
1SCieNTifiC REPOrTS |  (2018) 8:225  | DOI:10.1038/s41598-017-18566-6

www.nature.com/scientificreports

Controlled Alternate Quantum 
Walks based Quantum Hash 
Function
Dan Li1, Yu-Guang Yang2, Jing-Lin Bi2, Jia-Bin Yuan1 & Juan Xu1

Through introducing controlled alternate quantum walks, we present controlled alternate quantum 
walks (CAQW) based quantum hash function. CAQW based quantum hash function have excellent 
security, outstanding statistical performance and splendid expansibility. Furthermore, due to the 
structure of alternate quantum walks, implementing CAQW based quantum hash function significantly 
reduces the resources necessary for its feasible experimental realization than implementing other 
quantum hash functions.

Hash function, as an important part of modern cryptography, has wide applications in message authentication, 
signature protocol and Public Key Infrastructure. There are many theoretical studies about classical hash func-
tions and mature hash functions such as MD5, SHA1 and SHA512. These hash functions are generally con-
structed based on mathematics complexity and thus they are computationally secure. In the field of quantum 
communication, Quantum key distribution(QKD) is the most mature branch of quantum communication. QKD 
generally contains three steps: (1) raw key sifting, (2) error reconciliation, and (3)privacy amplification. As an 
important step of QKD, privacy amplification is implemented by adopting universal hash functions1. Besides, 
classical hash functions are used extensively in other quantum protocols to ensure the safety of quantum commu-
nication, yet it is contradictory with the fact that the quantum computer could solve difficult mathematical prob-
lems. For the reason above, Li et al. presented a kind of quantum hash function based on two-particle controlled 
interacting quantum walks (CIQW)2,3. This quantum hash function guarantees the security of hash function 
by infinite possibilities of the initial state and the irreversibility of measurement rather than hard mathematic 
problems. In ref.4 Yang et al. improved the CIQW based quantum hash function and found its applications in 
the privacy amplification process of quantum key distribution, pseudorandom number generation and image 
encryption. But this quantum hash function still have two unsatisfactory defects. One of that is for the quantum 
hash function2,3, predictable collisions happens for some special states as initial coin state. The second one is that 
realization of controlled two-particle interacting quantum walks needs more resource than one-particle quantum 
walks. Therefore, we present the quantum hash function based on controlled alternate quantum walks (CAQW) 
here to avoid these defects.

Quantum walk, one famous quantum computation model, has widely applications in quantum computation 
and quantum information5–12. Alternate quantum walk is a kind of quantum walk which attracts a lot of atten-
tions13–20. Di Franco et al.13,14 proposed a two-dimensional quantum walk where the requirement of a higher 
dimensionality of the coin space is substituted with the alternance of the directions in which the walker can move. 
They also proposed the N-dimensional alternate quantum walk and discussed some of its properties through the 
analysis of the dispersion relation15. Then, the authors found16 that by properly choosing the measurement basis, 
the x–y spatial entanglement can be increased with respect to the value obtained with the measurement on the 
computational basis. They also studied the localizationlike effect in two-dimensional alternate quantum walk 
with periodic coin operations17. In ref.18 Machida and Chandrashekar presented a three-state alternate quantum 
walk on a two-dimensional lattice and discussed its localization and limit laws. Recently, Bru et al. considered the 
two-dimensional alternate quantum walk on a cylinder19. Chen and Zhang revealed the quantum and classical 
behaviors of the two-dimensional alternate quantum walk in the presence of decoherence20.
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Results
CAQW based quantum hash function.  At first, we propose CAQW for constructing quantum hash 
function.

CAQW take place in the product space  ⊗p c. Let |x, y, γ〉 be a basis state, where x, y and γ represent the 
walker’s position and the coin state respectively.

