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Summary

Melanoma is the deadliest form of skin cancer and its incidence is rising, creating a costly and 

significant clinical problem. Exposure to ultraviolet (UV) radiation, namely UVA (315–400 nm) 

and UVB (280–315 nm), is a major risk factor for melanoma development. Cumulative UV 

radiation exposure from sunlight or tanning beds contributes to UV-induced DNA damage, 

oxidative stress, and inflammation in the skin. A number of factors, including hair color, skin type, 

genetic background, location, and history of tanning, determine the skin’s response to UV 

radiation. In melanocytes, dysregulation of this UV radiation response can lead to melanoma. 

Given the complex origins of melanoma, it is difficult to develop curative therapies and universally 

effective preventative strategies. Here, we describe and discuss the mechanisms of UV-induced 

skin damage responsible for inducing melanomagenesis, and explore options for therapeutic and 

preventative interventions.

Introduction

Skin cancer is the most common form of cancer, representing 40–50% of all cancers 

diagnosed in the US1. Approximately 3.5 million cases of skin cancer are diagnosed each 

year in the US alone, and that number is rising each year1. Skin cancers are broadly 

classified into two types: non-melanoma skin cancers (NMSCs) and melanoma. Of these, 

melanoma is the most aggressive and lethal form of skin cancer. Melanomas represent only 

4% of all skin cancers, but they account for nearly half of all skin cancer deaths2,3. In 2017, 

it is expected that nearly 90,000 cases of melanoma will be diagnosed in the US, leading to 

nearly 10,000 melanoma-related deaths4. Recent advancements in targeted therapy 

(vemurafenib) and immunotherapy (pembrolizumab) for melanoma have offered 

improvements in survival to some patients, but most patients fail to have a sustained 

response5.

An estimated 60–70% of cutaneous malignant melanomas are thought to be caused by 

ultraviolet (UV) radiation exposure6. Two types of UV radiation are primarily responsible 

for causing carcinogenic skin damage: UVA (315 nm-400 nm) and UVB (280 nm-315 nm). 

UVA is much more abundant than UVB in sunlight, accounting for 95% of solar UV 

radiation7. UVA is also the primary source of light used in indoor tanning beds, and tanning 
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beds can reach UVA doses 12-times that of the sun7. UVA penetrates more deeply into the 

dermis than UVB8, but is less genotoxic9.

UVB causes direct DNA damage in the form of photoproducts, including cyclobutane 

pyrimidine dimers (CPDs) and 6−4 photoproducts (6-4PPs)10. CPDs and 6-4PPs can be 

recognized and repaired by the nucleotide excision repair (NER) pathway. In this pathway, 

DNA damage--sensing proteins, including XPC, DDB1, DDB2, and XPA, bind to sites of 

DNA damage, and recruit repair machinery to the site10. Dysregulation of NER is implicated 

in skin carcinogenesis and defects in NER cause Xeroderma pigmentosum, a disease which 

increases the risk of skin cancer more than 1000-fold11.

UVA is thought to cause skin damage and ultimately tumorigenesis, primarily through 

oxidative stress-induced DNA damage9. UVA-induced oxidative DNA damage is recognized 

by 8-oxyguanine DNA glycosylase 1 (OGG1) and repaired by base excision repair (BER)12 

In this review, we will summarize the mechanisms by which UVA and UVB cause 

melanomagenesis and progression, and their implications for therapeutic and preventative 

strategies.

Mechanisms of UV-induced Melanoma

UV Radiation and Melanoma

Both UVB and UVA have been shown to induce melanoma in mice. UVB radiation has a 

well-established role in melanomagenesis, but UVA’s contribution is controversial. In mouse 

models of childhood UV exposure, UVB induces melanoma formation13,14. In the same 

albino mouse model, perinatal UVA exposure is not sufficient to induce melanoma 

formation13. However, UVA was capable of inducing melanoma in pigmented C57BL/6 

mice14. Furthermore, an increased risk of melanoma has also been linked to psoralen and 

UVA (PUVA) therapy 15. The known effects of UVB are summarized in Figure 1 and the 

roles of UVA in melanoma are summarized in Figure 2.

UV and Genetic Alterations in Melanoma

Risk of melanoma is associated with both familial mutations and somatic mutations. 

