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Abstract

Cerebral small vessel diseases (SVDs) encompass a group of genetic and sporadic pathological 

processes leading to brain lesions, cognitive decline, and stroke. There is no specific treatment for 

SVDs, which progress silently for years before becoming clinically symptomatic. Here, we 

examine parallels in the functional defects of parenchymal arterioles in CADASIL, a monogenic 

form of SVD, and in response to subarachnoid hemorrhage, a common type of hemorrhagic stroke 

that also targets the brain microvasculature. Both animal models exhibit dysregulation of the 

voltage-gated potassium channel, KV1, in arteriolar myocytes, an impairment that compromises 

responses to vasoactive stimuli and impacts cerebral blood flow autoregulation and local dilatory 

responses to neuronal activity (neurovascular coupling). However, the extent to which this 

channelopathy-like defect ultimately contributes to these pathologies is unknown. Combining 

experimental data with computational modeling, we describe the role of KV1 channels in the 

regulation of myocyte membrane potential at rest and during the modest increase in extracellular 

potassium associated with neurovascular coupling. We conclude that parenchymal arteriole resting 

membrane potential and myogenic tone depend strongly on KV1.2/1.5 channel density, and that 

reciprocal changes in KV channel density in CADASIL and subarachnoid hemorrhage produce 

opposite effects on extracellular potassium-mediated dilation during neurovascular coupling.
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INTRODUCTION

Dementia and stroke rank among the most pressing health issues worldwide (1,2). Cerebral 

small vessel diseases (SVDs), termed for various pathologies associated with small vessel 

dysfunction in the brain, have emerged as a central link between these two major co-

morbidities. SVDs account for at least 40 % of dementia cases and more than 30 % of 

strokes (1,3). They encompass multiple distinct diseases that can be separated based on their 

underlying genetic defects, risk factors, and clinical presentations. Despite the severe nature 

of these diseases, there are no treatments with proven efficacy against cerebral SVDs.

Major progress has been made in identifying overlapping mechanisms involved in the 

functional defects of small (parenchymal) arterioles within the brain in response to 

subarachnoid hemorrhage (SAH) (4) and cerebral autosomal dominant arteriopathy with 

subcortical infarcts and leukoencephalopathy (CADASIL), a monogenic form of SVD (5). 

Although, strictly speaking SAH is not a cerebral SVD, an increasing body of evidence 

suggests that SAH-induced perfusion deficits originate from the parenchymal 

microvasculature (6–13). These deficits appear to be driven by changes in the balance of 

matrix metalloproteinase (MMP) activity which supports the novel concept that 

perturbations of the extracellular matrix can be a point of convergence between these 

cerebral small vessel pathologies (14). These changes, in turn, alter the number of voltage-

gated K+ (KV) channels at the arteriolar smooth muscle cells (SMCs) plasma membrane 

(15–18). The KV channel superfamily, comprising 12 subfamilies (KV1–KV12), is one of the 

most diverse families of K+ channels identified to date (19). Molecular cloning of K+ 

channels from different cell types has revealed that KV subfamilies share a common primary 

structure, reflecting hetero- or homo-multimeric assembly of four pore-forming α subunits 

and auxiliary β subunits, with the identity of the α subunit being the primary determinant of 

biophysical and pharmacological properties of individual channels (20–22). In vascular 

SMCs, KV channels are active under physiological conditions, and the K+ efflux that they 

mediate serves as a key negative feedback control mechanism that opposes moment-to-

moment pressure-induced constriction (23). Thus, any increase or decrease in functional KV 

channel density on the plasma membrane of arteriolar SMCs is predicted to impact arteriolar 

diameter.

The potential dire consequences of disrupting the number of functional SMC KV channels 

are evident in the two divergent cerebral small vessel pathologies presented here—SAH and 

CADASIL. In the hemorrhagic stroke (i.e. subarachnoid hemorrhage) model, MMP 

activation is understood to cause KV channel endocytosis through activation of the epidermal 

growth factor receptor (EGFR), resulting in increased vasoconstriction and decreased 

cerebral blood flow (CBF) (15,16). On the other hand, in a mouse model of CADASIL, an 

increase in tissue inhibitor of metalloproteinase-3 (TIMP-3) inhibits MMP (ADAM17) 

activity, leading to an increased number of functional KV channels in the plasma membrane 

of arteriolar SMCs and attenuation of vasoconstriction (17,18). These findings support the 

concept that the number of KV channels are tuned to provide the appropriate membrane 

potential control in response to changes in intravascular pressure, and that any change in 

channel number will adversely affect cerebral arteriolar function.
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Here, we weave experimental data and computational modeling to describe small vessel 

dysfunction after SAH and in CADASIL from a KV channelopathy perspective, revealing 

how the “Yin and Yang” of SMC KV channels—the balance between upregulation and 

downregulation—is crucial for maintaining parenchymal arteriole (PA) function, CBF and, 

ultimately, brain health.

