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Abstract

Optimization-based algorithms for image reconstruction in multi-spectral (or photon-counting) 

computed tomography (MCT) remains a topic of active research. The challenge of optimization-

based image reconstruction in MCT stems from the inherently non-linear data model that can lead 

to a non-convex optimization program for which no mathematically exact solver seems to exist for 

achieving globally optimal solutions. In the work, based upon a non-linear data model, we design 

a non-convex optimization program, derive its first-order-optimality conditions, and propose an 

algorithm to solve the program for image reconstruction in MCT. In addition to consideration of 

image reconstruction for standard scan configuration, an emphasis of the work is on investigating 

the algorithm’s potential for enabling non-standard scan configurations with no or minimum 

hardware modification to existing CT systems, which can be of potential practical implications for 

lowered hardware cost, enhanced scanning flexibility, and reduced imaging dose/time in MCT. 

Numerical studies are carried out for verification of the algorithm and its implementation, and for 

a preliminary demonstration and characterization of the algorithm in reconstructing images and in 

enabling non-standard configurations with varying scanning angular range and/or X-ray 

illumination coverage in MCT.

1. Introduction

There is an increased level of interest and effort in research and development of 

multispectral (or photon-counting) computed tomography (MCT) in recent years, fueled by 

the advances in detector technology and system development [1–7] and by the expectation of 

its potential clinical benefit [8–12]. In realistic CT imaging, a non-linear data model is 

necessary for incorporating appropriately the product of incident X-ray spectrum and 

detector-energy response, which is referred to as X-ray spectrum. In MCT, multiple sets of 

data are collected with different X-ray spectra, and one seeks to determine basis images, 

which can then be used to form CT images at X-ray energies of interest.

Methods have been developed that first compensate approximately for the nonlinear effect 

by decomposition of data collected into X-ray transforms of individual basis images and 

then reconstruct basis images through the inversion of the X-ray transforms estimated [4, 

13–16]. There also exist methods that were developed based upon a linear X-ray transform 

for approximately reconstructing images individually or jointly from the data sets and 

HHS Public Access
Author manuscript
Phys Med Biol. Author manuscript; available in PMC 2018 November 02.

Published in final edited form as:
Phys Med Biol. ; 62(22): 8763–8793. doi:10.1088/1361-6560/aa8a4b.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



subsequently forming the basis images by linear combination of the reconstructed images 

[17–19]. Interest exists in developing the one-step inversion approach to reconstructing basis 

images directly from data collected by inverting the non-linear data model [20–26].

A carefully designed one-step inversion approach may be exploited to reconstruct basis and 

monochromatic images in MCT for a variety of scan configurations or systems of potential 

practical significance. We investigate in the work an optimization-based one-step inversion 

approach in which an algorithm is developed to reconstruct basis images through solving 

numerically a non-convex optimization program based upon the non-linear data model in 

MCT. In particular, we demonstrate the algorithm potential for enabling non-standard 

scanning configurations of practical significance involving no or minimum hardware 

modification.

The paper is organized as follows. In Section 2, we describe the development of the one-step 

inversion approach, which includes non-linear data models, a non-convex optimization 

program, an algorithm for numerically solving the program, and convergence conditions. 

Section 3 summerizes the study design, including spectra, phantoms, and configurations. 

Following the verification and characterization studies on the algorithm in Sections 4 and 5, 

we carry out in Section 6 an investigation to demonstrate the potential of the algorithm 

proposed for enabling non-standard scanning configurations of practical implications. 

Discussion of the algorithm and studies is given in Section 7.

2. Optimization-based Image Reconstruction in Multispectral CT

2.1. Continuous-to-discrete (CD)-data model

In MCT, one seeks to determine X-ray linear attenuation coefficient  from 

knowledge of multiple transmission measurements. We decompose , a function of 

X-ray photon energy E and spatial coordinates , into the form

(1)

where k ∈ ℤ+, and μk(E) and  are referred to as decomposition coefficients and basis 

images. The decomposition can be e.g., material or interaction based [13] depending upon 

how μk(E) is selected. Assuming that the decomposition coefficients are known, we simplify 

the problem of image reconstruction in MCT to the determination of the basis images, which 

are functions only of spatial variable . In this work, a material decomposition is considered 

in which the mass-attenuation coefficient of the kth basis image material is selected as μk(E).

Letting  denote the X-ray spectrum for ray j with spectrum s, and  and  the 

transmission measurements for ray j in the presence and absence, respectively, of , 

we can define a data model as , which can be written further as
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(2)

(3)

where  denotes the source position,  the direction of ray j, s ∈ {1,⋯, S}, S the total 

number of X-ray spectra used, and

(4)

the normalized spectral function satisfying . Spectrum function  can 

be ray-dependent in cases that a bow-tie filter is placed in front of the X-ray source and/or 

that multiple measurements can be made for a given ray, e.g., using multiple energy bins in 

photon-counting detector.

Because , μk(E), and  are functions of continuous variable E or , and because 

 for ray j is specified by discrete index j, we refer to equation (2) as a continuous-to-

discrete (CD)-data model, which is used for obtaining discrete-to-discrete (DD)-data models 

below. When , the CD-data model becomes the conventional X-ray 

transform for ray j [27].

In practical CT imaging with spectrum s, measurements made at a discrete source position 

 form a two-dimensional (2D) array consisting of rows and columns indexed by  and 

. Let  denote the total number of discrete source positions and  and  the total 

numbers of rows and columns of the detector-measurement array at the source position, we 

can align all the measurements into a one-dimensional (1D) array in a concatenated form in 

the order of , , and , with elements indexed by 

, and j ∈ {0, ⋯, J[s]−1}.

