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Abstract

Autologous bone marrow mononuclear cell (BM-MNC) therapy for patients with ST-segment 

elevation myocardial infarction (STEMI) has produced inconsistent results, possibly due to BM-

MNC product heterogeneity. Patient-specific cardiovascular risk factors (CRFs) may contribute to 

variations in BM-MNC composition. We sought to identify associations between BM-MNC subset 

frequencies and specific CRFs in STEMI patients. Bone marrow was collected from 191 STEMI 

patients enrolled in the CCTRN TIME and LateTIME trials. Relationships between BM-MNC 

subsets and CRFs were determined with multivariate analyses. An assessment of CRFs showed 

that hyperlipidemia and hypertension were associated with a higher frequency of CD11b+ cells (P 
= 0.045 and P = 0.016, respectively). In addition, we found that females had lower frequencies of 

CD11b+ (P = 0.018) and CD45+CD14+ (P = 0.028) cells than males, age was inversely associated 

with the frequency of CD45+CD31+ cells (P = 0.001), smoking was associated with a decreased 

frequency of CD45+CD31+ cells (P = 0.013), glucose level was positively associated with the 

frequency of CD45+CD3+ cells, and creatinine level (an indicator of renal function) was inversely 
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associated with the frequency of CD45+CD3+ cells (P = 0.015). In conclusion, the frequencies of 

monocytic, lymphocytic, and angiogenic BM-MNCs varied in relation to patients’ CRFs. These 

phenotypic variations may affect cell therapy outcomes and might be an important consideration 

when selecting patients for and reviewing results from autologous cell therapy trials.
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Introduction

End-stage heart failure results in the deaths of more than 60,000 patients annually in the US. 

In the western world, the leading cause of heart failure is ischemic heart disease [59]. 

Several approaches have been proposed for the treatment of patients with ischemic heart 

disease (IHD), one of which is stem cell therapy. Although stem cell therapies have shown 

promise in preclinical studies as a treatment for IHD [22, 25, 33, 40], clinical trials have 

produced inconsistent results [1, 10, 13, 16, 20, 51, 52, 58]. Thus, efforts are underway to 

determine ways to optimize these therapies.

Patients with IHD have a wide range of cardiovascular risk factors (CRFs). In a study by 

Nauta et al. [32], 69.3% of patients with acute myocardial infarction (MI) had at least one 

CRF; from those, 39.2% had a single CRF, 21.7% had 2, and 8.4% had 3 or 4. These CRFs 

have been shown to correlate with changes in the frequencies of particular cell types in the 

blood. Recently, it was reported that hypertension is associated with an increase in the level 

of circulating CD11b+ cells [38], advanced age and smoking are associated with a decrease 

in circulating CD31+ leukocytes [14], age is inversely associated with the level of CD34+ 

cells [30], and diabetes is associated with a decrease in circulating endothelial progenitor 

cells [26].

Changes in the cellular composition of the blood and bone marrow (BM) could affect the 

outcomes of IHD. For example, Cogle et al. [8] showed a negative correlation between the 

percentage of CD11b+ cells in the BM and post-infarct left ventricular ejection fraction 

(LVEF) in patients with ST-segment elevation myocardial infarction (STEMI), regardless of 

whether they received BM mononuclear cells (BM-MNCs) or placebo. In addition, Schutt et 

al. [41] found that infarct size reduction after STEMI was greater in patients who had a 

higher percentage of CD31+ mononuclear cells in the BM.

We hypothesized that a patient’s CRFs may affect the frequencies of specific angiogenic, 

lymphocytic, monocytic, and hematopoietic cells within the BM, which could, in turn, 

impact the efficacy of autologous BM-MNC therapies. To test this hypothesis, we assessed 

the relationships between the frequencies of BM-MNCs expressing CD34, CD31, CD3, 

CD14, CD11b, CD19, CD45, and C-X-C chemokine motif receptor 4 (CXCR4) and 8 CRFs 

in patients with STEMI.
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Methods

For this retrospective analysis, our study cohort comprised patients who participated in the 

Cardiovascular cell therapy research network (CCTRN) transplantation in myocardial 

infarction evaluation (TIME) and LateTIME trials and provided consent to have their 

remaining BM-MNC product further analyzed at the CCTRN Biorepository [51–54, 62]. 