Melanoma has one of the highest rates of mutation of any cancer16. Approximately 3–15% 

of melanomas arise due to familial genetic predisposition, in which UV-independent 

mutations play a significant role17. Germline mutations in CDKN2A (p16-INK4A-Arf), 

while rare, correlate significantly with the development of melanoma18. Other key somatic 

mutations in melanoma are UV-independent, including the BRAFV600E mutation found in 

60% of melanomas and NRAS mutations found in 15–20% of melanomas19. While these 

mutations are not UV-signature mutations20, they are more common in sun-exposed 

skin20–23.

BRAFV600E mutation alone is often insufficient to drive malignant transformation of 

melanocytes24. Acquired mutations due to UV exposure can synergize with mutant BRAF to 

drive transformation. In mice with melanocyte-specific BRAFV600E mutations, UV exposure 

accelerates melanomagenesis25. 40% of the resulting tumors developed UV-signature p53 

mutations, which further accelerated UV-induced melanomagenesis25. Similar UV-induced 
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p53 mutations are seen in approximately 20% of human BRAFV600E mutant 

melanomas25–27. BRAFV600E mutation in melanocytes can also synergize with Arf deletion 

in vivo to accelerate UV-induced melanoma development28.

Recent work indicates that UV-induced mutations accumulate as melanocytic nevi transform 

into melanoma, including driver mutations in CDKN2A, TP53, NF1, RAC1, and PTEN25,29. 

One study linked UV-induced DNA damage signatures to approximately 46% of driver 

mutations30. Melanomas from UV-exposed areas exhibited higher mutation load than 

melanomas developing in protected areas27. Whole-genome sequencing of melanoma 

patients has identified a number of additional mutations that are significant to melanoma 

development, many of which can be linked to UV-induced DNA damage. A detailed review 

of key mutations in melanoma has been summarized elsewhere31.

Skin Color and Melanoma

Melanocytes produce two types of melanin: eumelanin and pheomelanin. Eumelanin is the 

most common type in dark skin and dark hair, and is synthesized upon binding of α-

melanocyte-stimulating hormone (αMSH) to melanocortin-1 receptor (MC1R)32. In 

individuals with red hair and freckles, a loss-of-function mutation in MC1R prevents 

eumelanin production, leading to a higher proportion of pheomelanin33. Eumelanin reduces 

the accumulation of UV-induced photoproducts34, while pheomelanin may actually 

contribute to UV-induced DNA damage by inducing free radical formation after UV34. Total 

melanin levels dictate UV response in melanocytes, independent of MC1R signaling. Higher 

melanin levels correlate with reduced UV-induced photoproduct formation, proliferation, 

and apoptosis independent of MC1R function in melanocytes35,36.

Signaling through αMSH and MC1R suppresses melanomagenesis by modulating UV 

radiation response. αMSH treatment is sufficient to reduce UV-induced oxidative stress37 

and increase nucleotide excision repair (NER) in melanocytes with wild-type MC1R38. 

αMSH signaling activates NER by upregulating XPC and inducing the phosphorylation of 

DNA damage sensors Ataxia telangiectasia and Rad3-related protein (ATR) and ataxia 

telangiectasia mutated (ATM)38. Furthermore, αMSH signaling through MC1R increases 

the recruitment of XPA to UV-induced DNA damage sites by phosphorylating ATR, thus 

improving DNA repair39,40. Activation of NER by αMSH requires functional MC1R; 

mutant MC1R increases levels of UV-induced oxidative stress36–38,41.

In melanoma patients, loss-of-function mutations in MC1R are linked to enhanced 

sensitivity to UV-induced cytotoxicity and increased incidence of melanoma, largely 

independent of skin type or hair color42. A recent meta-analysis of MC1R variants and 

melanoma risk showed that most variants increased risk and were associated with red hair 

and fair skin, but two were associated with melanoma risk independent of red hair or fair 

skin34,43.

UVB radiation is capable of regulating MC1R signaling and pigmentation in melanocytes. 