1. KV CHANNELS IN MYOCYTES PROFOUNDLY REGULATE THE MYOGENIC TONE OF 
BRAIN PARENCHYMAL ARTERIOLES

In vivo, small diameter arteries and arterioles exist in a partially constricted state, largely 

owing to the vasoconstrictor influence of intravascular pressure. These blood vessels can 

constrict further as pressure increases and, conversely, dilate when the pressure lessens (24). 

This response, referred to as myogenic tone, supports CBF autoregulation and protects 

capillaries from the disruptive effects of high blood pressure (25). Within the brain, 

myogenic tone also provides the vasodilatory reserve necessary for PAs to locally dilate and 

increase blood delivery in response to neuronal activity. This use-dependent increase in 

blood flow, termed functional hyperemia, is supported by a variety of mechanisms 

collectively referred to as neurovascular coupling (NVC) (1,26–29). Thus, the myogenic 

response within the cerebral vasculature, specifically in small diameter arterioles, is crucial 

for CBF control.

This myogenic response can be reproduced ex vivo using an arteriography system by 

increasing intravascular pressure through a cannula inserted into the arteriolar lumen, 

enabling the study of the molecular players that contribute to this phenomenon. Intravascular 

pressure causes a graded membrane potential (Vm) depolarization of SMCs that leads to an 

increase in the open-state probability of voltage-dependent Ca2+ channels (VDCCs), thereby 

enhancing Ca2+ influx and ultimately causing myogenic constriction (23,30). In mouse PAs, 

elevation of luminal pressure from 10 mmHg to 40 mmHg typically causes an 18-mV 

depolarization of the SMC membrane from −53 mV to −35 mV; the associated doubling in 

the level of myogenic tone manifests as a constriction that represents approximately a 35–

40% decrease in arterial diameter (17).

Like most biological processes, myogenic tone is modulated by negative feedback elements 

(31). Among them, K+ channels in SMCs and endothelial cells (ECs) of arterioles can serve 

as a brake on pressure-induced depolarization and constriction (23). At a physiological 

extracellular K+ concentration ([K+]o) of 3 mM and an intracellular K+ concentration of 140 

mM, the equilibrium potential for K+ (EK) is −102.7 mV. At 40 mm Hg, the estimated 

pressure experienced in vivo by cerebral arterioles of this size (32), the SMC membrane 

potential is about −35 mV, creating a 68-mV driving force for K+ efflux. Consequently, 

opening of K+ channels exerts a rapid and strong hyperpolarizing effect that acts to oppose 

pressure-induced constriction and, more broadly, provides a vasodilatory influence.

Arteriolar SMCs predominantly express four types of K+ channels: ATP-sensitive (KATP), 

large conductance Ca2+-activated (BK), inward rectifier (KIR), and voltage-gated (KV) 

(23,25,33,34). Interestingly, it appears that only KIR and KV channels are active under 

physiological conditions in PA SMCs examined in vitro. KATP channels are expressed in 

large cerebral pial arteries on the surface of the brain (35), but the absence of PA dilation in 

Koide et al. Page 3

Microcirculation. Author manuscript; available in PMC 2019 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



response to the KATP agonist cromakalim suggests a minimal role for this channel type 

within the brain cortex (36). The apparent lack of functional KATP channels in PAs is 

consistent with previous reports that small cerebral arterioles fail to dilate in response to 

cromakalim (37–40). In many vascular beds, including cortical surface arteries, BK channels 

are activated by local Ca2+-release events (Ca2+ sparks) through ryanodine receptors (RyRs), 

and exert tonic negative feedback on myogenic tone (41,42). Consistent with this tonic 

negative feedback element opposing myogenic tone, treatment with BK channel blockers 

such as paxilline causes significant and sustained constriction of pial cerebral arteries (43). 

In contrast, BK channel blockade does not alter PA diameter, suggesting that BK channel-

mediated K+ efflux does not constitute a significant feedback mechanism against myogenic 

tone in PAs under physiological conditions (17,44–46), possibly because Ca2+ spark activity 

is very low in these arterioles (at least in rat and mouse) (47–50). However, considering that 

BK currents are detectable in isolated PA SMCs (9,46), and can be activated in certain 

conditions such as acidosis (36,50), a role for BK (and KATP) channels under all 

physiological and pathological conditions or in all species is possible.