2.2. Discrete-to-discrete (DD)-data models

The energy space can be discretized uniformly with E = mΔE, where m ∈ {1,⋯, M} and ΔE 

the energy sampling interval. The discretized form of the normalized spectrum function in 

equation (4) is defined as  satisfying normalization condition 

. We also consider a voxel-based representation of three-dimensional (3D) image 

space by discretizing evenly its x-, y-, and z-axis, with x = x0 + ixΔx, y = y0 + iyΔy, and z = 

z0 + izΔz, where ix ∈ {0,⋯, Nx – 1}, iy ∈ {0,⋯, Ny – 1}, and iz ∈ {0,⋯, Nz – 1}. Nx, Ny, and 
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Nz denote the total numbers of voxels, Δx, Δy, Δz the voxel sizes and x0, y0, z0 starting 

positions along x, y, and z-axis, respectively. The voxels can be aligned into a 1D array of 

size I = Nx × Ny × Nz in a concatenated form in the order of ix, iy, and iz, indexed by i = ix + 

iy × Nx + iz × Ny × Nz.

For spectrum s, using equation (2) and the discrete image array, we obtain a DD-data model 

as

(5)

where j ∈ {0,⋯, J[s] – 1}, i ∈ {0,⋯, I − 1},  denotes the intersection length of ray j with 

voxel i,  the discrete linear attenuation coefficient at energy m

(6)

where μkm = μk(mΔE), and bki discrete basis image k at voxel i. Subscript i indicates that 

and bki are in the concatenated form described above.

When K basis images are considered, we obtain a discrete form of equation (1) as

(7)

where k ∈ {1,⋯, K}, and Δfim the difference between  and fim. We refer to fim and Δfim, 

as the monochromatic image, and the image decomposition error within voxel i at energy m. 

Vector images  and fm of size I at energy m can be formed with elements fim and , 

respectively. Similarly, basis-image vector bk of size I can be assembled in which entry i is 

given by bki.

Ignoring decomposition error Δfim in equation (5), we obtain another DD-data model as

(8)

where k ∈ {1, ⋯, K}, and b denotes an aggregate basis-image vector formed by 

concatenating individual basis-image vectors bk in the ascending order of k. For simplicity, 

we refer to b as the basis image.

The reconstruction algorithm is designed based upon the DD-data model in equation (8) in 

the work. When the algorithm is applied to data collected in real experiment or generated by 
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use of a data model (e.g., equation (5)) other than equation (8), the data necessarily contain 

inconsistencies such as noise and/or decomposition error with the data model in equation 

(8).

Variable b in model data  indicates explicitly that the reconstruction task is to 

determine b from knowledge of data measured. Considering all of the measurements with 

spectrum s, we form vector g[s](b) of size J[s], with elements . An aggregate vector 

g(b) of model data can then be assembled by concatenating g[s](b) in the ascending order of 

s. Additionally,  of size M is used to denote a vector of discretized spectrum in which 

entry  indicates value of spectrum s at energy m for ray j. Let  denote the measured 

data for ray j with spectrum s, which can be used to form aggregate vector , i.e., the 

counterpart of model data g(b) as discussed above.

2.3. Non-convex optimization program

Image reconstruction in MCT is tantamount to the determination of basis image b by 

inverting the DD-data model in equation (8) from knowledge of measured data , which 

can be formulated as a constrained optimization program in the form of

(9)

where data constraint parameter ε > 0, and ⪰ denotes the vector-form inequality, which 

requires all elements of b to be non-negative. In this work, we design the objective and data-

fidelity functions as

(10)

where ‖·‖TV denotes the image total-variation (TV), defined as the ℓ1-norm of the gradient-

magnitude image, i.e., ‖bk‖TV = ‖(|∇bk|)‖1, with ∇ denoting the finite-differencing 

approximation to the gradient and ‖·‖ a spatial magnitude operator, and D(x, y) the data 

divergence, often in the form of ℓp-norm or Kullback-Leibler (KL) divergence, between 

vectors x and y. We consider in this work a normalized ℓ2-norm of vector difference between 

model data g(b) and measured data , i.e.,

(11)
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2.4. An algorithm for numerically solving the non-convex program

Data divergence  is non-convex (NC) due to the non-linearity of the DD-data 

model, so is the optimization program in equations (9)-(11). In the absence of a 

mathematically exact solver for achieving the globally optimal solution of the non-convex 

optimization program, we propose instead an heuristic algorithm for numerically solving the 

program and demonstrate its potential in enabling MCT configurations of potential 

application significance.

2.4.1. Linear and non-linear contributions to the DD-data model—We first split 

mass-attenuation coefficient μkm in equation (8) into [14,28]

(12)

where

(13)

While  is independent of energy as it is a spectrum-weighted average of μkm over energy, 

 remains energy dependent. Substitution of equation (12) into equation (8) yields

(14)

where j ∈ {0,⋯, J[s] − 1},

(15)

and

(16)

denote linear (LI) and non-linear (NL) functions of b, respectively, and can be used to form 

two aggregate vectors ḡ(b) and Δg(b) in the same way of forming g(b). In particular, 

 and matrix  is given by
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(17)

where matrix , of size J[s] × I and with element , denotes the discrete X-ray transform 

for all measurements made with spectrum s, and  a diagonal matrix of size J[s] with 

diagonal elements .

The DD-data model in equation (8) for an individual ray can then be re-expressed in a 

matrix form for all of the rays considered as

(18)

While equation (18) is only a different form of the DD-data model in equation (8), it reveals 

that it is NL term Δg(b) that results in the non-convexity of the data divergence and thus of 

the optimization program.

2.4.2. A procedure for numerically lowering the non-convex data divergence—
In an attempt to facilitate the derivation of the procedure, we first assume that NL term 

Δg(b) is known and denoted by . Under this condition, the DD-data model in equation 

(18) becomes a linear equation, i.e., , and data divergence 

 and the optimization program consequently becomes convex, which can 

then be solved by use of a host of well-established algorithms [29–31].