UVB induces expression of a number of pigmentation-related genes in melanocytes44, 

including αMSH and MC1R expression32. UVB activates expression of oxidative and ER 

stress response genes downstream of MC1R, although this is lost in cells expressing non-
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functional mutant MC1R45. UVB also induces the interaction of wild-type MC1R with 

PTEN, stabilizing PTEN and inhibiting PI3K/AKT signaling. In MC1R mutant cell lines, 

this interaction is lost and increased PI3K/AKT signaling drives transformation of 

BRAFV600E mutant melanoma cells46. In vivo, however, UVB exposure accelerates 

melanomagenesis independent of MC1R mutation status and pigmentation47, suggesting that 

UVB-induced melanomagenesis does not require the pigmentation and MC1R signaling 

response. Conversely, UVA does not induce a pigmentation response44, but may require 

pigmentation to induce melanomagenesis14.

Downstream of MC1R, cAMP signaling activates transcription factor MITF32. MITF is a 

master regulator of melanocyte differentiation required for melanocyte survival48–50. MITF 

controls UVB-induced expression of pigmentation genes32 and DNA repair and proliferation 

genes in melanoma cells51,52. Deletion of MITF in melanoma cells is sufficient to increase 

metastasis, concurrent with increases in mesenchymal markers53 and ROCK-mediated 

invasion54. MITF overexpression promotes proliferation in vitro48 and in vivo53,55, in 

addition to reducing metastasis53. Amplification of MITF occurs in up to 20% of all 

melanomas, with a higher incidence in metastatic melanoma and in BRAF mutant 

melanomas48. MITF protein expression is suppressed by BRAFV600E in melanocytes and 

melanomas, however, which allows cell proliferation48,56. It is postulated that MITF 

amplification serves to maintain minimal MITF levels even in the presence of BRAF-

mediated suppression for cells to survive the stresses of disease progression.

UV-Induced DNA Damage Repair in Melanoma

There is conflicting evidence regarding the ability of melanoma cells to respond to DNA 

damage compared to normal melanocytes. Some research has shown that melanoma cells 

exhibit reduced DNA damage repair57 and that UVB exposure further lowered their XPC, 

DDB1, and DDB2 expression57. UVA similarly lowered XPC expression in melanoma cells, 

and they also show impaired repair of UVA-induced CPDs relative to normal melanocytes58. 

We have found that Sestrin2, a stress-inducible protein, is induced by UVB in melanoma 

cells and negatively regulates DNA damage repair59. Knockdown of Sestrin2 increased 

UVB-induced apoptosis and decreased tumor formation in vivo60.

DNA repair is critical for suppressing melanomagenesis. Patients with xeroderma 

pigmentosum (XP), a disease caused by defective NER, have a 2,000-fold increased risk of 

melanoma11. In melanoma patients, low levels of XPC have been shown to correlate with 

poor survival57. In a genetically engineered mouse model of melanoma featuring deletion of 

Arf and expression of BRAFV600E, UVB exposure accelerated melanomagenesis by 

inhibiting NER28. Further analysis concluded that Arf deletion induces XPC promoter 

hypermethylation and repression, as well as E2F4/DP1 inhibition in this model28. 

BRAFV600E mutation alone was also sufficient to repress UVB-induced XPC28. 

Melanocyte-specific deletion of Arf alone in vivo reduced repair of UVB-induced DNA 

damage61. Deletion of XPC alongside Arf knockout accelerated UVB-induced 

melanomagenesis in vivo62.

However, other studies suggest that there are no differences in repair of UV-induced DNA 

damage between melanocytes and melanoma cell lines63. While several studies found an 
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association between DNA damage response gene upregulation and melanoma progression, 

the upregulated genes did not include NER genes64,65. Arf-deficient mice with XPA deletion 

were sensitive to UVB-induced nevus formation, but developed fewer melanomas than mice 

with Arf deletion alone66. This work suggests that UVB-driven progression from nevus to 

melanoma may depend on specific NER pathways in some genetic backgrounds. Similarly, 

loss of cell cycle regulator RhoA led to defective repair of UV-induced DNA damage, which 

decreased proliferation and reduced survival of melanoma cells67.

Oxidative modification of DNA is an important mechanism of UVA-induced skin damage 

and carcinogenesis. Melanocytes have diminished repair of UVA-induced oxidative damage, 

as melanin acts as a photosensitizer to UVA68. Dysplastic nevi have increased ROS levels 

relative to normal melanocytes, supporting a role for ROS accumulation in 

melanomagenesis69. Several potential mechanisms of ROS accumulation in melanomas have 

been suggested. Loss-of-heterozygosity mutations in hOGG1, an enzyme that repairs 

oxidative DNA damage, have been demonstrated in a small number of melanomas70,71. 