KIR channels, predominantly KIR2.1 channels, are present in both PA SMCs (51–53) and 

ECs (54). KIR2.1 channels conduct strong inward current at Vm negative to EK and a small 

outward current that peaks and then decreases as Vm becomes increasingly positive to EK 

(23,54). The role of KIR channels in regulating smooth muscle membrane potential has been 

described in previous reviews (23,34,40). Inhibition of this channel with 30 µM Ba2+ or 

genetic ablation in ECs does not affect PA resting diameter (55). This is likely because 

channel activity at −35 mV, the resting Vm of PAs at 40 mmHg, is very low, with a 

conductance, gKIR, about a 10,000-time less than the maximal conductance of this channel 

(54,56,57). In addition to its aforementioned dependence on Vm, KIR is also activated by 

external K+. This enables SMCs and ECs to sense elevations in extracellular K+ in response 

to neuronal activity and mediate NVC (7,45,51,55). Therefore, the physiological role of KIR 

in the brain microcirculation during NVC has been likened to that of a “vascular K+ 

electrode”, as defined by Longden and Nelson (54). The voltage and K+ dependence of KIR 

synergize in response to small increases in external K+, leading to dramatic 

hyperpolarization that is capable of bringing Vm close to EK and causing near maximal 

dilation (45,51,55).

We have established that KV channels play a tonic and profound role in opposing 

vasoconstrictor influences (e.g., myogenic tone) in PAs from rodent brains (17,58,59). SMC 

membrane depolarization in response to pressure or vasoconstrictors increases KV channel 

open probability, creating a hyperpolarizing K+ efflux that counterbalances depolarizing 

current through VDCCs and other Na+/Ca2+ permeable channels to act as a break on 

vasoconstriction. KV channels in vascular SMCs show fast activation kinetics in response to 

membrane potential depolarization, with activation time constants (τact) on the order of tens 

of milliseconds (Figure 1A). In addition, the steady-state activation and inactivation 

properties of KV allow significant K+ currents between −40 and +10 mV, implicating KV 

channels in the regulation of PA SMC membrane potential at physiological intravascular 

pressures (Figure 1B). The contribution of KV channels to the regulation of resting PA 

diameter is illustrated by the significant constriction caused by inhibition of KV channels 
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with 1 mM 4-aminopyridine (4-AP) at physiological pressure (40 mmHg) (Figure 1C) 

(17,23,58,60,61).

The voltage dependence of KV channels has been described using a Boltzmann-type steady-

state activation term (Figure 2). The characteristics of this voltage dependence—voltage at 

half-maximal activation (V0.5) and slope factor (kKv)—appear to vary significantly among 

channel subtypes (17,22,23). The involvement of KV1 channel family members, 

predominantly KV1.2 and KV1.5 subtypes, in the regulation of arteriolar tone has been 

documented in the cerebral vasculature of multiple species (17,58,60,62,63). Studies have 

also reported that KV2 channels, primarily those of the KV2.1 subfamily, contribute to 

counteracting myogenic constriction in rat pial cerebral arteries (64–67). Other groups have 

also provided evidence supporting the contribution of KV7 channels (KV7.1, KV7.4, and 

KV7.5 subtypes) to the regulation of pial cerebral arterial diameter (61,68). Regarding 

intracerebral PAs, a number of lines of experimental evidence support the view that KV1.2 

and KV1.5 subtypes are predominantly expressed and primarily regulate PA SMC Vm and 

arteriolar diameter. First, V0.5 values measured in PA SMCs were −3.2 mV in rat (58) and 

+6 mV in mouse PA SMCs (17), similar to values reported for heteromultimers of KV1.2/1.5 

channels (69). In contrast, the V0.5 value of KV7 channels are ~ −30 mV (70). Second, RT-

PCR revealed mRNA expression of KV1.2 and KV1.5, but not KV1.1, KV1.3, KV1.4, KV1.6 

or KV2.1 in rat PAs (58). Third, stromatoxin, an inhibitor of KV2 channels (66,71), does not 

significantly constrict mouse parenchymal arterioles (17). Furthermore, it has been shown 

that the 4-AP sensitivity of K+ currents, Vm, and tone are dependent on the expression of 

KV1.2 and KV1.5 subtypes (60,69,72–74).

