic mutations have been identified in healthy children and 

adults (“human knockouts”), suggesting an incomplete disease penetrance due to protective 

genetic modifiers(28, 29). As genomic sequencing has become more commonplace, the 

ability to analyze large amounts of data from different populations of healthy and diseased 

patients has become easier. Large scale databases and registries have been established to 

better share genomic and medical data among researchers studying muscle diseases(30, 31). 

These studies have yielded copious amounts of data on the wide spectrum of phenotypic 

variation among patients with muscular dystrophies. In conjunction with novel animal model 

screening platforms, these studies have identified several genetic modifiers of different 

forms of muscular dystrophy. Whole genomic sequencing among inbred strains of mice, 

such as the MRL super-healing strain which blocks dystrophic muscle pathology when 

mated to dystrophin-deficient mdx mice, have yielded valuable genetic modifiers of disease 

pathology(32). This review will focus on the identification and functional consequences of 

genetic modifiers in the two most prevalent forms of muscular dystrophy in humans: DMD 

and Facioscapulohumeral muscular dystrophy (FSHD). We also highlight current 

advancements in the clinic for these diseases and how genetic modifiers identified from both 

patient studies and animal models have led to novel therapeutic targets that may affect 

disease outcomes. These genetic modifiers hold the potential for ameliorating muscular 

dystrophies, and offer hope for patients with these debilitating diseases.
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Genetic modifiers of Duchenne muscular dystrophy

A large number of the Duchenne muscular dystrophy genetic modifiers have been identified 

in dystrophin-deficient animal models and more recently in genomic analyses of DMD 

patient cohorts (Table 1). Since the discovery of the first mdx mouse arising from a 

spontaneous mutation in a mouse colony from the United Kingdom, many additional 

dystrophin-deficient vertebrate animal models have been generated and phenotypically 

evaluated(33–36). Mdx mice display progressive skeletal muscle weakness but do not share 

the same reduced lifespan and early death as observed in DMD patients. This is thought to 

be due to increased expression of the dystrophin protein analog utrophin, which is expressed 

during embryonic myogenesis but is silenced during adult myogenesis(37, 38) (Figure 1). 

An alternative explanation for this phenomenon may be the increased presence in mdx 
muscle of revertant (dystrophin-positive) myofibers, resulting from undefined RNA-splicing 

or naturally occurring exon-skipping mechanisms(39–41). Exogenous overexpression of 

utrophin or compounds that can activate utrophin expression in skeletal muscle remains a 

promising therapeutic strategy for DMD(42). Transgenic mice that overexpress utrophin on 

a dystrophin-deficient background have been shown to rescue both the muscle pathology and 

motor deficits, thereby preventing muscular dystrophy disease progression(43). Drug 

compounds that induce utrophin transcriptional activation in dystrophin-deficient skeletal 

muscle (SMT C1100; Ezutromid) are in current clinical trials in DMD boys(44). Ezutromid 

induces transcription of utrophin mRNA in adult muscle where it is transcriptionally 

silenced, and thereby results in expression of utrophin protein to compensate for the lack of 

functional dystrophin protein(45).

Recent studies in mdx mice have also implicated additional genetic modifiers of dystrophin-

deficiency that are found in inbred mouse strains that may also explain the genetic variation 

in both DMD mice and humans(46–48). In humans, the presence of the R577X (rs1815739) 

null polymorphism in the α-ACTININ-3 (ACTN3) gene is associated with better overall 

muscle endurance(49). Male and female athletic sprinters show a higher percentage of the 

577R allele over non-sprinters and the general population as a whole(50). In the context of 

dystrophin-deficiency, the loss of Actn3 in mice blocks muscle wasting and degeneration in 

mdx mice(51). A Golden Retriever muscular dystrophy (GRMD) dog was identified from a 

litter of inbred dogs and found to contain a splice acceptor variant resulting in the retention 

of intron 6 of the canine dystrophin gene(52, 53). Interestingly, in a Brazilian colony of 