In every step of the CAQW, the evolution of the whole system can be described by the global unitary operator, 
denoted by U,

= ⊗ ⊗ .U S C S C( ) ( ) (1)y x 

The shift operator Sx is defined as
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And Sy is similar to Sx. The coin operator C is a 2 × 2 unitary operator. The general coin operator is defined as
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For CAQW, we randomly select two parameters θ1, θ2 to construct two coin operators C0 and C1. The choice 
of the coin operator is controlled by a binary string, i.e. message. When the ith bit of the message is 0 (1), the ith 
step of the quantum walk executes with the coin operator C0(C1). For example, if the message is 0100, the final 
state is expressed by

ψ ψ= U U U U , (4)4 0 0 1 0 0

where |ψ0〉 is the initial state of the total quantum system,  = ⊗ ⊗U S C S C( ) ( )y x0 0 0 , = ⊗ ⊗U S C S C( ) ( )y x1 1 1  .
Hence the probability of finding the walker at position (x, y) after t steps is

∑ γ ψ=
γ∈ ↑ ↓

P x y t x y U message( , , ) , , ( ) ,
(5){ , }

0
2

where U(message) is the global unitary operator controlled by the message.
Then, the CAQW based quantum hash function is constructed as follows.

	 1)	 Select the parameters (n, k, (θ1, θ2), (α, β)). θ1, θ2 ∈  (0, π/2) and |α|2 + |β|2 = 1.
	 2)	 Run the two-dimensional CAQW under the control of the message. Each direction of the two-dimensional 

space is a n-length circle. θ1, θ2 are the parameters of the two coin operators respectively. The initial state is 
α β+0, 0 ( 0 1 ).

	 3)	 Multiply all values in the resulting probability distribution by 108 modulo 2k to form a binary string as the 
hash value. The bit length of the hash value is n2k.

Security of CAQW based quantum hash function.  Security of CAQW based quantum hash func-
tion is based on the infinite possibilities of the initial state and the irreversibility of measurement and modulo 
operator.

By using modulo operator, probability distribution is transformed to hash value. This process is irreversible 
because it is a many-to-one relationship. The probability to transform the hash value back to right probability 
distribution is approximately 0. It is the first shield to prevent message and initial coin state from unauthorized 
person.

The second shield of this quantum hash function is the irreversibility of measurement. This is the main reason 
why the CAQW based quantum Hash function is safe. The final state of CAQW is

∑ ∑ψ ψ λ γ= | 〉 = .
γ

γ
∈ ↑ ↓

U message x y( ) , ,
(6)
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This state is a pure state and is linear with the initial state. The probability distribution is

∑ ∑γ ψ λ= = | | .
γ γ

γP x y t x y U message( , , ) , , ( )
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As a result, one can get the probability distribution easily by a quantum computer or a classical computer. 
However, the probability distribution is the sum of squares of amplitudes which will break the linearity between 
the final state and the initial state.
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If an unauthorized person Eve has plaintext-cipher pairs, he still can not turn the probability distribution into 
the right linear composition of squares of amplitudes, let alone he doesn’t have the accurate probability distribu-
tion. This is because of the infinity of decomposing a number as the sum of squares,

∑ ∑λ λ= | | = | | .
γ

γ
γ

γ
′P x y t( , , )

(8)
x y x y, ,

2
, ,

2

Then, Eve can only suppose the final state is

∑∑ψ λ γ= .
γ

γ
′ ′ x y, ,

(9)
t
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, ,

Therefore, he can not get the right initial state even he knows the right message.

ψ ψ= .′ − ′U message( ) (10)t0
1

This process protects the initial coin state from any unauthorized person. Together with the infinite possibil-
ities of the initial state, even with a powerful quantum computer, nobody can seek out the initial state by trying 
all possibilities in theory.

Properties of CAQW based quantum hash function.  In this section, we performed several hash tests 
and theoretical analysis to evaluate the performance of the proposed quantum hash function. We choose n = 5, 
k = 8, so the hash value we consider here is 200 bits. The result shows that CAQW based quantum hash function 
have outstanding statistical performance.

Sensitivity of hash value to message.  C1, C2, C3 and C4 represent the message, and the messages with 
tiny modifications respectively. The results listed below show the high sensitivity to the message and the tiny 
changes.

Condition 1: The original message;
Condition 2: Change the 8th bit from 0 to 1;
Condition 3: Delete the last bit of the message;
Condition 4: Insert a bit in front of the 100th bit.

The corresponding 200-bit hash values in the hexadecimal format are given by:

Condition 1: F4D7DFFE8A6F9269CFF39B665D9D33FFE0912551E598438C35;
Condition 2: 9714B30709B92AC7DBC6909D95F8C5DE85F7907BD5430953E1;
Condition 3: B9CF2BA89451E17A5BC2AFEF7072A7A1AC469A644FB754B773;
Condition 4: D709199C062129047E6C68F4D5DEE1EE4E0307490A92A7CE90.