2. IMPACT OF PATHOLOGICAL INCREASES (CADASIL) OR DECREASES (SAH) IN PA KV 

CHANNEL NUMBERS

The structural organization of the cerebral circulation may explain the formation of regional 

pathological lesions, which are associated with small vessel dysfunction in SVDs. The two-

dimensional network of surface (pial) arteries branches out and dives down into the brain 

parenchyma as PAs, which ultimately transition into capillary networks of interconnected 

vessels with a considerable capacity for redirecting blood flow (75). However, PAs upstream 

of the interconnected capillary networks control the blood supply of a specific volume of 

brain territory; as such, they represent bottlenecks to blood flow and thus are the element 

most vulnerable to cerebral SVDs (76,77). PAs also exhibit unique features, including the 

lack of extrinsic innervation and the presence of astrocytic processes that enwrap almost 

their entire basolateral surface (78–80). PAs are the last smooth muscle-containing vessels 

upstream of the capillary bed, and their active luminal diameter in mouse brain is typically < 

20 µm—about one-third the width of a human hair. These anatomical features make ex vivo 
experimental approaches for studying their function extremely challenging, which has 

limited the investigation of this pathophysiologically important vascular bed.

In both SAH and CADASIL, dysregulation of brain PA reactivity precedes the onset of 

neurological deficits. Using well-established rabbit (15,43,81), rat (6,7) and mouse (12,13) 

models of SAH, and a transgenic mouse model of CADASIL (TgNotch3R169C) in which a 

human NOTCH3 receptor mutation—the molecular cause of CADASIL—is overexpressed 
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(17,82), we have discovered that KV channel activity in PA SMCs is abnormal in both 

pathological conditions (17,18,59). Although abnormal KV activity could conceivably reflect 

changes in channel gating properties or recruitment of new KV channel family members, our 

experimental data demonstrated unchanged τact, V0.5, or k in both disease models. Instead, 

the observed changes in KV channel activity better correlates with a change in the number of 

functional channels at the SMC plasma membrane (Figure 2). Specifically, SAH causes a 

decrease in functional KV channels and enhanced vasoconstriction. Conversely, CADASIL 

model mice exhibit an increase in SMC membrane KV channel numbers and a decrease in 

cerebral arteriolar tone. One possible mechanism underlying both of these vascular 

pathologies is altered trafficking of KV channels. In this context, altered shedding of the 

epidermal growth factor receptor ligand, HB-EGF, caused by aberrant MMP and/or ADAM 

(a disintegrin and metalloproteinase) activity, leads to enhanced (SAH) or decreased 

(CADASIL) EGFR-mediated endocytosis of KV channels (14–18).

Based on current density data obtained experimentally using the perforated-patch 

configuration of the patch-clamp technique (17) (Koide & Wellman unpublished data), we 

calculated the number of KV channels in control (CTL), CADASIL and SAH conditions at a 

given voltage (−40 mV) using the Goldman–Hodgkin–Katz constant field equation ((83); 

see (17) for calculation details). We found that the average number of functional KV 

channels per myocyte in CTL mice was 3,060 ± 479 (6 cells from 6 animals), a number that 

increased to 4,970 ± 655 (6 cells from 6 animals) in CADASIL (TgNotch3R169C) mice. A 

comparison of CTL and SAH rats revealed the opposite change, with 3,465 ± 346 channels 

per myocyte observed in CTL rats (6 cells from 5 animals) compared with 1809 ± 423 in 

SAH rats (6 cells from 6 animals) (Koide & Wellman unpublished data). In each case, the 

cell capacitances of myocytes were similar, indicating a similar membrane surface area in all 

three conditions. Therefore, the CADASIL-causing mutation results in a ~57 % increase in 

KV channel number, whereas SAH reduces KV channel number by ~48 %. The differences 

in KV current densities between disease and control animals, at different membrane 

potentials, are depicted in Figure 2. Steady-state KV current data for CTL and CADASIL 

mice are fitted to a Boltzmann-type Vm-dependent activation, as previously done (17). The 

voltage dependency of KV1 in SAH is predicted based on a 48% reduction in KV1 

conductance relative to CTL. SMC outward KV1 current increases dramatically at 

depolarized potentials, reflecting KV channel opening with depolarization, and current 

density correlated with the KV channel number in all conditions.

Given the role of K+ efflux through KV channels in opposing pressure-induced membrane 

depolarization and vasoconstriction, the prediction is that increased (CADASIL) (17) or 

decreased (SAH) (6,84) KV channel numbers would alter the degree of negative-feedback 

control, resulting in hyperpolarization (CADASIL) or depolarization (SAH) of PA SMCs. 