The projection-onto-convex-sets (POCS) procedure can be used to lower convex 

 with the updating step

(19)

where j ∈ {0,⋯, J[s] – 1},  is the jth element with spectrum s of ,  a row vector 

that is the jth row of matrix ,  a column vector as the transpose of , and 0 < γ(n) 

< 2.

Using b(n) in equation (16), one can calculate
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(20)

We then propose to use  as an estimate of  in equation (19), and thus obtain 

an NC-POCS update procedure as

(21)

which has a form identical to that of the conventional POCS, except for that at iteration n, 

 is calculated to compensate for the NL effect [28].

2.4.3. The ASD-NC-POCS algorithm for the non-convex program—Combining 

this NC-POCS procedure for lowering  with the steepest descent (SD) for 

lowering the TV objective function, we obtain an heuristic ASD-NC-POCS algorithm for 

numerically solving the non-convex program specified by equations (9)-(11). Like the 

conventional ASD-POCS algorithm [29], the ASD-NC-POCS algorithm adaptively lowers 

the image TV and data divergence by use of the SD and NC-POCS procedures for image 

reconstruction in MCT, with its pseudo-code in Algorithm 1. In a reconstruction, once the 

practical convergence condition on the data constraint is satisfied, we apply gradient descent 

steps to further lowering data divergence so that other practical convergence conditions can 

be met rapidly [32]. While there is no proof whether the ASD-NC-POCS algorithm can 

mathematically solve the non-convex program considered, we devise below its necessary, 

convergence conditions.

2.5. Reconstruction parameters

There are two types of parameters involved in an optimization-based image reconstruction, 

which are referred to as program and algorithm parameters. The former specify the 

optimization program in equation (9), including image voxel, spectra , system matrices 

, and parameter ε. Different choices of program parameters necessarily lead to different 

optimization programs and thus different designed solutions. In this work, we focus on the 

investigation of ε that impacts dominantly the reconstruction, while selecting image voxel, 

, and  similar to those used in practical applications. The algorithm parameters such 

as γ(n), NTV, and αk(n) in Algorithm 1 control the algorithm path leading to the designed 

solution. While they have no effect on the designed solutions, they can impact the numerical 

reconstructions especially for a non-convex program. In this study, we use the same 

algorithm parameters as those used in the conventional ASD-POCS algorithm [29].

We consider three necessary, mathematical convergence conditions for the ASD-NC-POCS 

algorithm:
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(22)

as iteration number n → ∞, where unit vectors  and  are defined in 

Appendix A [29]. The second condition is for the optimality of the objective function, 

whereas the other two are the local optimality conditions, i.e., the Karush-Kuhn-Tucker 

(KKT) conditions, as shown in Appendix A. While the mathematical convergence 

conditions cannot be met in practical reconstructions, they are used to devise practical 

convergence conditions for studies discussed below.

Algorithm 1

pseudo code for the ASD-NC-POCS algorithm

1:

Initialize , 

2: repeat iterations

3:  - POCS update -

4:  for s = 1 to S do

5:   for j = 0 to J[s] − 1 do

6:    for k = 1 to K do

7:

     

8:    end for

9:   end for

10:  end for

11:  - TV descent update -

12:  for t = 1 to NTV do

13:   for k = 1 to K do

14:

    

15:   end for

16:  end for

17:  - NL term update step -
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18:  for s = 1 to S do

19:  for j = 0 to J[s] − 1 do

20:

    

21:

    

22:   end for

23:  end for

24: until practical convergence conditions are satisfied

3. Numerical experiment design

3.1. Scan configuration dimensions

While the ASD-NC-POCS algorithm developed can reconstruct images from cone-beam 

data collected over general source trajectories, we demonstrate in the work its application to 

image reconstruction from data collected with a fan-beam configuration over a circular 

trajectory, with physical dimensions similar to those used in a standard cone-beam CT 

(CBCT) employed in radiation therapy. The CBCT system has source-to-detector and 

source-to-center-of-rotation distances of 1500 mm and 1000 mm, respectively, and a linear 

detector of 400 mm in length, which form a field-of-view (FOV) of 265 mm in diameter. 

Throughout the work, the imaged subjects are assumed to be completely within the FOV. We 

refer to the configuration shown in Figure 1 as a standard, full-scan configuration in which 

each data set is collected for spectrum s at views uniformly distributed over 2π, and use it 

for verification and benchmark of the algorithm implementation and performance. In 

addition, four non-standard configurations of practical significance are utilized for 

demonstrating the enabling potential of the algorithm proposed.

3.2. Spectra, basis images, and monochromatic images

Spectra—While the ASD-NC-POCS algorithm can be applicable to MCT with multiple (S 
≥ 2) spectral measurements, we perform studies in the work using only two (i.e., S=2) 

spectral data sets collected with two, i.e., the low (s = 1) and high (s = 2) spectra at 80 and 

140 KVp. The incident spectra are generated using the TASMICS worksheet (v1.0) [33], 

assuming a tungsten anode and 5-mm-Al filter, to simulate spectrum from a X-ray CT tube. 

The detector-energy response is modeled to be a linear energy-integrating response. The 

discrete X-ray spectrum, taken as the product of the incident spectrum and detector-energy 

response with ΔE = 1 (KeV), is normalized and shown in Figure 1.

Basis images—We consider two (i.e., K = 2) basis images, referred to as the water and 

bone images, in the reconstruction. It is further assumed that the spectra are the same for all 

rays within one KVp scan, i.e., the discretized spectrum can be denoted by , without the 

dependence on ray j.
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Monochromatic images—Using basis images bk reconstructed, along with knowledge of 

mass-attenuation coefficients, we can readily obtain monochromatic image fm by using 

equation (7). In general, due to the presence of decomposition error, monochromatic image 

fm represents only approximately linear attenuation coefficient image .