The CCTRN TIME and LateTIME trials had similar inclusion criteria but differed in the 

timing of BM aspiration and cell delivery after STEMI. Institutional Review Boards at each 

clinical site approved the protocols for both trials, and all participants provided written 

informed consent.

Flow cytometry

BM-MNC samples collected at baseline (i.e., before treatment) were immunophenotyped via 

polychromatic flow cytometry to determine the frequency of hematopoietic, lymphocytic, 

monocytic, and angiogenic precursors in the BM, as previously described [51, 53]. Briefly, 

1–5 million BM-MNCs incubated with antibodies against CD34, CD11b, CD31, CD45, 

CD3, CD14, CD19, and CXCR4 for 20 min at 4 °C in the dark, washed twice in 2.5% 

phosphate-buffered saline (PBS), and then resuspended to a final volume of 1 mL in 2.5% 

PBS for flow cytometry analysis. Samples were analyzed with an LSR II flow cytometer 

(Becton–Dickinson, Franklin Lakes, NJ, USA), and the data were analyzed with the FlowJo 

software (Tree Star, Inc., Ashland, OR, USA). All analyses were performed on gated 

lymphocytes or monocytes or using the International Society of Hematotherapy and Graft 

Engineering (ISHAGE) gating strategy [45]. Figures 1 and 2 show examples of the gating 

strategies used to determine the frequencies of specific lymphocyte, monocyte, and 

hematopoietic stem cell populations in the BM samples.

Statistical analyses

Patients from the TIME and LateTIME studies were combined into a single cohort for all 

analyses. Demographic data are shown as counts and percentages for dichotomous and 

polychotomous variables and as means and standard deviations for continuous variables. We 

calculated the associations between the frequencies of eight BM-MNC subsets (Table 1); 

specifically, each of the subsets was the dependent variable in a multiple regression model 

that contained one of eight CRFs (self-reported hypertension, hyperlipidemia, diabetes 

mellitus, and smoking, as well as sex, age, creatinine level, and blood glucose level) plus a 

dichotomous variable reflecting the study (TIME or LateTIME). In this exploratory analysis, 

no corrections made for multiplicity. All analyses conducted using SAS 9.3 (SAS Institute, 

Cary, NC, USA).

Results

Baseline clinical characteristics

The current study included 191 patients who provided consent for BM analysis by the 

CCTRN Biorepository. Demographic and CRF data for the current study cohort are reported 

in Table 2. The mean age of the population analyzed was 56 years (standard deviation, 11), 

and only 15% (n = 28) of the participants were female.
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Associations between cardiovascular risk factors and BM-MNC subsets

A multivariable model was used to explore the relationships between eight CRFs 

(hyperlipidemia, hypertension, diabetes, sex, smoking, age, blood glucose level, and 

creatinine level) and the frequencies of particular BM-MNC subsets at study baseline, as 

determined by flow cytometry (Table 3). After adjusting for study, hyperlipidemia and 

hypertension were found to be positively associated with the frequency of CD11b+ 

monocytes. Surprisingly, diabetes was not associated with changes in any of the cell types 

assessed. Women were found to have lower frequencies of CD11b+ and CD45+CD14+ 

monocytes than men, and smokers had a lower frequency of CD45+CD31+ lymphocytes 

than non-smokers. Negative associations existed between age and the frequency of 

CD45+CD31+ lymphocytes (Fig. 3) and between creatinine level and the frequency of 

CD45+CD3+ cells. A positive association was found between glucose level and the 

frequency of CD45+CD3+ T-cell precursors. These data suggest that in our cohort of patients 

with STEMI, CRFs thought to influence IHD outcomes may have also affected the cellular 

composition of the BM, particularly the frequency of specific monocyte and lymphocyte 

subsets.