GRMD dogs, an “escaper” dog named Ringo was shown to have no detectable levels of 

dystrophin protein, but a milder clinical phenotype, normal reproductive capabilities, and a 

normal lifespan(54, 55). Whole genome sequencing and RNA transcriptome profiling of the 

muscles from the Golden Retriever muscular dystrophy canine model and the escaper 

GRMD dog that had a milder phenotype revealed that increased levels of Jagged-1 (Jag1) 

improved dystrophic symptoms in both zebrafish and dog DMD models(56). With improved 

genomic editing using clustered regularly interspaced short palindromic repeats (CRISPR) 

technologies, newer DMD animal models may yield additional genetic modifiers that may 

lessen or worsen disease symptoms. These dystrophin-deficient models may be beneficial in 

identifying naturally occurring strain variants that yield additional protective or harmful 

genetic modifiers of dystrophin deficiency.
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Several genetic modifiers of muscular dystrophies have been identified from mouse crosses 

and are currently being explored for therapeutic targets. Expression levels of two important 

genetic modifiers (α-7 integrin and laminin-α2) were shown to be elevated in mdx mice and 

the GRMD dog models of DMD treated with prednisone(57). Loss of α-7 integrin (Itga7) in 

mice on the mdx background worsens muscle weakness and increases levels of fibrosis(58, 

59). Conversely, transgenic overexpression of α-7 integrin reduces muscle weakness and 

muscle force deficits in both laminin-α2 and mdx/utrn double mutant mice(60, 61). A small 

molecule SU9516 has been shown to rescue muscular dystrophy phenotypes in mdx mice 

due to its ability to transcriptionally activate the α-7 integrin promoter(62). Other genetic 

modifiers such as biglycan (BGN), sarcospan (SSPN), and galectin-1 (Lgals1) 

overexpression have been demonstrated to act as a muscle membrane “glue” to increase 

muscle myofiber membrane stability and block muscle tearing in mdx mice(63–65) (Table 

1). Biglycan functions to protect against muscle force loss by acting as a protein “anchor” to 

stabilize the muscle myofibers and their link to the extracellular matrix (ECM) via an 

interaction with the dystrophin-glycoprotein complex (DGC)(66, 67). (Figure 1). In DMD, 

Biglycan expression levels are slightly elevated as it is capable of interacting and 

sequestering TGF-β in the ECM(68, 69). Given the strong role of TGF-β for driving 

inflammation in DMD, TGF-β antagonists have been effective in blocking some of the 

dystrophic muscle symptoms associated with DMD(70, 71). Direct intravenously-

administered AAV-mediated overexpression of exogenous human biglycan (BGN) was 

recently shown to ameliorate muscle grip strength deficits and improve overall histology in 

dystrophin-deficient mice(72). Similar to biglycan, the protein sarcospan (SSPN) also acts as 

a membrane “glue” to anchor the muscle membrane via an interaction with sarcoglycans, 

further stabilizing the dystrophin-glycoprotein complex(73). Transgenic overexpression of 

sarcospan in mdx mice blocks muscle pathology via increasing the levels of utrophin-

glycoprotein complex and activates AKT signaling as a compensatory mechanism for the 

lack of Dystrophin expression(74, 75). Follow-up transgenic mouse studies demonstrated 

that high levels of sarcospan were sufficient to rescue cardiac and pulmonary defects in mdx 
mice(76, 77). Together these studies strongly support the notion that overexpression (either 

naturally-occurring genetic variants or artificially engineered) of selected membrane-

associated proteins may be beneficial in blocking or ameliorating dystrophic pathology. As 

with all of these therapeutic compounds resulting from genetic modification or exogenous 

delivery, it is possible that human DMD patients may harbor protective or pathogenic 

variants in these genetic factors that may predict disease progression and outcomes. More 

whole genome studies of both healthy individuals and the DMD population are needed to 

test this hypothesis.