3.3. Phantoms

Two digital phantoms are used in the work, as shown in Figure 2. The first simulates the 

standardized dual-energy contrast phantom with iodine and calcium solution inserts [34], 

referred to as the DE-472 phantom, and the second mimics human thoracic anatomy [26], 

referred to as the lung phantom. Both phantoms are represented on a 512×512 array of 

square pixels of 0.49 mm. Each image-pixel is labeled with a material type and its density. 

Table 1 summarizes the materials used in the composition of the phantoms, other than water 

with 1.0 g/ml density. For the lung phantom simulating various human tissues, the ICRU-44 

standard was used for its materials, and the mass-attenuation coefficients are readily 

available as tabulated data on the NIST website [35]. For the DE-472 phantom, the mass-

attenuation coefficients of the iodine and calcium solutions are calculated using the XCOM 

web program [36], also available on the NIST website, according to the specifications of the 

physical GAMMEX 472 Dual Energy CT phantom [34]. As shown in Figure 2, 18 regions 

of interest (ROIs) in the DE-472 phantom, defined based on the inserts, and 3 ROIs of the 

lung phantom, defined based on material masks, are shown for computing metrics for 

parameter determination in the studies below.

4. Verification study

We first perform a study to verify that under imaging conditions of interest, the ASD-NC-

POCS algorithm can numerically solve the non-convex optimization program in equation (9) 

from ideal data generated by use of the DD-data model in equation (8) without 

decomposition error and noise.

4.1. Study parameters

In the study, two truth basis images representing water and cortical bone were used in 

equation (8) to generate ideal data from the lung phantom by use of the full-scan 

configuration with the low and high KVp spectra described in Figure 1. For computation 

efficiency, we consider an image array of I = 128 × 128 1.95-mm square pixels, and a linear 

detector of 256 1.56-mm bins, and generate projections at 160 views evenly distributed over 

2π for each of the low and high KVp spectra. As such, the X-ray transform matrices 

 are of size J[1] = J[2] = 256 × 160 and I = 128 × 128. With parameters pixel, 

spectra, and  determined above, we also select parameter ε = 10−8 to form a tight 

solution set, as the study uses ideal data.

Based upon the mathematical convergence conditions in equation (22), we design practical 

convergence conditions for the verification study as

(23)
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We referred to a convergent reconstruction as one obtained when all of the convergence 

conditions above are satisfied. Because the truth basis images are known, we also devise a 

reconstruction-error metric , i.e., the normalized ℓ2-

distance between the truth and reconstructed basis images. This metric provides a 

quantitative indication as to whether and how the reconstructed basis images approach their 

truth counterparts.

4.2. Study results

We apply the ASD-NC-POCS algorithm to reconstructing basis images from the ideal data 

and display convergence results in Figure 3 and convergent reconstructions in Figure 4. It 

can be observed that the practical convergence conditions in equation (23) are satisfied and 

that convergent reconstructions are visually identical to their truth counterparts. In particular, 

the reconstruction-error metric in Figure 3 reveals quantitatively a small difference of the 

convergent reconstructions than their truth basis images, thus providing a numerical 

verification of the ASD-NC-POCS algorithm and its computer implementation.

5. Characterization study

Following the verification study with ideal data above, we perform a characterization study 

on the ASD-NC-POCS algorithm by using data that contain decomposition error and 

statistical noise, which are inconsistent with the DD-data model in equation (8).

5.1. Study parameters

For each phantom in Sec. 3.3, using its truth monochromatic image  and spectra in Fig. 1, 

we employ equation (5) to generate low- and high-KVp data at 640 overlapping views 

evenly distributed over 2π, which thus contain decomposition error. Furthermore, Poisson 

noise is added to data by scaling the spectra to yield 2 × 104 photons per ray in the air scan. 

The image array of the same dimension and pixel size as the digital phantom is used in the 

reconstruction. At each view, projection samples are collected with a 400-mm linear detector 

consisting of 1024 bins of 0.39-mm size. Therefore, the X-ray transform matrices  and 

 are identical and of dimensions J[1] = J[2] = 640 × 1024 and I = 512 × 512. With the 

determination of program parameters, i.e., image pixel, spectra, and matrices , we now 

discuss the strategy for the selection of parameter ε in the characterization study.

Strategy for selection of parameter ε—Because data are generated directly from 

linear attenuation coefficient , we have no truth basis images in the characterization study. 

Instead, we design metrics based upon monochromatic images fm for determination of 

parameter ε. R regions of interest (ROIs) in a monochromatic image are chosen for 

calculating the “biases” and “standard deviations” within the ROIs as
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where i ∈ Ir, and Ir indicates the number of pixels within ROI r. Using θrm and 

computed at energies m1 and m2, we form two metrics for determination of parameter ε:

For a given configuration and phantom, we form monochromatic images fm at m1 = 80 KeV 

and m2 = 140 KeV from basis images reconstructed for a number of ε values, compute Θ 
and Σ from the images, and then select ε that yields lowest Θ and Σ.

Practical convergence conditions—We design practical convergence conditions for 

the characterization study as

(24)

which are looser than those in the verification study as the decomposition error and data 

noise are considered. Our previous experience with the conventional ASD-POCS algorithm 

[32, 37] indicates that the third condition can often be relaxed to −0.5, instead of −0.99, with 

only imperceptible changes to the images. Using reconstructed basis image  in equation 

(7), we can readily obtain monochromatic image  at iteration n. Also, in the simulation 

study, we have knowledge of truth monochromatic image  and can thus calculate 

reconstruction-error metric , which is the normalized ℓ2-

distance between the truth and reconstructed monochromatic images at energy m.

5.2. Study results

Demonstration of reconstruction convergence—We first use a reconstruction from 

data of the full-scan configuration to demonstrate that the practical convergence conditions 

in equation (24) can be met by the ASD-NC-POCS algorithm. Without loss of generality, the 

reconstruction is carried out with ε = 0.0170, and we display in Figure 5 convergence 

metrics ,  and cα(b(n)) as functions of iteration number n. It can be 

observed that the ASD-NC-POCS algorithm converges to meet the practical convergence 

conditions.