Additionally, we have found that UVA induces Sestrin2 in melanocytes and melanoma cells, 

which in turn suppresses antioxidant response factor Nrf2 and increases ROS production59. 

Deletion of p16 could also contribute to UV-induced ROS accumulation and oxidative DNA 

damage in melanocytes72. However, one study has found that OGG1 is overexpressed in 

some metastatic melanomas73.

ROS and reactive nitrogen species (RNS) generated in melanocytes in response to UVA 

radiation lead to the production of “dark CPDs” hours after UVA exposure74. The 

accumulation of oxidatively modified DNA only in pigmented, and not albino, mice with 

UVA-induced melanoma 14 suggests that melanin could play a role in UVA-induced 

oxidative stress. Loss of MC1R reduced repair of UV-induced CPDs in melanocytes, leading 

to increased UV-induced apoptosis36. Accordingly, melanin content was inversely correlated 

with UV-induced apoptosis and CPD formation36. Melanomas featuring disruptive 

mutations in MC1R are associated with a 42% increase in UV-signature mutations over 

those in MC1R wild-type melanomas75.

The effect of antioxidants on melanomagenesis has been explored in mouse models. The 

antioxidant N-Acetylcysteine (NAC) has been found to delay the onset of UV-induced 

melanoma in vivo76. In a mouse model with BRAFV600E mutation and PTEN deletion, NAC 

increased metastasis, but had no effect on primary tumors77. NAC treatment also increased 

migration and invasion of melanoma cell lines in vitro by activating RhoA77.

UV and Autophagy in Melanoma

Autophagy has been shown to play a context-dependent role in tumorigenesis. Autophagy 

can suppress tumor growth by clearing oncogenic proteins and organelles damaged by 

oxidative or genotoxic stress. Alternatively, autophagy can provide the macromolecule 

building blocks needed by highly proliferative cells and allow cells to survive a range of 

stress conditions. In melanoma, autophagy likely has different functions at each stage of 

tumor progression.

Sample and He Page 5

Photodermatol Photoimmunol Photomed. Author manuscript; available in PMC 2019 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Recent work suggests that malignant melanomas have increased autophagic flux relative to 

benign nevi78–80. Furthermore, high levels of autophagy in melanoma correlates with 

metastasis80, poor response to chemotherapy, and shorter overall survival78,80. Induction of 

autophagy has been suggested to be a pro-survival mechanism for melanoma cells79,81,82. 

Autohagy is also associated with proliferation, invasion, and metastasis79, as well as 

promoting ROS accumulation82.

BRAFV600E mutant melanomas exhibit enhanced autophagy due to chronic ER stress83 and 

mTOR inhibition84. Increased autophagy has been shown to increase cell survival in 

BRAFV600E mutant melanomas85–87. In models of BRAFV600E mutant melanoma with 

PTEN-deficiency, autophagy is required for tumorigenesis86. Knockdown of the essential 

autophagy gene Atg7 in these mice leads to accumulation of defective mitochondria and 

ROS, increased senescence, decreased proliferation, and increased apoptosis86.

Inhibition of BRAFV600E with vemurafenib induces autophagy by inhibition of the mTOR 

signaling pathway, and autophagy has been shown to promote survival of melanoma cells 

after vemurafenib81,85. Combined inhibition of autophagy and mTOR signaling enhances 

cell death78 and impairs metastasis88 in BRAFV600E mutant melanomas. Vemurafenib-

resistant melanoma cells also have enhanced autophagy, although inhibition or genetic 

modulation of autophagy was insufficient to regain sensitivity to vemurafenib89. Combined 

inhibition of autophagy and MEK signaling was sufficient to restore vemurafenib 

sensitivity89.

Additional conflicting evidence implicates decreased autophagy in melanoma cells, sup 

orting dual roles for autophagy in melanoma. High levels of autophagy adaptor protein and 

substrate p62 constitute a prognostic marker of malignant melanoma90, although other work 

indicates that p62 expression increases, then decreases late in disease progression91. Atg5 

expression has also been reported to decrease as melanoma progresses from benign to 

malignant92. Atg5 knockdown promotes proliferation, further suggesting that reduced 

autophagy at the early stages may contribute to tumorigenesis92. Atg5 loss of heterozygosity 

is found in many advanced melanomas and correlates with poor overall survival93. Atg5 

LOH increases melanoma metastasis in vivo in a BRAFV600E and PTEN-deficient mouse 

model93.