Discussion

Exploratory studies conducted in conjunction with the CCTRN TIME, LateTIME, and 

FOCUS trials have shown associations between specific BM-MNC subsets and clinical 

outcomes [35, 49, 51, 52]. It has been suggested that CRFs, such as age and sex, play an 

important role in a patient’s response to cell therapy [47, 61]. However, to date, there has 

been no comprehensive assessment of how patient characteristics may alter BM composition 

in STEMI patients; thus, it is unknown whether or how the composition of autologous BM-

MNC products may be altered by patients’ CRFs.

In the current study, we looked for associations between specific BM-MNC subsets and 

eight CRFs in STEMI patients enrolled in either the TIME or LateTIME trials. 

Hypertension, hyperlipidemia, sex, smoking, age, glucose, and creatinine levels were found 

to be associated with differences in BM composition in these patients. These data suggest 

that each patient’s BM composition differs according to the individual’s CRF profile. Thus, 

these attributes may affect the composition of the autologous BM-MNC therapy received 

and the associated outcomes.

An inflammatory process that involves the transmigration and accumulation of both innate 

and adaptive immune cells into the interstitium of affected tissues may play a role in 

hypertension [28]. Furthermore, hypertension has been associated with atherosclerosis, 

endothelial dysfunction, and the accumulation of monocytes within the endothelium [17]. 

However, the effects of hypertension on human BM monocytes are not defined. In this study, 

hypertension was positively associated with the frequency of CD11b+ cells in the BM. To 

our knowledge, our study is the first to describe an association between hypertension and the 

level of BM monocytes in humans. Increased expression of CD11b is suggested to stimulate 

the development of IHD by promoting myocyte oxidative injury and myocardial hypertrophy 

[12, 31]. Interestingly, Cogle et al. [8] found that an increased level of CD11b+ cells in the 

BM of patients at 1–3 weeks after acute MI was associated with worse LVEF at the 6-month 
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follow-up. Our results suggest that hypertension may predispose an individual to increased 

levels of CD11b+ cells and, thereby, to poor outcomes after STEMI.

Hyperlipidemia, a well-known CRF, is associated with plaque formation and vessel rupture 

[3] by increased endothelial permeability to LDL cholesterol. In our study, we found an 

association between the frequency of CD11b+ cells and hyperlipidemia. Similarly, Serrano 

et al. [42] observed an increase in the circulating numbers of CD11b+ cells in patients with 

untreated hypercholesterolemia. Furthermore, they observed decreased numbers of 

circulating CD11b+ cells and LDL cholesterol in these patients after treatment. These 

findings suggest that this cell type plays an important role in the pathogenesis of 

atherosclerosis.

Increased age is a major contributor to endothelial dysfunction [5, 6, 11, 43, 44, 46] and an 

increased risk of developing IHD [39]. In our study, increased age was inversely associated 

with the frequency of CD45+CD31+ lymphocytes. This is similar to the findings of, both 

Hur et al. [19] and Ge et al. [14] who showed an inverse correlation between the level of 

circulating peripheral blood CD31+ T cells and age. One possible explanation for this 

decrease in cell number with age is age-related apoptosis. Kushner et al. [27] showed that 

caspase-3, a critical downstream protein involved in the execution phase of the apoptotic 

pathway, is higher in CD31+ T cells of middle-aged and older men than in those of younger 

men, supporting this correlation between age and apoptosis of CD31+ cells. Interestingly, 

increased age has been shown to be associated with increases in cellular apoptosis more 

broadly and of course with the incidence of cardiovascular disease [28]. This loss of 

angiogenic lymphocytes with age, or immunosenescence of multiple cell types, suggests that 

the BM-MNC products from elderly patients may be less effective as a cell therapy. Another 

cell type shown to change in frequency with age is CD34+ cells. Moresi et al. [30] found that 

the number of circulating CD34+ cells significantly decreased with increasing age in a 

population of healthy individuals (age range 16–100 years old). Although our results showed 

a similar trend, the association was not statistically significant. The lack of significance may 

have been due to differences in the sample types assessed (blood vs bone marrow) or due to 

differences in the age range and health status of the respective study participants. Because 

the patients in our study had sustained an MI recently, the CD34+ stem cells may have been 

released into circulation in response to the recent injury, thereby masking the effects of age 

on this cell population.