Selection of parameter ε—For each of DE-472 and lung phantoms, we perform 

reconstructions from its data by using the ASD-NC-POCS algorithm for multiple values of 

ε, calculate metrics Θ and Σ from the ROIs described in section 3.3 in monochromatic 

energy reconstructions at 80 and 120 KeV, and select the value of ε that yields the lowest Θ 
and Σ. Using the strategy, we have determined ε = 0.0170 and ε = 0.0111 in the 

characterization study using the DE-472 and lung phantoms, respectively.

Reconstruction results—Using the program parameters (i.e., image pixel, spectra, 

matrices , and ε) determined, we reconstructed basis and monochromatic images of the 
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DE-472 and lung phantoms. In Figure 6, we display reconstructed basis images, 

monochromatic images at 40 and 120 KeV used often for contrast enhancement and artifact 

reduction, and their zoomed-in views of ROI images enclosed by the rectangular boxes 

indicated in row 2.

The water-basis image retains mostly the water and soft-tissue background, while high 

contrast inserts and bony structures appear largely in the bone-basis image. The seemingly 

observable “artifacts” in basis images reconstructed are understandable because data contain 

decomposition error as they were generated from  instead of two basis images. However, 

no significant cupping or band artifacts are visible in the monochromatic images, especially 

for the DE-472 phantom that contains high concentration iodine and calcium inserts. ROIs 

of the DE-472 phantom with a narrow display window show air-bubble contrast (indicated 

by the arrows) and discernible contrast inserts with the lowest concentration of iodine and 

calcium in the phantom. Meanwhile, ROIs of the lung phantom show details of the lung 

nodules in the dark background, with a display window to highlight these features.

For acquiring a quantitative impression of the reconstructions, we also plot in Figure 7 

profiles of truth and reconstructed monochromatic images along the horizontal and vertical 

lines indicated in row 2 of Figure 6. Overall, reasonably quantitative agreement in 

monochromatic images is observed for the lung phantom, while some discrepancy can be 

observed between the DE-472 phantom and its monochromatic images due to the 

decomposition error, and the profiles reveal that the 40-KeV monochromatic images are of 

contrast higher than that of the 120-KeV counterparts.

It is of practical interest in inspecting how the reconstruction of monochromatic image 

evolves as iterations increase. Without loss of generality, we show in Figure 8 

reconstructions of 120-KeV monochromatic image at intermediate iterations for both 

phantoms. It appears that reconstructions at as early as iteration 50 can visually resemble the 

respective convergent reconstructions. Similar observations can also be made for 

monochromatic energy images reconstructed at other energies.

6. Enabling non-standard configurations

In the studies below, we investigate image reconstruction for non-standard configurations of 

potential application significance enabled by the ASD-NC-POCS algorithm. For each of the 

non-standard configurations considered, we have performed a verification study, which is 

not shown because results and conclusion similar to those in Sec. 4 can be obtained. Instead, 

we focus on characterization studies similar to that in Sec. 5 in which data contain 

decomposition error and statistical noise. For each of the configurations and spectra in 

Figure 1, we generated data from each of the DE-472 and lung phantoms by using equation 

(5), and added Poisson noise to the data by considering a total count level identical to that in 

the full-scan study in Sec. 5. Furthermore, image pixel size and spectra used are also 

identical to those in the study in Sec. 5, while matrices  are illustrated in, and parameter 

ε is determined by use of the strategy described in Sec. 5.1 for, each of the non-standard 

configurations.
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6.1. Configurations with varying angular coverages

The first two non-standard configurations, as shown in Figure 9, involve varying angular 

coverages, and are referred to as the sparse-view and limited-angular-range configurations, 

respectively. In the former, low- and high-KVp data are collected at two sets of interlaced 

sparse views uniformly distributed over 2π, whereas in the latter, low- and high-KVp data 

are collected over two adjacent limited angular-ranges.

Study parameters—In the sparse-view configuration in Figure 9, each of the low- and 

high-KVp data sets contains 320 views, thus forming a total of 640 projection views. Again, 

at each view, a linear detector consisting of 1024 bins of 0.39-mm size is used for data 

collection. Therefore, matrices  and  are of identical dimensions J[1] = J[2] = 

320×1024 and I = 512 × 512. Furthermore, using the strategy described in Sec. 5.1, we 

select ε = 0.0116 and 0.008, respectively, for the DE-472- and lung-phantom studies below.

In the limited-angular-range configuration in Figure 9, each of the two adjacent angular 

ranges covers 98°, thus forming a total of 196°-angular range (corresponding to a short-scan 

angular range,) and low- or high-KVp data are generated at 174 views uniformly distributed 

over each of the two angular ranges, respectively, with a linear detector identical to that in 

the sparse-view configuration. Therefore, matrices  and  are of identical dimensions 

J[1] = J[2] = 174×1024 and I = 512 × 512. Again, using the strategy described in Sec. 5.1, we 

select ε = 0.0085 and 0.0064, respectively, for the DE-472- and lung-phantom studies below.

Study results—We show in Figure 10 reconstruction results for both phantoms from data 

acquired with the sparse-view configuration. Reconstructed monochromatic images at 40 

and 120 KeV visually resemble their counterparts obtained from the full-scan data. Both 

basis images of each phantom show clear material separation, and the monochromatic 

images display an uniform background and no visible artifacts caused by non-linear spectral 

effect. In addition to reconstruction visualization, we also plot in Figure 11 profiles of the 

reconstructed and truth monochromatic images along the horizontal and vertical lines 

indicated in row 2 of Figure 6. It can be observed that for sparse-view-scan configuration, 

the agreement of monochromatic images reconstructed with the truth counterparts is 

comparable to that for the full-scan configuration in Figure 7.