Expression of the autophagy inducer Beclin1 decreases as melanoma progresses94,95. One 

study reports that BRAFV600E overexpression in melanoma cells decreases basal autophagy 

levels relative to BRAF wild-type cells through a Beclin1-dependent mechanism96. 

Furthermore, BH3-family proteins Bcl-XL and MCL-1, which disrupt the activation of 

autophagy by Beclin1, are upregulated in metastatic melanomas97. Interactions between 

BH3-only protein Noxa and MCL-1 have been shown to disrupt inhibition of Beclin1 by 

MCL-1 and promote autophagy98. Recent work has shown that the BH3-only protein Noxa 

is upregulated in melanoma cells and promotes autophagy to inhibit apoptosis99.

Expression of MITF, which correlates with increased lysosomal gene expression in 

melanoma cells100, decreases with disease progression97,101. LC3 has similarly been 

reported to decrease during melanoma disease progression92. In heavily pigmented 
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melanoma cells, however, LC3 is highly expressed102. In these cells, LC3 regulates MITF 

expression and ultimately, melanin production102. As MITF plays a critical role in 

melanoma growth and metastasis, this link between MITF expression and autophagy may be 

an important link in melanoma progression.

Inflammation in melanoma

Inflammation and immune response to melanomagenic conditions are critical for melanoma 

development and therapeutic response. UVB regulates the recruitment of inflammatory cells 

into the skin, including macrophages103,104 and neutrophils105,106. UVB induces 

macrophage infiltration of melanomas by upregulating Ccr2103 and ATF2104. Upon 

recruitment, IFN-γ signaling from macrophages triggers further upregulation of Ccl8, a 

Ccr2 ligand, in melanocytes103. This positive feedback loop increases melanoma growth in 
vivo by reducing melanoma cell death103. Depletion of macrophages inhibits UV-induced 

melanocyte proliferation in mouse skin107. Melanoma-derived factors also trigger the 

upregulation of CCL2 and MMP-9 in macrophages, which in turn promote invasion of 

melanoma cells108. UVB-mediated neutrophil recruitment further promotes melanoma 

metastasis by stimulating angiogenesis and increasing migration of melanoma cells toward 

blood vessels105.

Melanoma-associated inflammation involves multiple regulatory pathways. For example, 

interleukin 23 (IL-23) induces DNA damage repair in melanocytes, including XPC and XPA 

expression and γ-H2AX foci formation109. DNA damage repair induced by IL-23 inhibits 

melanomagenesis109. IL-23 also inhibited regulatory T cell expansion and limited IFN-γ 
production109. The IFN- γ receptor on melanocytes inhibits UV-induced apoptosis110, 

suggesting that suppression of IFN- γ by IL-23 suppresses melanomagenesis by clearing 

damaged cells.

Another inflammation and immunological regulatory pathway is Programmed cell death 1 

(PD1) and its ligand PD-L1. Anti-PD-1 immunotherapy has shown efficacy in melanoma, 

but fewer than half of all melanoma patients treated with anti-PD-1 immunotherapy have a 

prolonged response5. Current efforts are aimed at understanding the differences between 

immunotherapy responders and non-responders. PD-L1 expression in melanoma cells is not 

associated with BRAFV600E mutation, and cells expressing PD-L1 recruit tumor-infiltrating 

lymphocytes (TILs) independent of BRAF status111. BRAF inhibitor-resistant melanoma 

cells increase PD-L1 expression in a MEK-dependent manner, and inhibition of MEK and 

BRAF increases apoptosis and decreases PD-L1 expression112. Cyclooxygenase-2 (COX-2) 

expression is also correlates with PD-L1 expression in primary melanomas, and inhibition of 

COX-2 by celecoxib downregulates PD-L1 in melanoma cells113.

Inflammation and response to immune therapy are also regulated by PTEN status. Loss of 

PTEN in melanoma cells allows PI3K-mediated activation of immunosuppressive 

cytokines114,115. PTEN expression represses PD-L1 expression, promoting an immune 

response against tumor cells. PTEN loss was associated with non-brisk (localized) immune 

response in tumors114,115. Other work shows that PTEN loss in melanoma cells inhibits both 

T cell recruitment into tumors and targeted killing of tumor cells by T cells115. PTEN loss is 

also associated with poor response to anti-PD-1 therapy115. Treatment with a PI3Kβ 
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inhibitor improved response to immune therapies in vivo, further supporting a role for PTEN 

loss in immunosuppression in melanoma115.