Furthermore, female sex has been found to be associated with a lower risk of death due to 

coronary artery disease after adjustment for CRFs and age [55]. In this study, female sex was 

associated with decreased levels of BM CD11b+ and CD45+CD14+ monocytes. Sex steroids, 

including estrone, progesterone, and testosterone, can modulate the ability of monocytes and 

platelets to adhere to endothelial cells and, therefore, can either induce or inhibit the 

initiation and progression of vascular lesions [9]. Estrone, which is higher in women than in 

men, reduces the surface expression of CD11b and decreases monocyte adhesion to 

endothelial cells exposed to the pro-inflammatory agent lipopolysaccharide, suggesting that 

it may inhibit endothelial injury under inflammatory conditions [9]. Although we did not 

measure the serum levels in our cohort of patients, it is known that estrone production does 
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not stop after menopause [15]. Similar to our results, Heimbeck et al. [18] found that the 

level of circulating CD45+CD14+ monocytes is lower in women than in men.

Finally, cigarette smoking may cause apoptotic cell death and cellular senescence, and may 

inhibit repair functions [24]. We found that smoking was associated with a decrease in BM 

CD45+CD31+ lymphocytes. Similar to our findings, Ge et al. [14] found a negative 

association between smoking and the level of circulating CD45+−CD31dim lymphocytes in 

healthy men and women. Further investigation of this cell type is warranted to determine its 

role in the prevention or repair of cardiac injury.

Study limitations

This study had several limitations. Before the TIME and LateTIME trials began, we chose 

the BM-MNC phenotypes and CRFs to assess based on the current knowledge of the factors 

that affect the repair process after acute MI, balanced by available fiscal resources. The 

fields of cardiovascular regeneration and cell therapy have evolved rapidly since the design 

of TIME and LateTIME studies; recent studies have revealed multiple cell types that may 

contribute to cardiovascular outcomes. Unfortunately, some of the cell populations that are 

now recognized as important in this field were either not understood 8 years ago or were too 

costly to evaluate in the first in-depth analysis, and thus were not included in the design of 

TIME and LateTIME. In particular, cell populations involved in pro-inflammatory 

responses, such as CD14++/CD16− monocytes (“classical”, Mon1), CD14+/CD16++ 

monocytes (“non-classical”, Mon3), and CD14++/CD16+ monocytes (“intermediate”, 

Mon2), which are considered independent predictors of cardiovascular events [37], were not 

evaluated. We also did not assess the levels of T-cells subsets: CD3+CD4+ cells (T-helper 

cells), CD3+CD8+ cells (cytotoxic T cells), and other cell subsets now known to be involved 

in anti-inflammatory responses, (e.g., CD4+CD25+CD127low cells regulatory T cells) [56]. 

We identify this as a shortcoming of the study design. Unfortunately, because cell 

phenotypes can only be analyzed in fresh samples, we are not able to assess these newly 

recognized phenotypes. Despite this, we feel that our results provide a relatively 

comprehensive assessment of BM phenotypes in patients with STEMI. Another limitation 

was that the BM-MNC products were obtained from a cohort of patients with multiple risk 

factors, potentially making it difficult to discern associations between specific BM-MNC 

frequencies and individual CRFs. In addition, all the patients in this study had an STEMI 

event before the BM-MNCs were collected, which could have overshadowed other factors 

affecting the composition of the BM. Moreover, the timing between the STEMI event and 

BM-MNC collection varied among patients. Finally, because our study had a low number of 

patients in some demographic (e.g., females) and CRF groups (e.g., diabetes), the statistical 

power for these groups may have been too low to detect all associations between these 

factors and BM-MNC populations.