We display in Figure 12 reconstruction results for both phantoms from data acquired with 

the limited-angular-range configurations. Monochromatic image at 40 KeV for the DE-472 

phantom shows visible artifacts, due to the poor conditioning of the DD-data model for the 

limited-angular-range scan considered and the presence of high-concentration calcium and 

iodine inserts in the phantom, while the monochromatic image at 120 KeV reveals less 

artifacts. On the other hand, monochromatic images for the lung phantom appear to be with 

artifacts much less prominent than those for the DE-472 phantom. In addition to 

reconstruction visualization, we also plot in Figure 13 profiles of the reconstructed and truth 

monochromatic images along the horizontal and vertical lines indicated in Figure 6, which 

reveal quantitatively their differences. The lung-phantom reconstructions agree reasonably 

well with their truths for both energy levels, whereas some differences between the DE-
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phantom reconstructions and truth counterparts can be observed especially for the limited-

angular-range configuration.

6.2. Configurations with varying illumination coverages

We consider two additional non-standard configurations, as shown in Figure 14, which 

involve varying illumination coverage, and are referred to as the split- and block-

illumination configurations, respectively. In the configurations, low- and high-KVp data are 

collected, respectively, with two adjacent and multiple adjacent alternating illumination 

coverages at each of 640 views uniformly distributed over 2π. The configurations can be 

achieved through, e.g., the use of a beam blocker in front of the X-ray source and/or detector 

blocks with different energy responses [38, 39].

Study parameters—In the split-illumination configuration, the linear detector with 1024 

bins (i.e., 400-mm length) is divided into two adjacent segments of equal length with 512 

bins (i.e., 200-mm length), as shown in Figure 14, and the low or high KVp beam 

illuminates one of the two segments, respectively. Therefore, matrices  and  are of 

identical dimensions J[1] = J[2] = 640 × 512 and I = 512 × 512. Using the strategy described 

in Sec. 5.1, we select ε = 0.0118 and 0.008, respectively, for the DE-472- and lung-phantom 

studies below.

In the block-illumination configuration, the linear detector is divided into two sets of 

interlaced, adjacent detector blocks of equal length with 32 bins (i.e., 12.5-mm length), as 

shown in Figure 14, and the low or high KVp beam illuminates one of the two sets of 

detector blocks, respectively. Therefore, matrices  and  are of identical dimensions 

J[1] = J[2] = 640 × 512 and I = 512 × 512. Using the strategy described in Sec. 5.1, we select 

ε = 0.0121 and 0.0089, respectively, for the DE-472- and lung-phantom studies below.

Study results—We show in Figure 15 reconstruction results for both phantoms from data 

acquired with the split-illumination configuration. Monochromatic image at 40 KeV for the 

DE-472 phantom show some visible artifacts, while the monochromatic image at 120 KeV 

reveals less artifacts. Conversely, monochromatic images for the lung phantom appear to 

reveal little artifacts. In addition to reconstruction visualization, we also plot in Figure 16 

profiles of the reconstructed and truth monochromatic images along the horizontal and 

vertical lines indicated in row 2 of Figure 6. It can be observed that while some quantitative 

difference between the reconstructed and truth monochromatic images for the DE-472 

phantom can be observed, the truth and reconstructed monochromatic images agree 

reasonably well quantitatively for the lung phantom. In Figures 17 and 18, we display 

reconstruction results for both phantoms from data acquired with the block-illumination 

configurations. Based upon the reconstruction results, observations similar to those for the 

split-illumination configuration can be made.

7. Discussion

In the work, we have proposed a one-step, optimization-based approach for image 

reconstruction in MCT, with an emphasis on demonstrating its potential for enabling scan 

configurations of potential practical significance. The challenge of optimization-based image 
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reconstruction in MCT stems from its non-linear data model that can lead to a non-convex 

optimization program for which no mathematically exact solver is available for achieving its 

globally optimal solution. We have studied a non-convex optimization program, derived its 

KKT condition, and proposed an algorithm (or procedure) numerically to solve the program 

for image reconstruction in MCT. A property of the algorithm proposed is that it can 

reconstruct images in MCT without the requirement of multiple spectral measurements for 

the same ray. We demonstrate the exploitation of this algorithm property to enable scan 

configurations of practical interest in terms of potentially lowered hardware cost, enhanced 

scanning flexibility, and reduced imaging dose/time in MCT.

We have investigated, in addition to the standard, full-scan configuration in MCT, four non-

standard configurations with different designs of scanning angular range and illumination 

coverage each of which acquires only a portion of data of the full-scan configuration. The 

new configurations are considered because they can readily be implemented on a standard 

CT scanner employing regular X-ray tubes and energy-integrating detectors without 

invoking hardware additions and/or modifications to the scanner. The study results suggest 

that the configurations considered can be enabled by the algorithm proposed to yield 

monochromatic images comparable to those of the full-scan configuration both visually and 

quantitatively. While we have demonstrated scan-configuration enabling in dual-energy CT 

in the work, the algorithm can accommodate multiple (> 2) spectral scans and/or a variety of 

configurations with different designs of source trajectory and/or illumination coverage 

tailored to specific applications.

The enabling effectiveness of the algorithm depends upon a number of factors, including 

sampling conditions and their impact on the data-model conditioning for a specific 

configuration, appropriateness of spectra used, anatomy complexity of subjects imaged, 

decomposition error, and data noise. In the presence of data inconsistencies such as 

decomposition error and statistical noise, some banding artifacts near high contrast 

structures in DE-472-phantom images are observed to appear stronger understandably for 

the limited-angular-range configuration than for other configurations, suggesting that the 

effectiveness of the algorithm in enabling, e.g., a configuration with a considerably limited 

angular-range, decreases relative to that for other configurations. Conversely, the results 

show that reconstructions of the lung phantom appear to be robust for the configurations 

considered.

Without exception, any optimization-based reconstruction would involve some parameters. 