Genetic modifiers of DMD identified from study of affected patient 

populations

Case reports of DMD patients have revealed genetic modifiers that might explain differences 

in clinical severity. In one case report, a DMD patient presented a milder dystrophic clinical 

pathology, delayed loss of ambulation, and overall short stature due to a growth hormone 

(GH)-deficiency(78, 79). A double-blinded controlled study of monozygotic twin DMD 

boys in which one was administered the growth hormone inhibitor manzindol versus a 
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placebo revealed that the DMD twin receiving growth hormone inhibitor had greater 

mobility and reduced symptoms compared to his DMD twin on placebo(80). However, a 

larger double-blinded studies revealed that manzindol-treated DMD boys showed no 

significant benefit over placebo-treated individuals(81). DMD boys with growth hormone 

deficiency given growth hormone showed no acceleration of dystrophic disease progression 

in muscle or cardiopulmonary outputs(82, 83). It has been postulated based on natural 

history longitudinal studies in DMD boys and dystrophin-deficient animal models that short 

stature in DMD boys is beneficial for delaying the loss of ambulation(84). Mouse models of 

growth hormone-deficiency such as the Ames/Dwarf and Growth hormone receptor (GHR) 

mutant mice have revealed that short stature/growth retardation slows aging via alteration of 

metabolic responses to insulin/IGF1 signaling(85, 86). It is likely that the regulation of 

growth hormone may modulate DMD symptoms and influence phenotypic outcomes. The 

naturally occurring genetic variants resulting in short-stature/dwarfism in DMD patients 

have been reported to result in overall milder dystrophic pathology and better outcomes(87).

Due to the robust influence of inflammatory and fibrotic signaling in dystrophic muscle 

pathology, finding ways to alter these signaling pathways remains a promising strategy as 

more genetic modifiers have been identified. Recent whole exome analyses of the DMD 

population collected at various clinic sites have revealed additional genetic modifiers of 

DMD with ties to the TGFβ signaling pathway. Osteopontin is a secreted extracellular 

matrix protein thought to be essential for normal osteoclast formation and bone 

mineralization(88). Osteopontin protein was shown to be strongly increased in expression 

levels in the DMD patient muscle biopsies and the serum of mdx mice(89). The 

OSTEOPONTIN (SPP1) G allele polymorphism rs28357094 has been shown to be a 

predictive indicator of loss of ambulation and degree of muscle weakness in DMD 

patients(90, 91). Indeed, Osteopontin null mice show altered immune signaling and reduced 

muscle fibrosis in the mdx mice via reducing M1 and M2a macrophage populations to the 

more pro-regenerative M2c macrophage population subset(92). The Latent TGFβ Binding 
Protein 4 (LTBP4) gene was initially identified from a screen of gamma-sarcoglycan (Sgcg) 

null mice for cytoprotective single nucleotide polymorphisms (SNPs) between two interbred 

mouse strains(93). Studies in DMD patients revealed that four LTBP4 SNPs (V194I, T787A, 

T820A, and T1140M; VTTT/IAAM haplotype) were predictive of the age at onset of loss of 

ambulation and of dilated cardiomyopathy (DCM) onset(94, 95) (Table 1). Follow-up 

studies in mice and cell culture demonstrated that the IAAM residues bound more latent 

TGFβ compared to the LTBP4 VTTT protein(96). Thus, direct inhibition of LTBP4 via 

neutralizing antibodies or other RNA/protein antagonistic strategies may lead to a novel 

therapeutic means of blocking inflammation and myofiber breakdown in dystrophin-

deficient skeletal muscles. Whole exome analyses of a large DMD cohort demonstrated that 

a SNP at rs1883832 of the CD40 gene is predictive of the age at loss of ambulation and 

further implicated important roles in DMD for both the NFκB and TGFβ signaling 

pathways(97) (Table 1). CD40 is a cell surface receptor that is predominantly expressed on 

mature B cells as part of the Tumor Necrosis Factor (TNF) family of proteins(98). CD40 is 

required for immunoglobulin class switching and CD40 human polymorphisms have also 

been linked to increased susceptibility to immunological diseases(99, 100). The immune 

system has long been shown to have an important role in normal muscle growth and 
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regeneration, as well as the progression of muscular dystrophies(101, 102). The CD40 
rs1883832 SNP is likely to have functional immunological consequences for the progression 

of DMD symptoms as the dystrophic muscle begins to deteriorate with the advancing of the 

disease.