Consistent with this prediction, experimentally measured Vm was hyperpolarized (−45 mV) 

(17) and depolarized (−28 mV) (6) in pressurized (40 mmHg) PAs obtained from CADASIL 

mice and SAH model animals, respectively, compared to CTL groups (−35 mV). The 

relationship between myogenic tone and membrane potential in CTL, CADASIL and SAH 

animals is summarized in Figure 3A. At lower intravascular pressure (5 and 10 mmHg), tone 

and membrane potential did not differ among the three groups. However, as pressure is 

increased to a more physiological level (40 mmHg), Vm in PAs from CADASIL mice 
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remained almost 10 mV more hyperpolarized than that in CTL PAs (−45 mV vs. −35 mV), 

whereas Vm was pulled to −28 mV in SAH (6,17).

We also used a mathematical model of SMC membrane permeability to examine whether the 

reported changes in Vm could be explained by measured differences in KV density between 

CADASIL and SAH animals and CTL groups (6,17) (Figure 3B). This model accounts for 

the activity of important SMC components, including KV1, KIR, BK, KATP, VDCC, and 

non-selective cation (NSC) channels, as well as Na+/K+ ATPases (NaK) and plasma 

membrane Ca2+ pumps (PMCA). Figure 3C demonstrates the effect of increased 

(CADASIL) and decreased (SAH) KV channel density under the assumption that the 

presence of all these other components remains unchanged. Simulations show the effect of 

increasing transmembrane Na+ permeability (PNa) accounts for the pressure-induced smooth 

muscle depolarization in myogenic response, presumably through the opening of stretch 

activated NSC channels. In agreement with the experimental data (Figure 3A; 5–10 mmHg), 

the difference in membrane potential between control and disease states is negligible at low 

PNa current (i.e., low intraluminal pressure) as the contribution of KV currents to the total 

transmembrane current diminishes (Figure 3B and 3C). The model predicts that high PNa 

current (i.e., high intraluminal pressure) leads to depolarization and opening of KV channels, 

highlighting the inhibitory role of KV channels on the myogenic response. A larger number 

of KV channels (CADASIL) provide greater negative feedback, resulting in hyperpolarized 

Vm, less VDCC activity, lower intracellular Ca2+, and less myogenic tone. Conversely, a 

decrease in the number of KV channels (SAH) provides less negative-feedback, resulting in 

more depolarized Vm, increased VDCC activity, higher intracellular Ca2+, and increased 

myogenic tone. Thus, the model demonstrates that changes in SMC KV channel density can 

account for changes in Vm, intracellular Ca2+ concentration and myogenic tone, consistent 

with observations from CADASIL and SAH model animals. In both pathological conditions, 

a change in the gain of the KV-mediated negative feedback loop is expected to have 

profound effects on the responses of arterioles to pressure fluctuations (CBF autoregulation), 

but also to impact the effect of external K+ variations during NVC.

3. IMPACT OF SMALL VESSEL PATHOLOGIES ON THE INTERPLAY BETWEEN KV AND KIR 

CHANNELS DURING NVC

NVC is the process that links localized neuronal activity in the brain to vasodilation of 

proximate PAs so as to ensure adequate delivering of oxygen and nutrients to metabolically 

active regions of the central nervous system. A key component of NVC is the KIR-dependent 

SMC hyperpolarization and vasodilation that results from modest increases in [K+]o within 

the perivascular space (51,52,85). In isolated PAs, raising [K+]o from 3 mM to 8 mM 

hyperpolarizes the SM Vm to near the new EK of −76 mV, causing near maximum 

vasodilation by decreasing Ca2+ influx (51). This dramatic Vm hyperpolarization is achieved 

by KIR activation. Raising [K+]o from 3 mM to 8 mM activates KIR channels and results in a 

50-fold increase in membrane K+ permeability (86). In addition to a modest rise in [K+]o 

(e.g., from 3 mM to 8 mM), membrane hyperpolarization itself increases KIR channel 

activity, causing a rightward shift of the KIR current-voltage relationship and increased 

outward current amplitude (Figure 4A, left inset) as a result of the positive shift in EK and an 

increase in KIR conductance (87). In contrast, a modest rise in [K+]o monotonically 
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decreases outward KV current due to a reduction in the K+ chemical gradient (Figure 4A, 

right inset). Additionally, modest increases in [K+]o and the associated KIR channel 

activation and Vm hyperpolarization would be expected to decrease KV (and possibly BK) 

channel open probability. Thus, the interaction between KIR and KV/BK channels during 

modest increases in [K+]o creates a “tug-of-war” dynamic that would be expected to play an 

important role in determining SMC K+ permeability and PA diameter during NVC. 

Sufficient KIR activation is required to overcome the concurrent decrease in KV/BK channel 

activity to produce Vm hyperpolarization and vasodilation. Under physiological conditions, 

this is the case, with modest increases in [K+]o associated with neuronal activation leading to 

SMC Vm hyperpolarization, vasodilation, and increased local CBF during NVC.

