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Abstract

Despite the many recent advances in the field of epigenetics, application of this knowledge in 

environmental health risk assessment has been limited. In this paper, we identify opportunities for 

application of epigenetic data to support health risk assessment. We consider current applications 

and present a vision for the future.
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1. Introduction

Approximately 90,000 chemicals are currently used in commerce with more introduced 

annually. Yet, the potential for chemical exposures to affect human health has been evaluated 

in only a small fraction (<2%) of those chemicals [1,2]. Environmental protection programs 

strive to understand and protect human health from the adverse consequences of chemical 

exposures under the authority of numerous statutes, including the Clean Air Act (1990), Safe 

Drinking Water Act (1974), and the Frank R. Lautenberg Chemical Safety for the 21st 

Century Act (2016). Human health risk assessments produce qualitative and, if possible, 

quantitative summaries of the health outcomes associated with chemical exposures which 

are used to support decision making [3].
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A review of policies articulated by major risk assessment agencies suggests that detailed 

epigenomic risk assessment guidance has not been developed. Chemically associated 

epigenomic modifications, as potentially causal or contributory events to various diseases, 

however, are noted in several guidelines [4–8] and reports [9–17]. Additionally, agencies are 

developing testing guidance and repositories for standardized methods [5,17–20]. 

Importantly, agencies are confronting how to use epigenomics in practice, in chemical- and 

disease-specific assessments, e.g., di(2ethylhexyl) phthalate [21], endocrine disrupting 

chemicals [22], bisphenol A [23], as well as cancer and obesity [15,24]. The lack of 

extensive formal guidelines at this state of the science is not unusual. Detailed risk 

assessment guidelines tend to be developed to codify lessons learned in practice, rather than 

developed in advance of experience.

While the fundamentals of health risk assessment are well known, the application of data, 

methods, and models to support chemical evaluations is variable and related to the decision 

context. Although there is ongoing discussion regarding the benefits and validity of using 

epigenetic data in risk assessment, there is a growing body of evidence suggesting that 

epigenetic mechanisms have a critical role in determining adverse health outcomes. The 

epigenome functions to regulate gene expression through chemical modifications to DNA 

and its histone protein scaffolding, as well as through the use of noncoding RNAs. As a 

master regulator of gene expression, the epigenome is responsive to a range of 

environmental factors, including chemical exposure, diet, and stress. Within the context of 

an adverse outcome pathway (AOP), toxicant-induced changes in the epigenome could alter 

the dose–response relationship at one or more key element(s) and thus impact susceptibility, 

or result in inappropriate gene expression at a given time or space. In this manner epigenetic 

change can more directly affect an adverse outcome by modifying a key element. Thus, we 

believe the time is right to begin exploring how epigenetic data can be used to better inform 

risk assessment.

A variety of potential applications of epigenetic data in risk assessment are presented in Box 

1 (adapted from Afshari et al., 2011 [25]). How data are used for risk assessment differs by 

the confidence in the overall body of evidence and the confidence necessary to support 

various decisions. We have outlined three illustrative risk assessment applications requiring 

increasing levels of data confidence and indicate how epigenetic data may be used in each 

case: 1) chemical screening and prioritization; 2) limited scope, often non-regulatory, risk 

assessments; and 3) major scope, potentially regulatory, risk assessments (further described 

in Refs. [26,27]).

2. Methods and considerations in the application of epigenetics data in risk 

assessment

Measuring epigenetic alterations is substantially easier than interpreting the resulting data in 

terms of public health impacts. Interpretation is particularly difficult when apical outcomes 

may occur years subsequent to the epigenetic modification [28–31]. Interpretation is further 

complicated by variations in endpoint expression based on multiple factors in addition to 
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epigenetics that can contribute to disease, such as life stage when the exposure occurred, 

genetic profiles, lifestyles or conditions, or preexisting disease etc., [32–35].