Genetic modifiers of Facioscapulohumeral muscular dystrophy

Facioscapulohumeral muscular dystrophy affects 1:8000 individuals worldwide and is 

caused by a contraction of D4Z4 expansion repeats in the DUX4 pseudogene resulting in the 

production of the myotoxic DUX4 protein(103, 104). DUX4 transcriptional activity is 

thought to activate pro-apoptotic signaling pathways, immune signaling regulators, and 

retrotransposons resulting in FSHD disease pathology(105). One of the more perplexing 

aspects of FSHD is the presence of the contracted D4Z4 repeat in asymptomatic familial 

carriers whom show no disease pathology(106, 107). It has been postulated that single 

nucleotide polymorphisms (SNPs) affecting DUX4 expression may allow for the permissive 

state of DUX4 transcriptional activation(108). Interestingly, mutations in the chromatin-

modifying gene structural maintenance of chromosomes flexible hinge domain containing 1 

(SMCHD1) result in the relaxing of chromatin thereby permitting the expression of the 

DUX4 protein and affected patients are categorized as FSHD type 2(109) (Figure 1). 

Additional FSHD epigenetic regulators including a long non-coding RNA (lncRNA) known 

as DBE-T, have been shown to regulate the expression of DUX4 in skeletal muscles via 

modulation of transcriptional regulatory complexes(110). The most interesting aspect of 

FSHD genetics is that many individuals in FSHD families have been identified as having the 

FSHD permissive allele, but do not have the phenotypic muscle weakness and thus cannot 

be diagnosed with FSHD(111). As more and more FSHD families and patients have their 

exomes and genomes fully-sequenced, additional genetic modifiers that may be 

consequential to disease progression and outcome will likely be identified.

Advances in DMD/FSHD therapeutic strategies and the potential use of 

corrective genome editing technologies

The identification of protective variants in human patients offers novel therapeutic entry 

points for the treatment of muscular dystrophies and muscle diseases in general. Improved 

adeno-associated viral (AAV) vectors for gene therapy and other biologics have been 

designed and delivered to patients to overexpress key cytoprotective muscle factors(112). As 

next-generation sequencing (NGS) has become cheaper and more accurate, larger-scale 

genomic analyses of healthy and diseased populations are now routinely being conducted. 

These studies are important to demonstrate the presence of genetic variations in specific 

regions of the human genome, and the function of transcriptional regulatory regions. The 

ENCODE (Encyclopedia of DNA Elements) project lists additional layers of epigenetic 

(non-DNA-dependent) regulation of gene expression of many common disease-causing 

genes(113). Non-coding RNAs (ncRNAs), RNA-splicing factors, and DNA methylation/

acetylation factors among other epigenetic elements were shown to be important post-

transcriptional regulators of human muscle diseases(114). The cost of whole genome 
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sequencing has dropped significantly, thus resulting in an increased consideration towards 

newborn screening of infants for diagnostic and epidemiological purposes(115, 116).

CRISPR genomic editing has emerged as a potential method for correcting small DNA 

mutations via targeting the specific mutation and replacing it with the corrected 

sequence(117). Several recent studies have shown that AAV-mediated CRISPR genomic 

editing can correct the dystrophin exon 23 mutation in the mdx mouse(118–121). Another 

recent study demonstrated up to 70% restoration of dystrophin protein expression in the 

myogenic area of AAV-CRISPR mediated correction of the mdx4cv (exon 53 mutation) 

mouse(122). While these therapies may hold promise for direct correction of small DMD 
point mutations or deletions, the majority of DMD patients have large, multi-exon deletions 

for which CRISPR-mediated genomic corrective editing is not currently feasible(30). 

Nevertheless, it may be possible to alter the genomic sequences of patients with muscular 

dystrophies and insert or remove the functionality of a therapeutic genetic modifier via 

CRISPR technology.