However, evidence indicates impaired NVC in CADASIL (14,18) and SAH (7,13) animal 

models. Since KV channel number in PA SMCs is significantly altered in these two 

pathologies, we used computational modeling to investigate the effect of different KV 

channel densities on SMC membrane potential when [K+]o is elevated from 3 mM to 8 mM. 

The current-voltage curves of KV currents obtained from Figures 1 and 2 are summed with 

representative PA SMC KIR currents in Figure 4A. Solid lines represent combined KV and 

KIR currents at rest ([K+]o = 3 mM), and dashed lines represent currents when [K+]o is 

elevated to 8 mM. Shaded areas show the increase in net hyperpolarizing current predicted 

by shifting [K+]o from 3 mM to 8 mM and highlight the Vm window where the KIR 

influence is dominant (i.e., overcomes the opposing influence of decreased KV channel 

activity), producing a net increase in membrane K+ permeability. Within this Vm range, or 

“KIR window”, hyperpolarization can be achieved during increases in [K+]o to 8 mM, 

whereas outside of this window, the K+ stimulus will result in unstable membrane potential 

or even depolarization. Therefore, K+-induced hyperpolarization is possible when the resting 

Vm is within the KIR window (Figure 4A shaded areas). Despite differences in KV current 

density, our modeling indicates that conditions exist where increasing [K+]o from 3 mM to 8 

mM would be predicted to hyperpolarize PA SMCs of CTL, CADASIL, and SAH animals 

(Figure 4B).

In SAH, the prediction is that decreased KV channel density extends the Vm window where 

the KIR influence is dominant (Figure 4A red region). This is consistent with our results 

showing that parenchymal arterioles isolated from the brains of SAH animals and 

pressurized ex vivo dilate in response to modest increases in extracellular K+ (7). However, 

SAH is associated with an inversion of NVC in animal models; that is, instead of causing 

vasodilation, neuronal activation causes vasoconstriction in these animals, both in brain 

slices and in vivo (7,13,88). We have proposed that this inversion of NVC is the result of a 

pathological increase in basal [K+]o reflecting enhanced K+ efflux by astrocytic endfeet, 

rather than impaired KIR function. When summed with neurally evoked K+ efflux, the net 

elevation in basal [K+]o leads to a more depolarized SMC EK that lies outside of the 

influence of the KIR window. Thus, the polarity of the vascular response is switched from 

dilation to constriction due to Vm depolarization and enhanced Ca2+ entry through VDCCs 

(7,13,88).

In CADASIL, the representative model predicts that an increase in KV channel density 

reduces the size of the KIR window, but also shifts the window to more hyperpolarized 
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potentials (Figure 4A, blue region). However, increased KV channel density in CADASIL 

model mice also brings resting Vm to more hyperpolarized values (17). According to the 

simulation, this limits the impact of the increased KV density on a 8-mM [K+]o challenge, 

and allow K+-induced dilations to occur. Consistent with this, PAs from CADASIL model 

mice respond to 8, 15 and 20 mM [K+]o with near maximum dilation ex vivo, comparable to 

that in CTL animals (17). Nevertheless, an altered hyperpolarization window may 

compromise K-induced dilation under some conditions, for example when Vm is more 

depolarized by the presence of an additional vasoconstrictor. Also, a higher KV channel 

density in CADASIL decreases the vasodilatory reserve, because PAs are in a less 

constricted state compared with controls. This could lead to deficits in vascular 

autoregulation and the ability of K+-induced signaling to efficiently redirect blood flow in 

the vascular network during NVC, as previously reported (14,18).

CONCLUSIONS

Our understanding of cerebral SVDs has advanced greatly over the past decade. Recent 

work has established the contribution of the yin and yang of the KV channel balance to the 

pathological progression of cerebral small vessel dysfunction. Here, we combine data from 

different animal models with detailed computational modeling to further understand 

elements of this pathology.

KV channels, estimated to number 3,000–3,500 per SMC in physiological conditions, play a 

profound role in regulating PA SMC resting Vm and PA myogenic tone. These channels are 

sensitive to inhibition by 4-AP, and the current footprint obtained in native PA myocytes 

aligns with the properties of KV1.2 and KV1.5 subunits, results supported by the expression 

of mRNAs for these subunits (17,58,59). Changing the number of channels per SMC results 

in abnormal SMC Vm and myogenic responses—a yin and yang dynamic that helps to 

account for cerebral microvascular defects in both CADASIL and SAH. Indeed, in addition 

to being dramatically altered by CADASIL and SAH, KV channel expression and function in 

the vascular wall can also be disrupted in the context of other major causes of cerebral 

SVDs, such as diabetes (58), aging (89), and hypertension (34,90). Thus, targeting KV1 

channels in the vascular wall with the aim of restoring normal hemodynamic function may 

be a future therapeutic option for such disorders (91).