Vitamins and Melanoma

Vitamin A—Vitamin A, which has a number of forms, including retinol, retinoic acid, and 

beta-carotene, is tumor suppressive in melanoma. Vitamin A inhibits growth, invasion, and 

metastasis of melanoma cells116–118. Vitamin A has been suggested to impair UV-induced 

tumorigenesis by preventing UV-induced oxidative stress accumulation118. Clinically, 

multiple studies have shown an inverse correlation between retinol intake and melanoma 

risk, while vitamin A and beta-carotene have no association119,120.

Vitamin C—Vitamin C, or ascorbic acid, has been suggested to play a dose-dependent role 

in melanoma growth and progression. High concentrations of vitamin C inhibit invasion and 

survival of melanoma cells121. Conversely, low concentrations of vitamin C promote 

melanoma cell growth, migration, and invasion, and protect against stress121. Another study 

found that ascorbic acid reduces HIF-1α activity and protein levels in metastatic melanoma, 

reducing invasion of melanoma cells122. Ascorbate, a reduced form of vitamin C, induces 

DNA damage and cell death in melanoma cell lines in vitro, and inhibits tumor growth in 
vivo123.

Vitamin D—UVB absorption in skin leads to the conversion of 7-dehydrocholesterol to 

previtamin D3, an isomer of vitamin D3124. Vitamin D3 production is induced by UVB in a 

dose-dependent manner125–127 and depends on melanin levels and skin type128,129. Dietary 

intake of vitamin D was initially explored as a promising preventative strategy for 

melanoma, but many studies have found no association between dietary vitamin D uptake 

and risk of melanoma130–133. Some controversy remains, however, as several have identified 

both a positive correlation134 and inverse association between Vitamin D3 intake and 

melanoma risk135.

Similarly, serum levels of vitamin D3 have been explored as a diagnostic target in 

melanoma, and results have been unclear. In several studies, normal serum levels of vitamin 

D3 at the time of diagnosis correlate with a better prognosis136,137. In another study, lower 

serum vitamin D3 levels were associated with advanced stages at diagnosis, worse disease-

free survival, and poorer overall survival138. Lower serum vitamin D was associated with 

higher-stage melanomas139,140. Conversely, one large study found no association between 

serum vitamin D levels and melanoma risk141.

Vitamin D production in the skin protects against irradiation and likely suppresses 

melanomagenesis. Vitamin D reduces UV-induced DNA damage, including oxidative and 

genotoxic DNA damage, and induces DNA damage repair126,142,143. It inhibits proliferation 

and invasion of melanoma cells in vitro and in vivo118,144. Importantly, vitamin D synthesis 

is not inhibited by sunscreen use145, but strict physical avoidance of sunlight increases risk 

of vitamin D deficiency145,146.

Vitamin E—Vitamin E has 2 major forms, tocotrienols and tocopherols. Vitamin E 

succinate, a tocopherol, inhibits melanoma cell growth and induces apoptosis by blocking 
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cell cycle progression in vitro118,147 and in vivo147. Tocotrienols similarly induce apoptosis 

in melanoma cells in vitro by inducing ER stress response148. Tocotrienols also induce 

degradation of melanosomes in the lysosome by promoting lysosomal and endosomal 

fusion149. δ-Tocotrienol alone reduces melanin content150, suppresses cell proliferation151, 

and induces apoptosis151 of melanoma cells in vitro. In vivo, tocotrienols inhibit 

melanomagenesis and progression148. Taken together, this work indicates that vitamin E 

suppresses melanoma growth and progression.

Vitamin K—Little work has explored the effects of vitamin K on melanoma cells. Several 

forms of vitamin K, including Vitamin K3 and K5, inhibit proliferation and increase 

apoptosis of melanoma cells152. In vivo, the vitamin K analog menadione inhibits growth of 

melanoma xenograft tumors153.