Recently, the exon-skipping compound eteplirsen (previously referred to as AVI-4658, 

Sarepta Therapeutics) was conditionally approved by the US Food and Drug Administration 

(FDA) for the treatment of DMD patients with genetically amenable dystrophin 

mutations(123). Eteplirsen functions via bypassing the dystrophin mutation (skipping 

dystrophin exon 51) resulting in the production of a chimeric, partially-functional dystrophin 

protein that produces a Becker-like phenotype (124). In a clinical trial of DMD boys 

amenable to skipping dystrophin exon 51, it was shown that DMD boys treated with 

eteplirsen retained ambulation longer than natural history controls with the same 

mutations(125). Gene therapies that overexpress a truncated form of dystrophin (micro-

dystrophin) have shown efficacy in DMD animal models and are in current clinical trials for 

DMD(126–128). The naturally-produced myokine myostatin (also called GDF8) has been 

shown to be a potent negative regulator of muscle mass in mammals(129). Subsequently, 

naturally occurring loss-of-function genetic mutations in the myostatin gene of Belgian Blue 

cattle was demonstrated to be the direct cause of the doubling of their muscle mass via 

muscle hypertrophy(130). Later, human case studies showed that myostatin genetic variants 

were responsible for the large, hypertrophic muscles in a young German boy(131). Genetic 

loss-of-function mutations of myostatin have been shown to induce muscle hypertrophy, and 

protect against muscle force deficits in mdx mice(132). Pharmacological blockade of 

myostatin or the myostatin receptor Activin IIB (ACVRIIB) similarly demonstrated a 

physiological benefit in protecting against muscle force loss in dystrophic mice(133, 134). A 

recent clinical trial involving a soluble form of the human activin receptor type IIB 

(ACE-031; produced by Acceleron Pharma) given to ambulatory DMD boys showed some 

benefits over placebo; although the trial was halted due to unforeseen side effects(135). A 

similar myostatin/TGF-β pathway inhibitory compound (ACE-081) is currently recruiting 

for a Phase 2 trial for FSHD patients to alleviate symptoms of muscle weakness (Clinical 

Trials Identifier: NCT02927080). While these compounds may ameliorate muscle weakness 

and other dystrophic symptoms, they do not correct the underlying cause of the muscle 

disease. Many additional strategies towards the treatment of DMD and FSHD are currently 

under development or in clinical trials and many of these therapeutic targets were originally 

identified from genomic modifiers of muscular dystrophies(136). It is likely that no single 
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treatment for DMD or FSHD will fully cure either disease, but combination treatments 

targeting multiple factors including those identified as genetic modifiers may improve 

muscle symptoms and extend the lifespans of affected individuals.

As genomic sequencing data from muscular dystrophies becomes more commonplace, the 

opportunity and ability to identify protective and pathogenic genetic modifiers of muscular 

dystrophies will increase dramatically. These novel genetic modifiers may hold biological 

clues as to why some individuals do not display muscular dystrophy symptoms despite 

having pathogenic variants. The exciting prospect of exploring these genetic modifiers as 

therapeutic agents for drug development may lead to novel treatments for treating these 

debilitating diseases.
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Figure 1. Schematic of significant genetic modifiers of Duchenne and Facioscapulohumeral 
muscular dystrophies and their sub-cellular localization in skeletal muscle
Dystrophin and the dystrophin-associated protein complex (DAPC) have an important 

functional role in the transmission of intercellular force to the extracellular matrix (ECM). 