Inclusion of epigenetic data in mechanistic characterizations can add confidence to an 

interpretation of observed alterations as being biologically significant and informative of 

adverse versus adaptive changes. Further, placing epigenetic data within the context of an 

adverse outcome pathway (AOP) or AOP network, which are chemically agnostic, enhances 

interpretation of mechanistic data, including data from well-studied, as well as less well-

studied chemicals.

In addition to mechanistic context, confidence in the body of evidence will depend on the 

following:

• The epigenome is highly complex and cannot be well represented by only 

considering the relationship between individual epigenetic modifications (e.g., 
DNA methylation) and exposure outcomes. Thus, research efforts should 

increasingly evaluate contributions from multiple epigenetic modifications 

and/or consider the integration of data from complimentary studies to assemble a 

more comprehensive representation of the epigenetic landscape at loci relevant to 

the outcomes of interest [36,37];

• Significant variability in tissues and experimental paradigms can exist, so 

confidence in data interpretation from non-target tissue, in vitro cell lines or, to a 

lesser extent, from primary cell cultures will be increased by coherence with 

other evidence streams [38];

• Species, strain, sex, inter-individual, and life-stage differences also can exist, so 

information on these factors is useful if available [36,39,40];

• Confidence in epigenetic data can be strengthened by evidence for causality, 

including pharmacologically blocking a specific epigenetic modification, 

resulting in the elimination or amelioration of the adverse outcome, and 

comparison of disease states with and without the epigenetic modification of 

interest.

Notably, corroboration of evidence can be garnered from the broader knowledge of systems 

biology rather than just chemical-specific evidence. For example, chemically induced 

epigenetic changes may be shown to alter expression of a specific gene, but the role of that 

specific gene in health may be derived from general knowledge and thus, the role of 

epigenetics in health implied.

Considering the three major epigenetic mechanisms (i.e., chemical modification of DNA, 

chemical modification of the histone scaffold, and the differential expression of non-coding 

RNAs), data from the chemical modification of DNA and the differential expression of non-

coding RNAs are most ready to incorporate into the risk assessment paradigm. Thus, there 

are good examples where chemical exposure causes changes in DNA methylation with 

subsequent alterations in gene expression that are associated with an adverse outcome (e.g., 
[31,32,41]). Similarly, chemical-induced changes in non-coding RNA expression have been 

identified that are both an adverse outcome biomarker (e.g., [42]), but also have been 
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demonstrated to be involved in the mechanism of toxicity (e.g., [43]). In contrast, despite an 

abundant literature describing the roles of histone modifications in regulating gene 

expression (reviewed in Ref. [44]), the exploration of these modifications in the context of 

classical toxicology and epigenetics, has only begun recently. Thus their incorporation into 

the risk assessment paradigm is more challenging at this time, yet whenever possible, is 

warranted because of the importance of this mechanism in modifying risk. Further, rapid 

advances in this field are already showing promise with regards to both facile and cost-

effective assessments (e.g., [45,46]).

Three illustrative applications of epigenomic data in chemical evaluation follow, with Fig. 1 

illustrating the application of evidence in hazard identification, dose–response assessment 

and risk characterization.

2.1. Screening assessments and prioritization

Screening assessments generally rely on relatively limited data to identify and prioritize 

chemicals for additional testing and research and, when necessary, for support in emergency 

response situations (e.g., Deepwater Horizon – Judson et al., 2010 [47]). Over time, 

screening assessments have begun to utilize higher throughput assays that can generate data 

more rapidly. This allows for much improved comparisons across chemicals due to similar 

assays being applied to groups of chemicals.

The crux for hazard identification generally is how to define adverse, which is particularly 

problematic for chemicals for which data are scarce. We propose that identifying the 

capability of a chemical to modify the epigenome is sufficient to assign it a higher priority 

for additional testing and research. In this context, it is unlikely that available epigenetic data 

alone would predict specific adverse health outcomes in humans.