UV and Melanoma Risk

Childhood exposure to UV radiation is a major risk factor for skin cancer development, 

particularly at doses high enough to achieve sunburn154. Some studies suggest that 

childhood sunburns could as much as double the risk of melanoma155. This effect is highly 

dependent on skin tone, however. In red haired and freckled individuals, childhood UV 

exposure is a particularly potent risk factor for melanoma development156. Conversely, in 

light-skinned individuals prone to tanning, childhood UV exposure can be protective against 

melanoma157. Exposure to UV early in life is associated with the development of BRAF 

mutant melanomas, while NRAS mutation is more commonly associated with high UV 

exposure later in life158.

In addition to childhood UV exposure, ease of access to indoor tanning has provided 

teenagers and young adults with further opportunities to increase UV radiation exposure. 

Indoor tanning at a young age increases melanoma risk159. Use of indoor tanning beds 

increases as children enter adolescence, and this shift is accompanied by a ~50% drop in 

sunscreen use160. In the US, it is estimated that 40–50% of teenagers have utilized tanning 

beds161. Furthermore, approximately 70% of tanning salon customers are females under 

30162, and indoor tanning before age 30 leads to a 75% increase in melanoma risk163. Data 

suggest that melanoma rates in women ages 15–39 are nearly double that of men of the same 

age group164.

Despite links between early age sunburn and melanoma, one study has found that melanoma 

risk was associated with the number of sunburns throughout life165. Some studies have 

found a similar dose-dependent effect of indoor tanning independent of age166, although 

another found that tanning increased risk for young women167. Indoor tanning also likely 

contributed to an epidemic of melanomas on the trunk in young Icelandic women in the 

early 2000s168. Furthermore, misunderstandings persist about the ability of an all-year tan to 

protect against melanoma155.

Sunscreen has been linked to a paradoxical increase in sun exposure and sunburns169. The 

sun protection factor (SPF) of sunscreen correlates with increased intentional sun 

exposure170. A similar paradoxical increase in risk is seen in indoor workers, who have a 

higher risk of melanoma than outdoor workers171. UVB exposure has also been linked to 
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decreased rates of melanoma mortality172, and in mouse models, sunscreen is ineffective at 

preventing melanomagenesis173. Recent meta-analyses of published epidemiological data 

have found no link between sunscreen use and melanoma risk, however174,175. In the United 

States, use of sunscreen and physical barriers, such as clothing and sunglasses, is 

increasing159, but many Americans still report receiving at least one sunburn in the last 

year159.

Prevention of UV-induced Melanoma

Chemoprevention—A recent review from Chhabra et al. 176 has explored recent 

advancements in chemoprevention in-depth, and therefore we will not address it here.

Public Health/Outreach Efforts—Given the extremely high incidence of skin cancers, 

making significant strides in prevention will require large-scale public health campaigns. 

Australia implemented one such campaign in the 1980s, which has led to a shift in the 

behavior and attitude toward UV exposure177,178, particularly in young adults178,179. 

Incidence of melanoma on the trunk and shoulders, sites subject to intermittent UV exposure 

if left unprotected, was significantly decreased in Australian young adults179.

Recent efforts have aimed to reach teenagers and young adults via social media180,181 and 

texting182, in addition to determining the efficacy of positive vs negative/fear-based 

messaging183. Targeted messaging to parents of adolescents was effective at starting 

conversations between mothers and daughters about the concerns of indoor tanning184. In 

households receiving these messages, fewer daughters reported a desire to go indoor tanning 

than non-intervention households184. Fathers and sons were largely unaware of the 

messaging, however, suggesting that additional avenues are needed to engage men in 

awareness of the dangers of UV radiation exposure. A survey of young women who indoor 

tan indicates that, while they are overwhelmingly supportive of policies limiting indoor 

tanning for minors and placing stronger warnings of indoor tanning risks on tanning beds, 

they do not support a total ban185.

Tanning-related regulations vary across the US. Many states have age-based tanning bans, 

some requiring parental consent, and others simply require warning signs to be placed in 

tanning salons186. As of 2014, FDA regulations require displays on indoor tanning devices 

warning of skin cancer risk186. Similar restrictions exist worldwide, with many countries 

banning indoor tanning under the age of 18186. Enforcement of these laws is lax, however, 

and there are likely high rates of non-compliance by users and owners of tanning salons186.