Of note, Smchd1 is a chromatin-modifier protein that is believed to allow a permissive state 

for transcriptional activation of the pathogenic DUX4 transcription factor in FSHD Type 2.
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Table 1

Genes with Polymorphic Significance in the Clinical Manifestation of Muscular Dystrophies

Gene Name Abbreviation Normal Function Disease Modification Modification-Associated Phenotype

Genes with Identified Mutation or Significant Variant Contributing to Pathological Variation

α-Actinin-3 ACTN3 Skeletal muscle-specific actin 
binding protein

Homozygosity for SNP 
R577X in DMD patients

Reduced susceptibility to stretch-induced 
damage, enhanced fatigue recovery, and 
slowed dystrophic progression

Annexin A6 ANXA6 Calcium-dependent membrane 
and phospholipid binding 
protein

Exon 11 SNP rs26961431 
creates a truncated 
Annexin A6 protein in 
mice

ANXA6 truncation results in increased 
muscle wasting and degeneration in Sgcg 
mutant mice

CD40 Antigen CD40 Transmembrane receptor of the 
tumor necrosis factor receptor 
family; involved in T helper 
cell polarization

Minor allele rs1883832 in 
the 5′ UTR of CD40 
associated with 
diminished CD40 
expression

Differential factor for age of loss of 
ambulation in DMD patients

Growth 
Hormone/
Growth 
Hormone 
Receptor

GH/GHR Regulates normal growth and 
IGF1 signaling in muscle

Growth hormone-
deficiency comorbid with 
DMD in selected case 
reports

Case reports of DMD patients with 
dwarfism/short stature having delayed 
loss of ambulation

Latent TGFβ 
Binding Protein 
4

LTBP4 Regulator of TGFβ and TGFβ 
signaling

1. IAAM haplotype in 
DMD patients

1. Reduced inflammation and myofiber 
breakdown, increased time to loss of 
ambulation

2. Recessive T allele at 
rs10880 and IAAM 
haplotype in DMD 
patients

2. Protective against dilated 
cardiomyopathy (DCM)

Structural 
maintenance of 
chromosomes 
flexible hinge 
domain 
containing 1

SMCHD1 Chromatin modification; 
mediates CpG methylation and 
chromatin relaxation

In FSHD, allelic variants 
in SMCHD1 result in 
hypomethylation and 
inadvertent expression of 
DUX4; subsequent 
diagnosis of FSHD2, 
genotypically distinct 
from FSHD1.

FSHD type 2 allows for permissive 
expression of DUX4

Genes with Protein Expression Differences Contributing to Pathological Variation

α-7 Integrin ITGA7 Mediates cell-matrix 
interactions; receptor for 
basement membrane protein 
laminin-1

Increased expression in 
mdx mice via transgenic 
cassette or SU9516 
compound

Reduced membrane injury, increased 
muscle fiber size, decreased levels of 
fibrosis, extended lifespan

Biglycan BGN Small leucine-rich repeat 
proteoglycan; ubiquitous 
structural ECM protein

Increased expression of 
Biglycan corresponds 
with stabilization of 
Utrophin

Decreased diseased muscle pathology

Galectin-1 LGALS1 Laminin-binding protein; 
mediates cell-matrix 
interactions

Increased expression in 
GRMD dogs

Enhanced muscle repair, reduced 
immune response and apoptosis

Jagged1 JAG1 Ligand of the Notch receptor Increased expression in 
mdx mice

Improved dystrophic histology and 
physiology

Myostatin GDF8 TGF-β superfamily member Decreased expression in 
animals and humans

Doubling of muscle mass via myofiber 
hypertrophy

Osteopontin SPP1 Diverse matricellular protein 1. Decreased expression 
in mice and humans

1. Decreased immune signaling and 
fibrosis, increased muscle regeneration

2. Dominant G allele at 
SPP1 rs28357094

2. Protective against dilated 
cardiomyopathy (DCM)

Sarcospan SSPN A member of the DAPC, which 
provides a structural anchor of 

Transgenic 
overexpression in mdx 

Increased myofiber membrane stability 
and reduces muscle tearing
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Gene Name Abbreviation Normal Function Disease Modification Modification-Associated Phenotype

the myocyte cytoskeleton to the 
ECM

mice improves muscle 
function and force.

Utrophin UTRN Autosomal homolog of DMD 
gene; maintains sarcolemmal 
integrity during embryonic 
myogenesis

Overexpression of 
Utrophin in mice or with 
Ezutromid compound

Increased lifespan, decreased diseased 
muscle pathology
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