Rather, epigenomic modification as observed in various assays could be indicative of the 

ability of a chemical to disrupt the epigenetic machinery (i.e., DNA methyltransferases, 

histone deacetylase, bromodomain-containing protein, etc.). Given the importance of these 

enzymes for cell fate and function, demonstrating disruption of any of these could be an 

indicator that important biological processes are likely to be altered. For example, BRD2 is a 

bromodomain-containing protein that is a constituent of multi-protein transcription factor 

complexes that play key roles in regulating gene expression [48]. BRD2 is considered to be 

an “epigenetic reader” because its bromodomains binds to acetylated histone protein, thus 

interpreting the epigenetic landscape and directing its parent transcriptional complexes to 

specific loci within the genome. By screening chemicals for their potential to alter the ability 

of the bromodomains within BRD2 to bind acetylated histones we could be able to identify 

those that should be investigated further (i.e., prioritized). In such case, inhibition of BRD2 

binding to acetylated histones would be the molecular initiating event (MIE) that would lead 

to a divergent AOP network comprised of several potential adverse outcomes. The final 

determination of the specific adverse outcome(s) associated with that chemical would occur 

during subsequent testing.

If data allow, relative rankings of chemicals based on epigenetic alterations, within similar 

assays, could be estimated by comparing some consistent measure of dose–response 
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relationships across chemicals. This concept is supported by the work of Kuppusamy et al. 

(2015) [49] who investigated the relationship between in vivo DNA methylation and cancer 

bioassay dose–response for 8 environmental toxicants. Their results indicated similarity 

between modeled points of departure (PODs) for cancer incidence and DNA methylation. 

While this work is based on a relatively small number of chemicals, these findings open the 

door to using epigenetics data, possibly even in vitro epigenetics data, in risk assessment.

In emergency response situations where decisions must be made rapidly, data on epigenetic 

alterations may be suitable to support urgent decisions. The inclusion of epigenetic 

endpoints in high throughput screening of the toxicological properties of chemicals would 

provide an opportunity to broaden the spectrum of potential effects that are assessed under 

such assays and strengthen confidence in the outcome of screening-level assessments.

2.2. Limited scope assessments

Limited scope assessments generally require additional data and greater confidence in the 

results beyond that required for screening chemicals for prioritization purposes. Limited 

scope assessments are usually consistent with the scale of the problem being addressed (e.g., 
local or regional impact), the type of solutions being considered (e.g., voluntary 

compliance), and/or data availability. An important feature of this type of assessment is the 

consideration of mechanistic-level information. In the case of epigenetic data, that could 

range from linking epigenetic modification(s) to an up- or down-stream event, such as a 

change in signaling linked to a suspected key event in a putative adverse outcome pathway 

or a downregulation in target gene transcription, respectively, to their inclusion in a fairly 

robust description of chemical-induced changes of multiple key events in a complete adverse 

outcome pathway or network. In limited scope assessments, information from multiple data 

streams may be available, including in vitro epigenetic data and traditional short-term 

bioassay data. A variety of new types of short-term in vivo assays are becoming increasingly 

available and will facilitate these types of assessments [50]. Further, the overlay of 

epigenetic data on top of the short-term in vivo and in vitro assays may help in creating an 

understanding of the probability of the effects to be long-lasting. There are a range of assays 

that are used to quantify changes in different aspects of the epigenome (see examples, Table 

1); however, each individual method has advantages and disadvantages. Ideally, either data 

from multiple epigenetic modifications (e.g. DNA methylation and histone modifications) or 

the net functional effect of epigenetic modifications on chromatin accessibility will be 

assessed together to get a more comprehensive perspective on epigenomic states and their 

relationship with exposures and health effects.