Conclusions

To our knowledge, this is the first study to show associations between specific CRFs and the 

frequencies of particular BM-MNC subsets, including monocytes and lymphocytes, in 

patients with STEMI. Because of the exploratory nature of this study, we cannot determine 
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whether the CRFs directly affected the BM composition or if other factors contributed to this 

association. Future studies will be necessary to assess whether a cause-and-effect 

relationship exists. Since the BM obtained from patients who had hyperlipidemia or 

hypertension who were advanced in age or who smoked showed changes that would be 

expected to be unfavorable for cardiac repair, our results suggest that the BM product from 

these patients may be less effective as a cell therapy than that from healthier individuals. If 

this is proven to be true, patients’ CRFs may need to be considered when designing future 

autologous cell therapy studies and assessing clinical outcomes.
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Fig. 1. 
Gating strategy used for analyzing CD11b+ and CD45+−CD14+ monocyte subsets and 

CD34+ hematopoietic stem cells (HSC) in the bone marrow (BM). a Representative dot plot 

showing the gates used to identify bone marrow mononuclear cell (BM-MNC) populations 

based on forward scatter (FSC-A) and side scatter (SSC-A). b Representative histogram 

showing CD11b+ cells within the monocyte gate. c Representative histogram showing the 

CD14+ cells (right panel) gated from CD45+ cells (left panel) within the monocyte gate. d 
Representative dot plot showing the CD45dimCD31+ SSClow HSCs using the ISHAGE 

gating strategy (not shown). Percentages shown in b and c are based on the total monocyte 
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population. Percentage shown in d is based on the CD45+ cells. All data presented are from 

a single patient
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Fig. 2. 
Gating strategy used for analyzing CD45+CD31+ and CD45+CD3+ lymphocyte subsets. a 
Representative dot plot showing CD45+CD31+ cells (Q2) within the lymphocyte gate. b 
Representative dot plot showing the CD45+CD3+ cells (Q2) within the lymphocyte gate. 

Percentages shown in a and b are based on the total lymphocyte population. All data 

presented are from a single patient
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Fig. 3. 
Association between the frequency of CD45+CD31+ lymphocytes and age. Dot plot showing 

that the percentage of CD45+CD31+ cells in the bone marrow decreased with age
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Table 1

Identification of bone marrow cell subsets according to phenotype

Phenotype BM-MCSs Type Involvement in CVD

CD34+ Hematopoietic stem cells Angiogenesis and attenuation of negative left ventricular remodeling [21, 22, 35, 50]

CD11b+ Monocytes Worsening of LVEF after AMI [8]

CD34+CD31+ Angiogenic cells Angiogenesis in ischemic vascular disease and reduction in infarct size [36, 41, 60]

CD45+CD31+ Lymphocytes (T cell) Angiogenesis and vasculogenesis [23]

CD45+CD3+ Lymphocytes (T-cell precursor) Immunoregulatory and cytotoxic effects [2, 4]

CD45+CD14+ Monocytes Vascular inflammation in atherosclerosis [29, 57]

CD45+CD19+ Lymphocytes (B cell) Protective immunity during atherosclerosis [7]

CD19+CXCR4+ Lymphocytes (B cell) Improvement in heart function [34, 48, 49]

AMI acute myocardial infarction, LVEF left ventricular ejection fraction
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Table 2

Baseline demographics and cardiovascular risk factors of patients in the study cohort

Characteristics

Demographics

 Age, mean (SD), years   56 (11)

 Female, n (%)   28 (15%)

Cardiovascular risk factors

 Diabetes, n (%)   39 (20%)

 Hypertension, n (%) 107 (56%)

 Hyperlipidemia, n (%) 130 (68%)

 Total cholesterol, mean (SD), mg/dL 167 (48)

 HDL cholesterol, mean (SD), mg/dL   37 (12)

 LDL cholesterol, mean (SD), mg/dL, (n = 189) 102 (45)

 Total/HDL cholesterol ratio, mean (SD), (n = 190)  4.6 (1.7)

 Creatinine, mean (SD), mg/dL  0.9 (0.2)

 Smoking, n (%) 115 (60%)

 Systolic blood pressure, amean (SD), mmHg 113 (14)

n = 191 unless otherwise noted

HDL high-density lipoprotein, LDL low-density lipoprotein

a
At initial discharge
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