In the optimization-based reconstruction considered, parameter ε plays a key role in 

impacting the image reconstruction. We have devised metrics quantitatively to select ε 
specific to the simulation-data study performed. However, by no means are we suggesting 

the same metrics for determining ε in realistic, practical applications. Instead, metrics 

specific to the actual tasks should be designed for the determination of parameter ε in 

practical applications.

The algorithm derivation relies upon the linearization of the non-linear DD-data model. 

Because there can be multiple ways different than that used in the work for the linearization, 

it is of theoretical and practical interest in investigating the impact of different linearization 
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on image reconstruction for various configurations in MCT. We have considered in the work 

a specific optimization program that includes the data divergence in a ℓ2-norm form. 

Different optimization programs can lead to different reconstructions especially in the 

presence of data inconsistencies such as noise. It would be worthwhile to investigate and 

prototype optimization programs of different forms (e.g., containing the KL or other data 

divergences) for enabling scan configurations and obtaining reconstructions of specific 

application interest [30, 40, 41]. Additional image constraints other than the image-TV 

constraint can also be incorporated into the programs. For example, appropriate constraints 

on the basis-image values may be imposed for possibly improving image reconstruction in 

MCT, especially for the limited-angular-range scan configuration [42].

We recall that the purposes of the work are to investigate the algorithm for image 

reconstruction and to demonstrate its potential of enabling non-standard configurations of 

practical implication in MCT. We have performed simulation studies for verifying the design 

and implementation of the algorithm and for initial demonstration and characterization of 

the algorithm’s potential for scan-configuration enabling. While the study can hopefully 

provide insights into the design and implementation of scan configurations of practical 

interest in MCT, it is not intended to establish and assess the truly application-specific utility 

of the algorithm proposed and scan configurations enabled. Instead, future works are 

warranted to investigate, assess, and establish the utility of the algorithm and scan 

configurations in carefully designed studies with clearly devised task-specific metrics.
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Appendix A. Derivation of the local optimality condition

Using equation (1), we can obtain monochromatic energy images as fn = Σk μknbk at N 
energies, where n = 1, 2,⋯, N. Lower- or upper-bound constraints on the images can be 

written as

(A.1)

where pn is a scalar for specifying the upper or lower bound of the nth monochromatic 

image, and  with the negative sign used to impose a lower bound of image 

values, or simply non-negativity, on the monochromatic images.

We can rewrite equation (A.1) in a linear form of b as

(A.2)
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where

(A.3)

and  denotes the identity matrix of size I × I.

We now consider an optimization program in the form of

(A.4)

and derive its first-order optimality conditions, i.e., the Karush-Kuhn-Tucker (KKT) 

conditions. It can readily be shown that the optimzation programs in equations (A.4) and (9) 

are equivalent when N = K, pn = 0, and  for k = n (0 otherwise). Therefore, the 

derived KKT conditions for the former are applicable to the latter.

The Lagrangian of the optimization program in equation (A.4) is given as

(A.5)

where scalar ν and vectors {λn} are the Lagrangian multipliers. The KKT conditions can 

thus be expressed as

(A.6a)

(A.6b)

(A.6c)

(A.6d)

(A.6e)
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(A.6f)

(A.6g)

where b∗ and  are optimal variables and Lagrangian multipliers for the 

optimization problem. Given the specific form of  in equation (A.3), the last part of the 

gradient of the Lagrangian in equation (A.6e) can be simplified as

(A.7)

In general, for non-zero , equation (A.7) has zero entries wherever all  have zeros at 

the same entries. Based on this observation, we turn to the complementary slackness in (A.

6g), which follows

(A.8)

We use vector 𝟙n(b) of size I to denote an identity function, whose elements are

(A.9)

and diag(x) a function that yields a diagonal matrix with the elements of vector x placed 

along the diagonal line, as

(A.10)

Subsequently, considering all N constraints, we construct a matrix as the product of N 
diagonal matrices
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(A.11)

As a result,  is also diagonal of size I and it picks out those image pixels at which 

location the N linear constraints in equation (A.1) or (A.2) are strictly satisfied 

simultaneously. Finally, we use K identical  and place them in a diagonal line to form a 

bigger diagonal matrix  of size I × K as

(A.12)

Given the meaning of  as described above, left-multiplying  to both sides of 

equations (A.7) yields

We can simplify the first order optimality condition in equation (A.6e) as

(A.13)

where

and

Now equation (A.6c) states that ν* is non-negative (dual feasibility), and the complementary 

slackness in (A.6f) states that ν* can only be zero when the data fidelity constraint is not 

active. For practical solutions that are non-trivial, i.e., other than non-negative flat images, 

the data fidelity constraint is always active. Therefore, it is desired that ν* > 0 in practical 

situations, which leads to that dTV(b*) and ddata(b*) shall be oppositely co-linear, or

(A.14)
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where  and  are the 

normalized vectors.

For computing dTV(b*), using Ψ(b) in equation (10), we have

(A.15)

where

As the ℓ1-norm function is non-smooth, TV gradients, or , are computed based on 

an approximation of a smoothed version [43].

On the other hand, for computing ddata(b*), we have

(A.16)

Taking its gradient yields

(A.17)

where Jacobian matrix J(y(x), x) is given by

(A.18)

where y(x)j and xi are the j-th and i-th elements of vectors y(x) and x, respectively. Given the 

concatenated form of the aggregate basis image vector as  and the 

dimension of vector g(b) being , where J[s] is the size of data vector g[s](b) for 

spectral set s, the Jacobian in equation (A.17) can be re-expressed as
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(A.19)

Recall equation (8), where the element of data vector g(b) may depend upon spectral set 

index s and ray index j. In this derivation, instead, a single index j′ is used for the aggregate 

data vector g(b), as j′ = j + (s − 1) × J[s−1] and

(A.20)

As a result, the gradient of  w.r.t. basis image bk can be written as

(A.21)

where

(A.22)

Finally, replacing equations (A.19) and (A.21) into equation (A.17) yields
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(A.23)
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Figure 1. 
Left: Full-scan configuration in which low (thin line) and high (thick line) KVp scans are 

performed over 2π; and right: normalized low (thin line) and high (thick line) KVp spectra 

used in the studies below.
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Figure 2. 
40-KeV monochromatic images of the DE-472 (a) and lung (b) phantoms. Display window: 

[−1000, 1000] HU. 18 ROIs within the 16 circular inserts and 2 background areas 

highlighted by 1 to 18 in the DE-472 phantom in (a) and 3 ROI images (row 2) for the lung 

phantom, indicating muscle (c), bone (d), and water (e) material masks selected for 

parameter selection in Secs. 5 and 6.
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Figure 3. 