Secondly, an in-depth characterization of the SMC membrane K+ permeability control by 

the KV−KIR interplay during NVC will enable further advances in our understanding of the 

impact of SVDs on functional hyperemia. Here, we establish an inroad to this analysis, 

introducing the new concept that changes in the number of KV channels impact the tug-of-

war between activation of SMC KIR channels and deactivation of KV channels, which can 

impair sensitivity to vasoreactive signaling.

Overall, increased KV channel density in CADASIL narrows the Vm range over which KIR 

channel can induce dilation, but also brings resting Vm to more hyperpolarized values, 

partially counteracting the impact of the tug-of-war between KV and KIR channels at the 

expense of the vasodilatory reserve. In SAH, decreased KV channel density leads to 

depolarization of resting Vm and increases myogenic tone. Compromised NVC in this 
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disease model may be attributable to high extracellular K+ levels resulting from excessive 

K+ efflux from astrocytes that depolarizes rather than hyperpolarizes SMCs.

FUTURE DIRECTIONS

Recent studies by our group and others have identified a previously unanticipated role for 

the endothelium, specifically KIR channels in capillary ECs, in sensing neural activity at the 

capillary level and translating it into a propagating hyperpolarizing electrical signal that 

dilates upstream arterioles (55,92,93). These findings highlight the importance of conducted 

hyperpolarization along PAs and hold the promise of resolving controversies regarding 

SVD-induced neurovascular dysfunction, potentially providing a paradigm-shifting concept. 

The recent development of cell-type–specific, genetically encoded fluorescent voltage 

sensors brings the possibility of in vivo and ex vivo optical electrophysiology within reach 

(94–97). In the context of electrical signaling between capillaries and arterioles, this may 

allow us to image how changes in KV channels alter the regenerative hyperpolarization of 

the endothelium during NVC. Importantly, CADASIL is caused by mutations in the 

NOTCH3 receptor, which is expressed not only in vascular SMCs, but also in pericytes (5). 

The role of pericytes, and their possible dysfunction in NVC, has recently been brought to 

light by several groups (93,98–101). Although consensus on this point has remained elusive, 

the increasing number of studies suggests that pericytes provide an additional layer of CBF 

regulation and therefore could play a key role in facilitating or dampening capillary-to-

arteriole signaling. However, whether KV channels are expressed in pericytes, and whether 

they are up-regulated in CADASIL and potentially down-regulated in SAH, remains 

unknown. Resolving these questions may prove critical to a full understanding of the 

regulation of CBF by KV channels in the intracerebral microcirculation.

PERSPECTIVE

KV channels located in SMCs of brain parenchymal arterioles oppose pressure-induced 

depolarization. Changes in KV channel density occur in pathological processes that target 

the brain microcirculation, impairing intracerebral arteriole constriction in response to 

changes in intravascular pressure. This blunting of a fundamental vascular function is 

expected to impact cerebral blood flow autoregulation and local dilation in response to 

neuronal activity (functional hyperemia). Interventions aimed at restoring KV channel 

function to improve brain perfusion may thus be a future therapeutic direction in the 

treatment of cerebral small vessel pathologies.
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Abbreviations used

4-AP 4-aminopyridine

[K+]o external K+ concentration

ADAM a disintegrin and metalloproteinase

BK large conductance Ca2+- activated K+ channel

CADASIL cerebral autosomal dominant arteriopathy with subcortical infarcts and 

leukoencephalopathy

CBF cerebral blood flow

CTL control

EC endothelial cell

EGFR epidermal growth factor receptor

EK reversal potential for K+

HB-EGF heparin-binding epidermal growth factor-like growth factor

KATP ATP-sensitive K+ channel

KIR inward rectifier K+ channel

KV voltage-gated K+ channel

MMP matrix metalloproteinase

NaK Na+/K+ ATPase

NSC non-selective cation channels

NVC neurovascular coupling

PA parenchymal arteriole

PMCA plasma membrane Ca2+ ATPase

RyR ryanodine receptor

SAH subarachnoid hemorrhage

SMC smooth muscle cell

SVD small vessel disease

TIMP-3 tissue inhibitor of metalloproteinase-3

VDCC voltage-dependent Ca2+ channel

Vm membrane potential
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Figure 1. KV channels exert a tonic dilatory influence on the diameter of intracerebral arterioles
(A) Families of KV currents from an isolated arteriolar smooth muscle cell elicited by 

voltage pulses from −70 mV to +50 mV in the presence of 100 nM iberiotoxin to inhibit 

large conductance (BK) currents. (B) steady-state activation (circles) and inactivation 

(triangles) properties of KV currents measured from isolated arteriolar smooth muscle cells. 