A nationwide 10% tax on indoor tanning was implemented in the US in 2010 with the 

passing of the Affordable Care Act in an attempt to curb tanning bed use. A drop of 

approximately 25% in tanning salon patronage accompanied the tanning bed tax, although 

other salons reported customers were indifferent to the tax187.

Even more recently there has been a push to name tanning bed use an addiction, as frequent 

users can exhibit many of the classic signs of addiction188,189. A study of indoor tanning 

users found that those who met standards for addiction to indoor tanning exhibited higher 

anxiety-related symptoms and substance abuse than those who did not189. This suggests that 
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for some indoor tanning salon users, taxes and regulations will be insufficient to prevent 

tanning.

Discussion and Future Directions

Melanoma presents a significant clinical problem, as its incidence is rising worldwide and 

current therapeutic options are ineffective for many patients. The European Cancer 

Organization has predicted that melanoma death rates will fall by 2050, but the number of 

deaths will increase unless more effective treatments are developed190. Improvements in 

both prevention efforts and therapeutic targeting of melanomas will be necessary to reduce 

melanoma-related deaths.

Prevention of melanoma can be improved by optimization of sunscreen designs, as 

significant research suggests that sunscreen is ineffective at reducing melanoma risk. 

Sunscreens could also be optimized to account for improper application and duration of use. 

Educational programs can be optimized to target young women and to more readily engage 

men, two groups who are likely to ignore warnings about the negative effects of UV 

exposure. Furthermore, by approaching tanning as a potentially addictive behavior, 

techniques could be adapted from substance abuse treatment and prevention.

Recent therapeutic advancements have made significant strides toward achieving sustained 

progression-free survival for a subset of metastatic melanoma patients. However, there 

remain a number of opportunities for improving melanoma treatment. Little work has 

focused on understanding the role of UV exposure in response to immunotherapy. Currently, 

research does not indicate that vitamins will be beneficial therapeutic options for melanoma, 

although more work could clarify specific opportunities in melanoma. Autophagy appears to 

have a highly context-specific role in melanoma, but further research will determine whether 

careful modulation of autophagy would benefit melanoma patients. Furthermore, our overall 

understanding of melanoma pathogenesis is far from complete. Future investigation is 

required to elucidate the molecular and cellular basis by which melanocytes become 

cancerous melanoma cells, and the mechanism by which melanoma cells evade immune 

surveillance and become resistant to targeted therapy or immunotherapy. These future 

studies will improve our ability to prevent melanoma development and resistance to 

therapies.
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Figure 1. UVB response in melanoma
UVB exposure triggers macrophage and neutrophil infiltration into the skin. Upregulation of 

CCR2 and ATF2 in melanocytes promotes recruitment of macrophages into the skin, which 

in turn stimulates production of CCL2, MMP-9, and IFN-γ in macrophages. IFN-γ 
signaling from macrophages promotes a positive feedback loop between melanocytes and 

macrophages, in which melanocytes upregulate CCL8, a CCR2 ligand, and promote further 

recruitment of macrophages. The inflammatory response created by macrophage and 

neutrophil recruitment promotes angiogenesis, as well as melanoma cell invasion, survival, 

and metastasis. UVB also independently regulates melanin production and MC1R signaling. 

Induction of pigmentation genes and subsequent increase in melanin production following 

UVB increases cell survival and NER, but decreases proliferation and ultimately, 

melanomagenesis. Signaling through MC1R is induced by UVB and activates DNA damage 

response. Signaling through αMSH and MC1R promotes phosphorylation of ATM and ATR, 

upregulates XPC, and promotes XPA recruitment to stimulate NER. αMSH also activates 

oxidative stress response genes to reduce oxidative stress in melanocytes/melanoma. UVB-

induced expression of IL-23 also activates XPC and XPA to induce NER. IL-23 signaling, 

melanin production, and MC1R signaling can all inhibit melanomagenesis induced by UVB.
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Figure 2. UVA response in melanoma
UVA is known to directly induce oxidative stress in melanocytes, but recent work suggests 

that UVA perpetuates the accumulation of oxidative stress through several mechanisms. 

UVA induces Sestrin2, a negative regulator of Nrf2 to promote oxidative stress accumulation 

in melanocytes. Furthermore, UVA suppresses OGG1, impairing repair of oxidative lesions 

and furthering oxidative stress. Oxidative stress can ultimately lead to the accumulation of 

“dark CPDs” hours after UVA exposure.
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