Convergence metrics , , and cα(b(n)), and reconstruction-error  as 

functions of iterations n.
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Figure 4. 
Truth and reconstructed water- and bone-basis images. Display windows [0, 1.5]
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Figure 5. 

Convergence metrics , , and cα(b(n)), and reconstruction-error  of 

80-KeV monochromatic image obtained with ε = 0.0170, as functions of iteration number n.
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Figure 6. 
Water- and bone-basis images (row 1), 40- and 120-KeV monochromatic images (row 2), 

and zoomed-in views of ROI images (row 3) enclosed by boxes in row 2 from full-scan data 

of the DE-472 and lung phantoms, respectively, with display windows [0, 1.5] (row 1), 

[−1000, 1000] HU (row 2), and [−500, 500] HU (row 3, DE-472 phantom) and [−1000, 200] 

HU (row 3, lung phantom). The dashed lines indicate the location of the profile plots in Fig. 

7, while the arrows point to the air bubbles in the DE-472 phantom.
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Figure 7. 
Profiles of reconstructed (dashed) and truth (solid) monochromatic images at 40 and 120 

KeV along the horizontal and vertical lines indicated in row 2 of Figure 6 from full-scan 

data of the DE-472 and lung phantoms, respectively.
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Figure 8. 
120-KeV monochromatic images of the DE-472 and lung phantoms from full-scan data at 

iterations 2, 10, 30, 50, and 110, along with the convergent reconstructions f120KeV. Display 

window: [−1000, 1000] HU.
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Figure 9. 
Sparse-view (left) and limited-angular-range (right) configurations. In the former, low-KVp 

(thin line) and high-KVp (thick line) data are collected at two sets of interlaced sparse views 

uniformly distributed over 2π, whereas in the latter, low-KVp (thin line) and high-KVp 

(thick line) data are collected over the two adjacent limited-angular ranges.
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Figure 10. 
Water- and bone-basis images (row 1), 40- and 120-KeV monochromatic images (row 2), 

and zoomed-in views of ROI images (row 3) similar to those in row 3 of Figure 6 from 

sparse-view-scan data of the DE-472 and lung phantoms, respectively, with display windows 

[0, 1.5] (row 1), [−1000, 1000] HU (row 2), and [−500, 500] HU (row 3, DE-472 phantom) 

and [−1000, 200] HU (row 3, lung phantom).
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Figure 11. 
Profiles of reconstructed (dashed) and truth (solid) monochromatic energy images at 40 and 

120 KeV along the horizontal and vertical lines indicated in row 2 of Figure 6 from sparse-

view-scan data of the DE-472 and lung phantoms, respectively.
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Figure 12. 
Water- and bone-basis images (row 1), 40- and 120-KeV monochromatic images (row 2), 

and zoomed-in views of ROI images (row 3) similar to those in row 3 of Figure 6 from 

limited-angular-range-scan data of the DE-472 and lung phantoms, respectively, with 

display windows [0, 1.5] (row 1), [−1000, 1000] HU (row 2), and [−500, 500] HU (row 3, 

DE-472 phantom) and [−1000, 200] HU (row 3, lung phantom).
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Figure 13. 
Profiles of reconstructed (dashed) and truth (solid) monochromatic images at 40 and 120 

KeV along the horizontal and vertical lines indicated in row 2 of Figure 6 from limited-

angular-range-scan data of the DE-472 and lung phantoms, respectively.
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Figure 14. 
Split- (left) and block-illumination (right) configurations in which low-KVp (thin line) and 

high-KVp (thick line) data are collected, respectively, with two adjacent and multiple 

adjacent alternating illumination coverage at each of 640 views uniformly distributed over 

2π.
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Figure 15. 
Water- and bone-basis images (row 1), 40- and 120-KeV monochromatic images (row 2), 

and zoomed-in views of ROI images (row 3) similar to those in row 3 of Figure 6 from split-

illumination-scan data of the DE-472 and lung phantoms, respectively, with display 

windows [0, 1.5] (row 1), [−1000, 1000] HU (row 2), and [−500, 500] HU (row 3, DE-472 

phantom) and [−1000, 200] HU (row 3, lung phantom).
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Figure 16. 
Profiles of reconstructed (dashed) and truth (solid) monochromatic images at 40 and 120 

KeV along the horizontal and vertical lines indicated in row 2 of Figure 6 from split-

illumination-scan data of the DE-472 and lung phantoms, respectively.
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Figure 17. 
Water- and bone-basis images (row 1), 40- and 120-KeV monochromatic images (row 2), 

and zoomed-in views of ROI images (row 3) similar to those in row 3 of Figure 6 from 

block-illumination-scan data of the DE-472 and lung phantoms, respectively, with display 

windows [0, 1.5] (row 1), [−1000, 1000] HU (row 2), and [−500, 500] HU (row 3, DE-472 

phantom) and [−1000, 200] HU (row 3, lung phantom).
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Figure 18. 
Profiles of reconstructed (dashed) and truth (solid) monochromatic energy images at 40 and 

120 KeV along the horizontal and vertical lines indicated in row 2 of Figure 6 from block-

illumination-scan data of the DE-472 and lung phantoms, respectively.
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