The plots of the hash values are shown respectively in Fig. 1 and it is clearly indicated that any tiny modifica-
tion to the message will cause a substantial change in the final hash value.

Figure 1.  Plots of the 200-bit Hash Value C1, C2, C3 and C4.
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Statistical analysis of diffusion and confusion.  The diffusion and confusion tests are performed as 
follows:

	(1)	 Select a message and generate the corresponding hash value;
	(2)	 Change one bit of the message randomly and generate a new hash value;
	(3)	 Compare the two hash values and count the changed bits called Bi;
	(4)	 Repeat steps (1)–(3) N times.

Given the definitions:

Minimum changed bit number =B min B({ } )min i
N
1 ;

Maximum changed bit number =B max B({ } )max i
N
1 ;

Mean changed bit number = ∑ =B B N/i
N

i1 ;
Mean changed probability = ×P B( /200) 100%;
Standard variance of the changed bit number ∆ = ∑ −

− =B B B( )
N i

N
i

1
1 1

2 ;

Standard variance of the changed probability ∆ = ∑ − ×
− =P B P( /200 ) 100%

N i
N

i
1

1 1
2 .

The diffusion and confusion tests are perforemed with N = 1024, 2048, 10000, respectively, as shown in 
Table 1. We concluded from the tests that the mean changed bit number B  and the mean changed probability P 
are close to the ideal value 100 and 50% respectively. ΔB and ΔP are very little, Bmin and Bmax are around 100, so 
that it demonstrates the stability of diffusion and confusion. The excellent statistical effect ensures that it is impos-
sible to forge plaintext-cipher pairs given known plaintext-cipher pairs.

Collision analysis.  It is hard to provide a mathematical proof on the capability of collision resistance of cha-
otic hash functions. Thus, we performed the following tests for collision resistance:

	(1)	 Select an original message randomly and generate the corresponding hash value in ASCII format.
	(2)	 Change a bit in the message randomly and generate the corresponding hash value in ASCII format.
	(3)	 Compare these two hash values and count the number of ASCII characters with the same value at the same 

location.

Moreover, the number of ASCII characters with the same value at the same location, i.e. ω, and the theoretical 
number of ω same values through N independent tests, i.e. WN (ω) can be computed according to the following 
formulas:

∑ω δ= − ′
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where (x) is the Dirac delta function.
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where ei and ′e i are the i th entries of the original and new hash values in ASCII format, respectively. In equa-
tion 11, ω = 0, 1, …, n2. We run this test N = 10,000 times. The experimental values and the of experimental values 

N = 1024 N = 2048 N = 10000

B 100.1553 100.2036 99.9010

P(%) 50.0776 50.1018 49.9505

ΔB 7.1816 7.0323 7.1133

ΔP 3.5908 3.5162 3.5567

Bmin 77 77 75

Bmax 121 124 124

Table 1.  Static Number of Changed Bit B.

ω = 0 ω = 1 ω = 2 ω = 3 ω = 4…25

Experimental Values of WN(ω) 8982 989 25 4 0

Theoretical Values of WN(ω) 9068 889 42 1 0

Table 2.  Comparison of Experimental Values and Theoretical Values of WN(ω).
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WN(ω) in the proposed function are shown in Table 2. The experimental values of WN(ω) are similar to the theo-
retical values.

Uniform distribution on hash space.  In order to check the distribution capacity in hash space, we gen-
erated two hash values according to the method described in previous subsection and then counted the number 
of the changed bits at each location. The statistical results for N = 10,000 are shown in Fig. 2. The mean of the 
changed bit number 4998.2 is very close to the ideal value 5000, which accounts for half of the test times. It can be 
concluded that the hash value is distributed uniformly in the hash space as all the changed bit numbers are around 
the ideal value. Obviously, this demonstrates the resistance against statistical attack.

Resistance to birthday attack.  Birthday attack implies a lower bound of the length of hash value. The 
length of the hash value we considered here is 200 = 52 × 8 bits. Therefore, it needs 2n/2 = 2100 ≈ 1.2677 × 1030 trials 
(n is the size of hash value) to find two messages with identical hash values with a probability of 1/2. Furthermore, 
CAQW based quantum hash function can be easily extended to be 392 = 72 × 8 bits or more. Therefore, the results 
of the tests, the size of the hash value, and the collision resistance of the proposed algorithm suggest that the birth-
day attack is almost impossible and that the proposed algorithm is resistant against this type of attack.