Solid lines, Boltzmann fits to the data. (C) Typical recording of the internal diameter of a 

pressurized parenchymal arteriole (40 mm Hg) showing the constriction caused by the 

perfusion of the KV blocker 4-AP, 1 and 5 mM. A and B are from (58) and C is from (17).
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Figure 2. Steady state KV current density in PA SMCs from normal and diseased animal models
Steady state KV current densities for CTL, CADASIL (TgNotch3R169C), and SAH models 

are fitted using a linear equation  with a Boltzmann-type activation 

term , from experimental data (17) and Koide & Wellman 

unpublished data. Cm is the membrane capacitance; Vm is the membrane potential; GKv is 

the whole-cell conductance of KV channels; EK is the reversal potential for K+. At 

physiological membrane potentials pA differences in KV currents are predicted (Figure 

inset). Model parameters: Gkv = 1.6 [nS]; VKv,0.5 = 6 [mV]; kkv = 14 [mV] for control; Gkv 

= 0.8 [nS]; VKv,0.5 = 6 [mV]; kkv = 14 [mV] for SAH; and Gkv = 3.2 [nS]; VKv,0.5 = 2.6 

[mV]; kkv = 15.8 [mV] for CADASIL model; Cm = 12.8 [pF]; [K+]i = 150 [mM]; [K+]o = 3 

[mM].
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Figure 3. Relationship between myogenic tone and membrane potential
(A) Values of membrane potential and myogenic tone at different intravascular pressure (mm 

Hg) from CADASIL (TgNotch3R169C, blue triangles) and SAH (red circles) animals are 

consistent with the linear regression obtained from CTL animals (black triangles represent 

CTL mice from (17) and black circles represent CTL rats from (6)) showing a similar 

relationship between tone and membrane potential. (B) A detailed model of SMC membrane 

potential and Ca2+ dynamics was adapted from (102) and modified by incorporating the KV1 

current of PA SMCs from CTL animals (Figure 2), while adjusting other transmembrane 

currents (KIR, NSC, VDCC, NaK, PMCA) to produce resting Vm and Ca2+ concentration in 

agreement with experimental data (17,103). The effect of altered KV1 channel density in 

CADASIL (blue triangles) and SAH (red triangles) was examined assuming all other model 

parameters remain the same as in CTL (black circles). (C) The effect of increasing pressure 

was simulated by depolarizing SMC membrane through increasing Na+ permeability (PNa). 

Model simulations, in agreement with the corresponding experiments in (A), show 

differences between CADASIL and SAH animals in Vm (bottom) and Ca2+ (top) as pressure 

increases and highlight the inhibitory role of KV channels and the effect KV channel density 

on myogenic tone. Parameters as in reference (102) except: PVDCC=6.3×10−5 cm/s; 

PNaNSC=1.23×10−6 cm/s; IPMCA=8.58 pA; INaK=7.76 pA/pF; GKIR = 0.5 nS/(mM)0.5; 

GNa,leak=0.12 nS; Cm = 12.8 pF.
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Figure 4. Effect of PA SMC KV current density and the interplay with KIR current on Vm 
dynamics at rest and during potassium challenge
(A) Combined contribution of KIR and Kv currents in healthy and diseased models during 

rest and [K+]o stimulus. Activation of KIR current by [K+]o and hyperpolarization is 

accounted:  where Gkir,max is the 

maximal KIR conductance. Solid lines show the sum of the two currents at rest, and dashed 

lines are during elevation of [K+]o from 3 to 8 mM. The shaded regions show the range of 

voltages within which KIR current increases more than KV current decreases during the K+ 

stimulus, i.e. the resting Vm window where the K+ challenge will result in hyperpolarization. 

As KV current density increases (from SAH, red lines; to CTL black lines; to CADASIL, 

blue lines) the window shrinks in size and shifts to more hyperpolarized potentials. (B) 

Representative simulation using the model of PA SMCs from Figure 3. SMCs from CTL 

(black line), CADASIL (blue line) and SAH (red line) conditions hyperpolarize following an 

increase in extracellular K+, [K+]o, from 3 mM to 8 mM. The change in membrane potential 

is less for CADASIL as a result of the more hyperpolarized resting Vm prior to the K+ 

challenge. GKIR = 0.76 [nS/(mM)0.5]; kKIR = 7 [mV]; VKIR,0.5= EK+12 [mV].
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