Establishment of a dose–response relationship also will strengthen the ability to conduct a 

limited scope assessment. Epigenetic modifications, particularly from primary cell culture or 

non-human in vivo data, could serve as a surrogate for estimating human dose–response. For 

dose–response assessment, either the lowest observed or modeled (e.g., using benchmark 

dose methods [62]), effects levels could be combined with uncertainty factors; or, ideally, 

dose–response relationships in the range of environmental exposures that are linked to 

internal dosimetry through pharmacokinetic modeling. Processes downstream from the 

epigenetic modification tend to modulate the apical outcome and thus an assessment based 
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on epigenetic changes can be viewed as a conservative estimate (i.e., public health 

protective). However, in the human population, it should be recognized that other factors 

such as lifestyle or co-exposures to other chemicals may exacerbate effects observed in the 

laboratory. Importantly, large amounts of data from efforts like the NIH Epigenome 

Roadmap Consortium (http://www.roadmapepigenomics.org) are becoming available and 

will facilitate epigenetic data-informed risk assessment.

2.3. Major scope assessments

Major assessments are those intended to address problems of national significance (e.g., 
particulate air pollution). Because of the economic cost of pollution control to the nation 

(often ≥ $100M/year), these assessments have high data/high confidence requirements in 

order to demonstrate that pollution controls will benefit public health by an equal or larger 

amount [63]. Consequently, these assessments are generally driven by epidemiological, 

clinical, and in vivo toxicology data.

For these assessments, epigenetic data are likely to serve several purposes: 1) provide insight 

into chemical exposure effects that are beyond the sensitivity or scope of detection of other 

methods (e.g. changes to the epigenome that alter long-term and/or multi-/trans-generational 

disease risk and/or susceptibility to subsequent chemical/non-chemical exposures); 2) 

provide a combination of highly reliable in vivo data and in vitro-derived mechanistic data; 

3) contribute to the weight-of-evidence that an effect is causally related to outcome via a 

well described mechanism; 4) identify sensitive sub-populations and life-stages; 5) add to 

dose–response information; and 6) increase confidence in the overall scientific evidence 

used for decision-making.

3. Conclusions

In this paper, we illustrate pragmatic paths to the consideration of epigenomic data in the 

toxicological evaluation of chemicals. There appears to be a scientific consensus that: 1) 

epigenomic modifications can have a role in or be a driver for a wide variety of diseases, 

such as cancer, obesity, diabetes, and cardiovascular diseases; 2) chemicals may alter the 

epigenome or disrupt mechanisms of epigenomic regulation; 3) epigenomic events are part 

of a complex, multifactorial determinants of disease (including environment and genetics) 

that can be adaptive, adverse or neutral; 4) understanding the mechanistic links from 

epigenomic modifications to adverse effects (i.e., AOP) is a key component of interpreting 

the significance of the event(s) to public health; 5) early life stages maybe particularly 

susceptible to epigenomic modifications and have the potential to cause later-in-life disease 

as a result of early-life exposures or alter intergenerational disease susceptibility or 

incidence. In contrast, there is some disagreement in the scientific community as to whether 

conduct of quantitative epigenomic risk assessment is premature due to incomplete 

knowledge. We propose, however, that epigenomic modifications that differ significantly 

from background and lead to pathogenic alterations in gene expression or cell signaling may 

be suitable for use in hazard identification and dose-response assessment, including the 

derivation of a point of departure.
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Box 1

Potential applications of epigenetic data in risk assessment

• Identify chemicals with potential to cause diverse and long lasting effects

• Elucidate mechanisms of action and affect weight of evidence conclusions

• Categorize compounds by mechanistic class, including chemicals of unknown 

apical outcome

• Rank by relative potency and epigenetic signature

• Assist in identifying susceptible populations and life stages

• Use as biomarkers of exposure and/or effect

• Help identify cumulative risk factors

• Better understand uncertainties of cross tissue, species and experimental 

paradigms

• Discern potential lowest effect levels or dose–response relationships as 

surrogates for traditional apical outcomes

(adapted from Afshari et al., 2011 [25]).
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Fig. 1. 
Potential application of epigenetic information to support risk screening, prioritization and 

assessment. LOEL = Lowest Observed Effect Level; DR = Dose Response; AOP = Adverse 

Outcome Pathway.
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