Advantages.  Through the analysis above, we find that CAQW based quantum hash function has excellent 
security and outstanding statistically performance, which is basically same with CIQW based quantum hash 
function. However, at the same time, CAQW based quantum hash function has some advantages than CIQW 
based quantum hash function due to the structure of CAQW.

In ref.2 Li et al. considered two interactions:  -interaction and π-phase interaction.  -interaction and π-phase 
interaction are in fact a coin operator spanned by two 2 × 2 unitary operators. But CIQW with these two interac-
tions have predictable collisions that quantum walks with same special initial coin state but different messages 
may have the same probability distribution. In refs3,4 to avoid this kind of collisions, the Grover operator, a swap 
operator21 and the coin operator E22 are chosen. But it is more hard to implement these 4 × 4 coin operators than 
a coin operator spanned by two 2 × 2 unitary operators.

CAQW use the 2 × 2 coin operator in Euq. 3 to control the movement of the quantum walker on two direc-
tions. By selecting two values as the parameter θ, two coin operators for CAQW can be constructed. Our tests 
prove that predictable collisions do not happen in CAQW. Furthermore, implementing two 2 × 2 unitary oper-
ators significantly reduces the resources necessary for its feasible experimental realization than implementing a 
coin operator spanned by two 2 × 2 unitary operators, let alone a 4 × 4 coin operator.

Another important advantage of CAQW is that two-dimensional CAQW can be easily extended to higher 
dimensional CAQW. That means it is easier to construct a hash function with longer hash value. For example, 
when n = 5, k = 8, the bit length of the Hash value is 1000 = 53 * 8 for three-dimensional CAQW based quantum 
Hash scheme, while the bit length of the Hash value is 200 = 52 * 8 for two-dimensional CAQW based quantum 
Hash scheme. Furthermore, for a d-dimensional CAQW based quantum hash function, the size of the state space 
is nd × 2 while the size of the state space is nd × 2d for a d-dimensional CIQW based quantum hash function2–4. 
It is obviously that implementing a 2d × 2d coin operator is easier and save more resources than implementing d 
2 × 2 coin operators.

A comparison about three kinds of quantum walks is shown at Table 3. C2 and C4 denote coin operators of size 
2 × 2 and 4 × 4 respectively. It is obviously that CAQW is the best of them for building a quantum hash function 
from the aspect of safety and implementability.

Figure 2.  Uniform Distribution on Hash Space.
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Discussion
In this paper, based on the presentation of controlled alternate quantum walks, we introduce CAQW based quan-
tum hash function. Security of CAQW based quantum hash function is based on the infinite possibilities of the 
initial state and the irreversibility of measurement and modulo operator. Furthermore, CAQW based quantum 
hash function has outstanding statistical performance from the aspects of sensitivity, diffusion and confusion, 
collision, uniform distribution, resistance to birthday attack. More importantly, due to the structure of alternate 
quantum walks, CAQW based quantum hash function has some advantages than CIQW based quantum hash 
functions. CAQW based quantum hash function doesn’t have predictable collisions in ref.2. Furthermore, imple-
menting CAQW based quantum hash function significantly reduces the resources necessary for its feasible exper-
imental realization than implementing CIQW based quantum hash functions in refs2–4. Also, two-dimensional 
CAQW based quantum hash function can be easily extended to be higher dimensional CAQW based quantum 
hash function, which will speed up implementing 200 bits quantum hash function. And controlled quantum 
walks based quantum hash function can not only be used in quantum computers, but also be used in classical 
computers. Therefore, CAQW based quantum hash function is eligible for privacy amplification in quantum key 
distribution, pseudo-random number generation and image encryption4.
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CIQW in ref.2 CIQW in ref.3,4 CAQW

Number of particles Two particles Two particles One particle

Number of directions Two directions Two directions Two directions

Unitary operator Sxy (I ⊗ C2 ⊗ C2) Sxy (I ⊗ C4) Sy C2 Sx C2

Collision Predictable collisions NO NO

Size of state space for d-dimensional QW nd × 2d nd × 2d nd × 2

Table 3.  Comparison of Three Kinds of Quantum Walks.
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